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Abstract

Exceedance control of the false discovery proportion (FDP) can provide an interpretable
method for addressing the variability in the false discovery proportion estimates. Exceedance
control of FDP can be viewed as constructing a confidence interval for FDP and as such
inverting a hypothesis test is a viable method for achieving exceedance control. A novel powerful
approach for exceedance control is presented based on using a directional Berk-Jones goodness-
of-fit statistic. The approach employs a high-precision implementation procedure to accurately
compute confidence envelopes for FDP. The procedure is compared against other methods and
generalized to include other goodness-of-fit statistics that follow an isotropy condition.

Keywords: exceedance control, false discovery proportion, confidence envelope, Berk-Jones
statistic

1. Introduction

Multiple testing procedures to control the false discovery rate (FDR) started with the BH
approach presented in [1]. FDR is defined as the expected value of the false discovery proportion
(FDP) which is the number of false rejections divided by the number of rejections. FDR control
is often more desirable in a large-scale multiple hypothesis test setting than the family-wise error
rate (FWER) control since the power with FDR is much larger than with FWER control.

While the false discovery rate controls the expectation of the false discovery proportion, in
some cases, it can be useful to control the probability that the false discovery proportion exceeds
a specified bound. This is what is meant by exceedance control of the false discovery proportion.
Informally, exceedance control of the false discovery proportion is analogous to a confidence interval
whereas FDR is analogous to a point estimate. In short, exceedance control of the false discovery
proportion (often denoted as FDX) is implemented by controlling the upper limit tail probability
of the false discovery proportion. The exceedance control of the false discovery proportion controls
a quantile of the FDP distribution and thus offers a stronger guarantee than FDR control. Ex-
amples where exceedance control may be desirable include functional magnetic resonance imaging
(MRI) experiments, mass spectromery (MS), RNA-Seq and other types of sequencing (e.g. 16S
microbiome), or similar omics/high-throughput experiments.
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Exceedance control of the false discovery proportion has received a good deal of attention (see
[6, 15, 20, 17, 7, 10, 4, 5, 9]). There are mainly two classes of methods to control the exceedance
probability, namely the augmentation approach from [20] and the inversion method from [6] and
[7]. In this paper, we will focus on the inversion method, which is a post hoc method that provides
the upper confidence bound of the FDP for an arbitrary set of rejections after observing the data.
This property makes the method very flexible and allow researchers to adjust the hypotheses that
will be rejected according to different research endpoints.

The inversion method is coined as such as it is based on inverting a hypothesis test, see, for
example, Chapter 8 in [3]. Particularly, this approach of inverting a test to obtain a confidence
interval thus controlling, say, the exceedance probability is presented and discussed in [6].

[6] mentions that inverting traditional uniformity tests, such as the Kolmogorov-Smirnov test
do not fare well in exceedance control settings as those tests are designed to look for uniformity
deviations equally through all p-values while reasonable procedures should focus on the left tail.
In order to restrict focus on the left tail, [6] propose a method to control exceedance probability
utilizing, say, the smallest 10 p-values. This approach is generalized as combining p(k) tests. We
note this approach is reasonable however it requires the user to choose k, that is, the number of
p-values to use in creating the confidence interval.

In this article, we present an exceedance control approach based on inverting a test derived from
a directional Berk-Jones statistic. This method has improved power versus combining p(k) tests,
is faster, and does not require the user to specify which p-values to combine. Thus, we feel this
contribution will be useful to the statistical community.

Our manuscript is presented as follows: First we present a background section summarizing
exceedance control via inversion method and the (directional) Berk-Jones statistic which can be
tuned to detect specific violations of uniformity. In Section 3 we present a fast algorithm for con-
trolling the FDR exceedance probability based on the directional Berk-Jones statistic. In Sections
4 and 5 we present Simulations and an Example, respectively. Lastly we note the availability of our
R package in addition to Discussion and Conclusion. An Appendix contains theorems and proofs
used to support our method.

2. Exceedance control

2.1. Test framework
Consider m null hypotheses H01, H02, ..., H0m and the corresponding p-values P1, P2, ..., Pm, Let

Ω be the set {1, 2, ..., m} and T ⊆ Ω be the indices of the true null hypotheses where i ∈ T implies
the null hypothesis H0i is true. Given the rejection index set R for which the corresponding H0i’s
are rejected, the false discovery proportion (FDP) is defined by

FDP = Γ(R) = | R ∩ T |
| R |

, (1)

where |X| is the cardinality of the set X. Instead of controlling the false discovery rate (FDR),
which is defined by the expectation of FDP, we control the exceedance rate of the false discovery
proportion (FDX), that is

FDX = pr(FDP > c) = pr(Γ(R) > c), (2)
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for a given c. We say the exceedance rate is controlled at a level α if and only if

pr(Γ(R) > c) < α, (3)

for a given α. Controlling exceedance rate bounds the probability of observing a large FDP which
can offer a strong constraint on the tail behavior of FDP compared with FDR. Note that [6] and [7]
have independently developed the same method for controlling the quantity in (2). They both build
an upper bound for the FDP but use different terminologies to refer it. [6] call it the inversion-based
confidence envelope while [7] describe it as the closed-testing-based confidence set. In this paper,
we will mainly follow the framework in [6] and call the upper bound the confidence envelope.

2.2. Confidence envelope
An 100(1 − α)% confidence envelope Γ̂α(R) of the false discovery proportion is defined as

pr
(

Γ(R) ≤ Γ̂α(R) for all R ⊆ Ω
)

≥ 1 − α. (4)

The confidence envelope serves as an upper bound of FDP and simultaneously works for all rejection
index sets R. Therefore, after observing the data, researchers are free to choose which hypotheses
are rejected and obtain an estimation of the upper bound of the FDP. Given the rejection index
set R0, the confidence envelope Γ̂α(R0) ensures that

pr
(

Γ(R0) ≤ Γ̂α(R0)
)

≥ 1 − α, (5)

or, in terms of the tail probability

pr
(

Γ(R0) > Γ̂α(R0)
)

. < α, (6)

In practice, there are two ways to apply (5) in a multiple hypothesis test setting. One can prespecify
the exceedance probability α and estimate the confidence envelope for the FDP for a rejection set R0.
Alternatively, if the error rate is given, say FDP> c is undesirable, we can control the probability
that the FDP exceeds c by finding the largest rejection set R for which Γ̂α(R) ≤ c.

2.3. Inversion-based confidence envelope
In this section, we summarize the inversion based confidence envelope proposed in [6]. The

confidence envelope is built upon a p-value function from a goodness-of-fit test statistic for the
uniform distribution. Assume that W is an integer sequence from Ω and let PW represent the
sequence {PW1 , PW2 , ..., PW|W|}. Let Ψ|W|(PW ) be a |W|-variate p-value function of a goodness-of-
fit test where the null hypothesis is that the samples in PW are all from the null distribution. That
is,

Ψ|W|(PW ) = Ψ|W|(PW1 , PW2 , ..., PW|W|). (7)

and the goodness-of-fit test rejects the null at level α when Ψ|W|(PW ) ≤ α. Let Uα be a collection
of all sequences W which are not rejected by the goodness-of-fit test at level α. That is,

Uα = {W ⊂ Ω | Ψ|W|(PW ) > α}. (8)
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The inversion based 100(1 − α)% level confidence envelope is defined as

Γ̂α(R) =
{

maxB⊂Uα

|B∩R|
|R| if R ̸= ∅

0 otherwise.
(9)

Furthermore, if the p-value function Ψ|W|(PW ) is isotropic, where switching the order of the input
variables does not change the value of the function (e.g. Ψ2(P1, P2) = Ψ2(P2, P1)), we can rewrite
(9) using the index of the ordered p-values where the information regarding the order of PW is dis-
carded. The isotropic condition is commonly seen in GOF testing as the samples being tested are
usually unweighted and switching the order of the samples would not change the test result (e.g. Kol-
mogorov–Smirnov test). Let P(1) ≤ P(2) ≤ ... ≤ P(m) be ascending ordered p-values and define P(W )
as the sequence {P(W1), P(W2), ..., P(W|W|)} where Ψ|W|(P(W )) = Ψ|W|(P(W1), P(W2), ..., P(W|W|)) is
the p-value function of the goodness-of-fit test. Define

Ūα = {W ⊂ Ω | Ψ|W|(P(W )) > α, W1 < W2 < ... < W|W|}, (10)

where W is an ascending ordered sequence and Ūα is a collection of all sequences W such that the
samples P(W1), P(W2), ..., P(W|W|) are not rejected by the goodness-of-fit test at level α. Note that
we treat a sequence as a set with an order, so the set operations such as ⊂ can be applied to a
sequence as well. The 100(1 − α)% level confidence envelope is given as

Γ̂α(R̄) =
{

maxB⊂Ūα

|B∩R̄|
|R̄| if R̄ ̸= ∅

0 otherwise,
(11)

where R̄ is an ascending ordered rejection index sequence.
It is straightforward to observe that (8) and (10) contain the same unrejected sets of hypotheses.

To be more clear, let π(i) be a rank function defined as

Pi = π(i)th smallest P-value = P(π(i)). (12)

For an arbitrary p-value subset PW and its sorted version P(π(W )) where π(W ) = {π(W1), ..., π(W|W|)}.
If the isotropic assumption is met, we have Ψ|W|(P(π(W ))) = Ψ|W|(PW ) and, therefore, the sets Uα

and Ūα contain the same hypotheses, except that the former set Uα contains the indices of the
original hypotheses while the latter set Ūα contains the indices of the hypotheses sorted by the
p-values. Consequently, the confidence envelop yields from Γα(R) and Γα(R̄) are equivalent for the
same set of rejections.

Since Γα(R) and Γα(R̄) can be used to construct the same confidence envelope when the p-value
function of the goodness-of-fit test is isotropic, we will focus on the goodness-of-fit tests that have
isotropic property and use the confidence envelope defined in (9). To ease the notational burden,
we will use U and R to represent Ū and R̄ respectively unless otherwise stated.

In the next section, we summarize two goodness-of-fit statistics to test for the standard uniform
distribution (U(0, 1)). We are interested in using these statistics to assess whether a subset of
p-values in Section 2.1 follow a null U(0, 1) distribution. The associated tests for the statistics have
isotropic p-value functions.
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2.4. kth order statistic and the combined method
The kth order statistic is a test statistic presented in [6] to control the exceedance rate in (2).

The kth order statistic is based on the k-th smallest p-value in the subset and we denote its p-value
function as ΨP(k)

|W| (P(W )). Specifically, the p-value of the kth order statistic under the U(0, 1) null
hypothesis is

p-value = ΨP(k)
|W| (P(W ))

= ΨP(k)
|W| (P(W1), P(W2), ..., P(W|W|))

= pr
(
Beta(k, |W| −k + 1) < P(Wk)

)
= B|W|,k

(
P(Wk)

)
,

(13)

where B|W|,k(x) is the Beta distribution function with two shape parameters a = k and b =
|W| −k + 1. Using the kth order statistic, we define the collection of the unrejected p-value subsets
as

U
P(k)
α = {W ⊂ Ω | ΨP(k)

|W| (P(W1), P(W2), ..., P(W|W|)) > α, W1 < W2 < ... < W|W|}. (14)

The kth order statistic based confidence envelope Γ̂P(k)
α (R) is

Γ̂P(k)
α (R) =

{
max

B⊂U
P(k)
α

|B∩R|
|R| if R ̸= ∅

0 otherwise.
(15)

The confidence envelope in (15) seems computationally unfeasible for it requires testing all
subsets of the p-values P(1), P(2), ..., P(m) to obtain U

P(k)
α in (14), but [6] provides a fast algorithm

for Γ̂P(k)
α (R) to reduce the computational complexity. Let

Jk = min{j : P(j) ≥ B−1
|W|,j(α)}. (16)

The confidence envelope Γ̂pk
α (R) can be computed via

Γ̂P(k)
α (R) =

1 −
∣∣{k,...,Jk}

⋂
R

∣∣
|R| if Jk ̸= ∅ and R ̸= ∅

0 otherwise.
(17)

The fast algorithm make it possible to compute the confidence envelope on a linear complexity.
Furthermore, since the power of the test depends greatly on the choice of k, [6] developed a, so
called, combined method where the idea is to combine envelopes obtained under different k’s to
reduce the chances of a poor envelope obtained from selecting an inappropriate k. Let Q ⊂ Ω be a
set of indices and the combined confidence envelope, Γ̂P(Q)

α (R), is defined as

Γ̂P(Q)
α (R) = min

k∈Q
Γ̂P(k)

α/|Q|(R). (18)

Note when Q = {k}, the confidence envelope of the combined method Γ̂P(Q)
α (R) degrades to the

confidence envelope of the kth order statistic Γ̂P(k)
α (R). Note that Γ̂P(Q)

α (R) is always greater or
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equal than Γ̂P(k)
α (R) with the optimal choice of k in Q. This is because the significant level for each

set on the right of (18) is α/|Q| and taking the minimum over k ∈ Q will not make Γ̂P(Q)
α (R) smaller

than the optimal Γ̂P(k)
α (R) which is tested at level α. However, since the combined method greatly

reduces the risk of choosing an inappropriate k, it is more flexible than the kth order statistic based
confidence envelope in practice. In the next section, we introduce Berk-Jones statistics which can
serve as a replacement for the combined method and under independence can be more powerful
than the combined method.

2.5. Berk-Jones statistics
The Berk-Jones statistic is a goodness-of-fit test statistic that was first introduced in [2]. It

compares the ascending ordered samples with its theoretical distribution under the null and the
test is declared significant if and only if at least one order statistic is too large or too small. For
the samples PW1 , PW2 , ..., PW|W| , define

Z|W|,i = pr
(
Beta(i, |W| −i + 1) ≤ P(Wi)

)
= B|W|,i

(
P(Wi)

)
, (19)

where B|W|,i is the Beta distribution function with two shape parameter a = i and b = |W| −i + 1.
The statistic Z|W|,i often is called the local level for it carries the significance information of the
“local” P(Wi). For the “global” significance, the BJ statistic M|W|, and its one-sided variants M−

|W|
and M+

|W| can be defined by

M+
|W| = min

1≤i≤|W|
Z|W|,i, M−

|W| = min
1≤i≤|W|

(1 − Z|W|,i), M|W| = min{M+
|W|, M−

|W|}. (20)

In contrast to the well-known Kolmogorov-Smirnov statistic, Berk-Jones statistics are very sensitive
to detect the deviance in two tails of the distribution function. This tail-sensitive property makes
the Berk-Jones statistic very suitable to build the confidence envelope. Since the p-values from
the multiple hypotheses tend to be smaller than expected under the alternative in settings with
biological signals (see, beta-uniform mixtures models as in [16]) a one-sided Berk-Jones statistic
M+

w is more appropriate in testing the p-values.
Certain generalizations can be made on the Berk-Jones statistics to make it more flexible. Let

Q ⊂ Ω be an index set, a partial one-sided Berk-Jones statistic, M+
Q can be defined as

M+
Q ≡ min

i∈Q
Z|W|,i. (21)

For a small subset W , it is possible that there exist i ∈ Q such that i > |W|. In this case, we ignore
the out-of-bound indices that may be present in (21). The p-value function Ψ

M+
Q

|W| for the observed
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samples p(W ) and Berk-Jones statistic m+
Q is

Ψ
M+

Q

|W| (p(W )) = pr(M+
Q < m+

Q) (22)

= pr(min
i∈Q

Z|W|,i < m+
Q) (23)

= pr(
⋃
i∈Q

B|W|,i(P(Wi)) < m+
Q) (24)

= 1 − pr(
⋂
i∈Q

B|W|,i(P(Wi)) ≥ m+
Q) (25)

= 1 − pr(
⋂
i∈Q

P(Wi) ≥ B−1
|W|,i(m

+
Q)), (26)

where the exact probability in (26) depends on the joint probability of the ordered uniform statistics.
Both numerical and high-precision solutions exist for solving the probability, see, for example,
Chapter 9 in [19]. In this paper, we will simply assume the joint probability is available. If readers
are interested in this topic, please refer to the integration method in [13], the Poisson process in
[12] or Steck’s determinant in [11] with details of that computation in [21].

Given Ψ
M+

Q

|W| (p(W )), a partial one-sided Berk-Jones based confidence envelope, say Γ̂
M+

Q
α (R), can

be computed via

Γ̂
M+

Q
α (R) =


max

B⊂U
M

+
Q

α

|B∩R|
|R| if R ̸= ∅

0 otherwise,

(27)

where

U
M+

Q
α = {W ⊂ Ω | Ψ

M+
Q

|W| (P(W1), P(W2), ..., P(W|W|)) > α, W1 < W2 < ... < W|W|}. (28)

The Berk-Jones based confidence envelope Γ̂
M+

Q
α (R) in (27) is very similar to the combined

method Γ̂P(Q)
α (R) in (18). By comparing (13) and (19), it can be seen that the p-value function

of the kth order statistic is equivalent to the local level Z|W|,k for the same subset W . That is,
ΨP(k)

|W| (P(W )) = Z|W|,k. These quantities form the starting point for building both confidence sets.
The Berk-Jones based confidence envelope directly uses the minimum of the local level Z|W|,k’s as
a test statistic to build the confidence envelope, while the combined method first computes the
confidence envelope for each kth order statistic then obtains the combined result by computing the
minimum of all confidence envelopes of the kth order statistics. It can be shown that the Berk-
Jones based confidence envelope is more powerful than the combined method under independent
observations (see Appendix ??). The intuition for the improvement in power is the following: the
Berk-Jones based confidence envelope directly uses the most informative (i.e. most significant) test
statistic in constructing the confidence envelope. Meanwhile the combined method in [6] proposes
using a range of likely informative statistics and creates Bonferroni adjusted confidence envelopes
for each value in the range ultimately taking the minimum of those confidence envelopes as the final
envelope. If the indices set Q only contains a single value, both Berk-Jones based and combined
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test based confidence envelopes yield the same results and thus the same power. As the range in
the combined method gets larger thus likely including less informative statistics, the discrepancy
in power between the two methods increases. Analogously, a Bonferroni adjustment for assessing
significance gets less powerful (more conservative) as the number of tests increases. Similarly, the
power of the combined method in constructing the confidence envelope decreases as the range of
test statistics employed in construction increases. Thus, it is best to employ the combined method
over a range of statistics likely to be informative, that is, likely to be true alternatives (see [6] for
more details on the range selection.)

Similar to the problem with the kth order statistic approach, the Berk-Jones based confidence
envelope is inapplicable in practice as (27) has O(2m) computational complexity. The time con-
sumption is unacceptable for any sample size greater than 20. Therefore, a fast algorithm is required
for the Berk-Jones based confidence envelope to reduce the computational load. In the next sec-
tion, we will propose a general fast algorithm to compute the confidence envelope for any BJ-like
statistic. The algorithm has O(m2) computational complexity and the time cost is reasonable for
sample sizes up to 10,000.

3. Fast algorithm for computing the confidence envelope

In this section, we propose a fast algorithm for computing the confidence envelope not only for
Berk-Jones statistics, but for a wide range of statistics. This includes the kth order statistic, the
Kolmogorov-Smirnov statistic, and the higher criticism statistic. They all share a common property
and we call them BJ-like statistics.

Definition 3.1. Given the ascending ordered samples P(1) ≤ P(2) ≤ ... ≤ P(m), if the acceptance
region of a goodness-of-fit test statistic can be expressed as

lα,m
i ≤ P(i) ≤ hα,m

i for all i = 1, 2, ..., m, (29)

where {lα,m} and {hα,m} are two non-decreasing sequences then we call that test statistic a BJ-like
statistic.

It can be shown that the Berk-Jones statistics and its variants satisfy Definition 3.1. The proof
including the specific sequences for {lα,m} and {hα,m} can be found in Appendix ??.

Assume that Ψ|W|(P(W )) is a p-value function for a BJ-like test statistic where W is an ascending
integer sequence from Ω = {1, 2, ..., m}. To compute (27) in Section 2.3, we must test all subsets
of P(1), P(2), ..., P(m) to obtain the unrejected index set Uα and then maximize the false discovery
proportion to obtain the confidence envelope Γ̂α(R). That is,

Γ̂α(R) = max
B⊂Uα

|B ∩ R|
|R|

, (30)

where
Uα = {W ⊂ Ω | Ψ|W|(P(W )) > α, W1 < W2, ..., < W|W|}. (31)

Instead of maximizing |B∩R|
|R| directly over all possible elements in Uα with different sample sizes, the

fast algorithm first restricts the sample size to n and computes the local maximization of |B∩R|
|R| over

the elements in Uα with the same sample size n. The confidence envelope Γ̂α(R) is then obtained
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by doing a second maximization over all local maximums for n in 1, 2, ..., m. To be more specific,
define Sn as a collection of W such that the cardinality of W is n, that is,

Sn = {W ⊂ Ω | W1 < W2, ..., < W|W|, |W| = n}. (32)

Let Uα,n be the set which cannot be rejected at level α

Uα,n = {W ∈ Sn | Ψn(P(W )) > α}
= {W ∈ Sn | lα,n

i ≤ P(Wi) ≤ hα,n
i for ∀i = 1, 2, ..., n}.

(33)

where the last line derives from (29). Then Uα is a union of Uα,ns where

Uα = {W ⊂ Ω | Ψ|W|(PW ) > α, W1 < W2, ..., < W|W|} (34)

=
⋃

n=1,...,m

{W ⊂ Ω | Ψ|W|(PW ) > α, W1 < W2, ..., < W|W|, |W| = n} (35)

=
⋃

n=1,...,m

{W ∈ Sn | Ψn(P(W )) > α} (36)

=
⋃

n=1,...,m

Uα,n. (37)

Therefore, given the indices of the rejected hypotheses R corresponding to the ascending ordered
p-values, the 100(1 − α)% level confidence envelope can be estimated by

Γ̂α(R) = max
B⊂Uα

|B ∩ R|
|R|

(38)

= max
B⊂

⋃
n=1,...,m

Uα,n

|B ∩ R|
|R|

(39)

= max
n=1,...,m

max
B⊂Uα,n

|B ∩ R|
|R|

. (40)

Since the set R is fixed during the maximization, we will focus on the algorithm of computing the
maximization of |B ∩ R| over B in Uα,n. Define two sequence {pα,n} = {pα,n

1 , pα,n
2 , ..., pα,n

n } and
{qα,n} = {qα,n

1 , qα,n
2 , ..., qα,n

n } as

pα,n
i = inf{j | P(j) ≥ lα,n

i , j = 1, 2, ..., m}, (41)

qα,n
i = sup{j | P(j) ≤ hα,n

i , j = 1, 2, ..., m}. (42)

It is shown in Appendix ?? that the below two sets are equivalent for any realization of the samples
P1, P2, ..., Pm.

Uα,n = {W ∈ Sn | lα,n
i ≤ P(Wi) ≤ hα,n

i for ∀i = 1, 2, ..., n}
≡ {W ∈ Sn | pα,n

i ≤ Wi ≤ qα,n
i for ∀i = 1, 2, ..., n}.

(43)

Note that when there exists at least one empty pα,n
i or qα,n

i , we let the set Uα,n be empty. Therefore,
finding the set Uα,n is equivalent to finding all W ∈ Sn which satisfy pα,n

1 ≤ W1 ≤ qα,n
1 , pα,n

2 ≤
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W2 ≤ qα,n
2 , . . . , pα,n

n ≤ Wn ≤ qα,n
n . However, not all pα,n

i and qα,n
i are attainable. Consider the

following two examples
n = 2, pα,n

1 = pα,n
2 = qα,n

1 = qα,n
2 = 1, (44)

and
n = 2, pα,n

1 = pα,n
2 = 1, qα,n

1 = qα,n
2 = 2, (45)

where in the former case the set Uα,n is empty and in the latter one there is no W ∈ Uα,n such
that W1 = qα,n

1 or W2 = pα,n
2 . Therefore, further refinement is required to remove the unreachable

pα,n
i and qα,n

i . This can be done by a sequential selection process. Define the refined sequence
{pα,n} = {pα,n

1 , pα,n
2 , ..., pα,n

n } and {qα,n} = {qα,n
1 , qα,n

2 , ..., qα,n
n } as

pα,n
1 = pα,n

1

pα,n
2 = max(pα,n

1 + 1, pα,n
2 )

pα,n
3 = max(pα,n

2 + 1, pα,n
3 )

...

pα,n
n = max(pα,n

n−1 + 1, pα,n
n ).

(46)

It is clear to see that at each step qα,n
i will select the smallest index possible for Wi. Similarly

qα,n
n = qα,n

n

qα,n
n−1 = min(qα,n

n − 1, qα,n
n−1)

qα,n
n−2 = min(qα,n

n−1 − 1, qα,n
n−2)

...

qα,n
1 = min(qα,n

2 − 1, qα,n
1 ).

(47)

It can be shown that

Uα,n = {W ⊂ Sn | pα,n
i ≤ Wi ≤ qα,n

i for ∀i = 1, 2, ..., n}

= {W ⊂ Sn | pα,n
i ≤ Wi ≤ qα,n

i for ∀i = 1, 2, ..., n},
(48)

and pα,n
i and qα,n

i are attainable given that pα,n
i ≤ qα,n

i for all i = 1, 2, ..., n. The proof of (48)
can be found in the Appendix ??. For the previous two examples in (3.43) and (3.44), the refined
bounds are

pα,n
1 = 1, qα,n

1 = 0

pα,n
2 = 2, qα,n

2 = 1
(49)

and

pα,n
1 = 1, qα,n

1 = 1

pα,n
2 = 2, qα,n

2 = 2,
(50)

respectively. It is trivial to see that Uα,n is empty for the first example and W = {1, 2} is the only
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element in Uα,n for the second one.
Computing Γ̂α(R) can be done by first calculating the value of maxB⊂Uα,n

|B∩R|, then maximize
maxB⊂Uα,n

|B∩R| over all possible n. Given the subset size n and rejection index R, we sequentially
select the values of B∗

n = {b∗
1, b∗

2, ..., b∗
n} ∈ Uα,n such that

b∗
i =

{
min{r ∈ R | max(pα,n

i , b∗
i−1 + 1) ≤ r ≤ qα,n

i } , {r ∈ R | max(pα,n
i , b∗

i−1 + 1) ≤ r ≤ qα,n
i } ≠ ∅

max(pα,n
i , b∗

i−1 + 1) , otherwise,

(51)
where we let b∗

0 = 0. It can be shown that |B∗
n ∩ R| = maxB⊂Uα,n

|B ∩ R|. The proof can be found
in Appendix ??. Now we propose the algorithm for computing Γ̂α(R) in Algorithm 1.

Algorithm 1 computing Γ̂α(R)
Define FP = 0
for integer n from 1 to m do

Compute the sequence {lα,n} and {hα,n} for the BJ-like statistic
Compute the sequence {pα,n} and {qα,n} using (41) and (42)
If ∃ pα,n

i = ∅ or qα,n
i = ∅ for i ∈ {1, . . . , n} then go to the next iteration

Compute the sequence {pα,n} and {qα,n} using (46) and (47)
If ∃ qα,n

i < pα,n
i then go to the next iteration

Selecting B∗
n according to (51)

Let FP = max{FP, |B∗
n ∩ R|}

end for
Return FP/|R| as the result of Γ̂α(R)

As shown in Algorithm 1 each line inside the loop is a single-pass algorithm except the first
line whose complexity depends on the statistic. Therefore, the algorithm itself has the complexity
of O(m2) in total. It greatly reduces the computational requirement compared with the original
algorithm in (9) and thus should be a better replacement in practice.

4. Simulation study

In this section we show the exceedance rate and the power of the inversion based confidence
envelope with BJ statistic. The inversion based confidence envelope provides a method to estimate
the upper bound of the false discovery proportion rather than directly determine the significant
hypotheses. Therefore, we turn the inversion based confidence envelope into a testing procedure
simply by rejecting the p-values from smallest to the largest stopping when the upper bound of
the false discovery proportion exceeds the desired rate. We call the procedure with BJ statistic as
BJ-based procedure.

We define the event of exceedance as the false discovery proportion exceeding 0.1 and set the
desired exceedance rate to 0.1, that is, we want to control

pr(FDP > 0.1) < 0.1. (52)

11



This exceedance control will be used across the entire simulations unless otherwise mentioned. The
test statistics are simulated from a m-variate normal distribution

X1
X2
...

Xm

 ∼ N (µ, Σ) , (53)

where µi = 0 if Xi is from the null and µi = θ if Xi is from the alternative. For simplicity, the
variance for the individual Xi is assumed to be a constant 1. The p-values are obtained by the
right tail probability of the standard normal distribution at the observed test statistic. For the
dependent data, we use two types of the covariance matrix, namely compound symmetric (CS)
and an autoregressive process of order 1 (AR1). The former one simulates the case which the test
statistics have consistently large correlation and the later one mimics, say, a genomics study where
the correlation between two tests (genes) decreases as the distance between the genes increases. For
any pairs of Xi and Xj , the CS has the covariance

cov(Xi, Xj) =
{

1, i = j

ρ, i ̸= j,
(54)

and AR1 is
cov(Xi, Xj) = ρ|i−j|, (55)

where ρ a parameter controlling the strength of the correlation. For example, if m = 4, the
covariance matrix of CS is

Σ =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 , (56)

and AR1 is

Σ =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 . (57)

In this setting, the p-values P1, P2, . . . , Pm are obtained by computing the right tail probability for
the sampled values under the standard normal distribution. It follows that the marginal distribution
of p-value Pi is given by

G = (1 − a)U + aF,

where U(p) = p and F (p) is a distribution obtained by computing the probability under a standard
normal for random variables obtained from a normal distribution centered at θ. The proportion of
true alternatives is given by a.

Unless otherwise mentioned, we choose the effect size θ = 1.5 and the proportion of true al-
ternative a = 0.5 across all simulations. This represents the situation where there are weak but
common signals among all tests. The testing procedures being compared include the directional
Berk-Jones statistic (denoted as BJ+), the combined method with an estimated k proposed in [6]
denoted as CB(1 ∼ k̂), and the interpolation-based method for the sorted p-values in Theorem 1 of
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Exceedance rate Power
m BJ+ all CB (1 − k̂) KR BJ+ all CB (1 − k̂) KR
100 0.01 0.02 0 0.015 0.024 0
500 0 0.01 0 0.02 0.005 0.014
1000 0 0 0 0.078 0.003 0.037
2000 0 0 0.01 0.195 0.017 0.083
5000 0 0 0 0.285 0.088 0.089

Table 1: Exceedance probability and power for each statistic for the independent data with a = 0.5 and θ = 1.5.

Exceedance rate Power
ρ BJ+ all CB (1 − k̂) KR BJ+ all CB (1 − k̂) KR
0.1 0.235 0.049 0.023 0.242 0.073 0.083
0.2 0.321 0.093 0.043 0.331 0.116 0.105
0.3 0.374 0.119 0.062 0.385 0.146 0.123
0.4 0.446 0.15 0.08 0.469 0.183 0.15
0.5 0.469 0.167 0.073 0.493 0.197 0.155
0.6 0.527 0.161 0.071 0.553 0.203 0.162
0.7 0.587 0.162 0.075 0.612 0.215 0.172
0.8 0.638 0.163 0.058 0.671 0.228 0.171
0.9 0.757 0.182 0.053 0.758 0.265 0.196
1 0.958 0 0.03 0.958 0 0

Table 2: Exceedance probability and power for each statistic for the CS dependent data with m = 1000, a = 0.5,
and θ = 1.5.

[9] (denoted as KR).
For the independent data, the covariance matrix Σ is the identity matrix I. The sample sizes

are m = 100, 500, 1000, 2000, 5000 and the simulation will be repeated 1000 times to estimate the
exceedance rate and power.

Table 1 shows the the exceedance and power for each testing procedure under independence.
We see all methods control the exceedance rate and the power of Berk-Jones directional statistic
BJ+ outperforms the other methods except for m = 100.

Tables 2 and 3 show the power and exceedance rate for all methods under the CS and AR1
dependent data, respectively. We fix m = 1000, a = 0.5 and θ = 1.5 and vary the correlation
factor ρ to see the effect of the correlation. The result shows the BJ method can tolerate a mild
correlation, but fails to control the exceedance rate under a strong correlation. This is expected as
the data violates the independence assumption required for the beta distribution assumption in the
Section 2.5. However, interestingly, the combined method still controls the exceedance rate under
0.1 in our simulation. Since the combined method depends on a beta distribution assumption as
well, this result is rather surprising. In particular, we speculate that employing a Bonferroni-type
correction to create the confidence interval in the combined method provides a degree of tolerance
for correlated observations. Under AR1 dependency as shown in Table 3, we see the BJ+ method
controls the Type I error for small and modest values of ρ however it is not as powerful as the
combined method under most settings for ρ.
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Exceedance rate Power
ρ BJ+ all CB (1 − k̂) KR BJ+ all CB (1 − k̂) KR
0.1 0.005 0 0.003 0.087 0.005 0.045
0.2 0.004 0.001 0.001 0.085 0.005 0.048
0.3 0.006 0.002 0 0.084 0.006 0.045
0.4 0.003 0 0 0.096 0.007 0.051
0.5 0.013 0 0.003 0.097 0.009 0.048
0.6 0.021 0.002 0.004 0.109 0.012 0.053
0.7 0.044 0.003 0.008 0.123 0.018 0.056
0.8 0.081 0.003 0.008 0.143 0.027 0.061
0.9 0.193 0.013 0.022 0.215 0.046 0.068
1 0.961 0 0.012 0.961 0 0

Table 3: Exceedance probability and power for each statistic for the AR1 dependent data with m = 1000, a = 0.5,
and θ = 1.5.

m CB all BJ+ all
50 0.065 0.015
100 0.23 0.07
200 1.01 0.235
500 6.76 1.475
1000 30.115 6.38
2000 152.6 31.415
5000 1455.405 306.735
10000 9437.645 1961.445

Table 4: The time consumption for the combined and Berk-Jones directional statistic measured in second

Next we vary the proportion of true alternatives a to see the changes in power when the effect
size and sample size are fixed at θ = 1.5, m = 1000, respectively. The data are simulated from both
independent and dependent structures with ρ = 0.2. Figure 1 Panels (a), (b) and (c) shows the
power curve as a function of a for independence, CS and AR1, respectively. As the proportion of
true alternatives increases, all three procedures have an increased power. The procedure for BJ+
has the highest power among all procedures. The combined and KR procedures are comparable.

To further examine the performance of our method, we examined the computational time.
We choose the sample size m = 50, 100, 200, 500, 1000, 2000, 5000, 10000 and use 100 iterations to
compute the average time cost for each algorithm. The simulation is run on an Intel i7-8750H at
2.2GHz, 16GB memory laptop. Table 4 gives the result for the time consumption. It can be seen
that both methods take a trivial time for m less than 100. As the sample size increases, the demand
for the computation resources increases quickly. For m = 10000, the combined method takes over 2
hours while our proposed method takes about half hour. The results indicate that even though the
BJ+ test is slower than a single kth statistic test (not shown in the table), the ability to test all
samples at once avoids the need to combine individual confidence levels procedure and thus makes
our method faster overall compared to the combined method over the same region of p-values.
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(a) Independence (b) CS

(c) AR1

Figure 1: The power for each statistic as a function of the proportion of true alternatives a with m = 1000 and
θ = 1.5.
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5. Example

We demonstrate our approach on oral cavity microbiome data designed to explore possible links
between microbiome, diabetes and obesity in children. Adverse health outcomes related to diabetes
and obesity are of increasing concern in the pediatric population. In adults with these diagnoses,
there is a higher incidence of periodontal disease, as represented by gingivitis and periodontitis -
a severe form of gum disease. For our analysis, there were 49 child subjects in this study with
19 categorized as normal weight, 14 as obese, and 16 as obese with type 2 diabetes (T2D). Each
subject contributed a saliva sample for bacterial microbiome analysis via 16S rRNA sequencing.
For a full analysis of these data we refer you to [8]. Here we examine 118 unique genus level genera
where the genus counts are generated by aggregating the species level organizational taxonomic unit
(OTU) reads under each genus. A trimmed mean of M-values (TMM) normalization is employed
with tagwise dispersion parameter estimates used in a negative binomial generalized linear model
to assess differential OTU bacterial abundance between control, obese, and T2D groups. For each
genus level OTU the null hypothesis is no abundance difference exists between the groups and the
hypothesis is evaluated via a likelihood ratio test. Figure 2 shows the BJ-based and combined-based
confidence envelope that sequentially rejects null hypotheses from the most promising to the less
promising p-values. Panel (a) is based on a subset region of p-values showing similar performance of
both methods and Panel (b) is based on using all of the p-values where BJ+ has a tighter confidence
envelope suggesting improved power. The tests are done at c = α = 0.1 and the p-value region
employed is 1 ∼ k̂ with k̂ = 3 or the entire region. Using BJ+ based on a 1 ∼ k̂ region of p-values
leads to significance for the genus level OTUs Lautropia and Scardovia, while the combined method
only yields significance for Lautropia. Both of the OTUs were also determined to be significant
in an FDR analysis in [8]. In assessing the direction of significance, we find Lautropia is more
abundant in the control subjects relative to the T2D, while Scardovia was less abundant in controls
relative to T2D subjects (boxplots shown in [8]). More recent work in oral health and microbiome
presented in [14] support the significant role of Scardovia in oral health in children. Specifically,
[14] determine that Scardovia is more abundant in subjects with periodontitis relative to controls
which supports our results that Scardovia is more abundant in subjects with generally poorer oral
health, i.e. the obese and T2D subjects. Further results in [18] also support our conclusions wherein
Lautropia was significantly more abundant in a control population relative to a population with
aggressive periodontitis.

6. Discussion and Conclusion

Exceedance control of the false discovery proportion (FDP) can provide an interpretable method
for addressing the variability in the false discovery proportion estimates. Exceedance control of FDP
can be viewed as constructing a confidence interval for FDP and as such inverting a hypothesis test
is a viable method for achieving exceedance control. This manuscript presents a novel powerful
approach for exceedance control based on using a directional Berk-Jones goodness-of-fit statistic.
The method employs a fast algorithm to accurately compute our confidence envelopes for FDP.
We discuss and compare our procedure against other methods and generalize our high precision
approach to include other goodness-of-fit statistics that follow an isotropy condition.

Some limitations to our method are maintaining reasonable power in settings with a small
number of true alternatives and a loss of error control under high levels of dependency. Also
there is a high computational burden for an extremely large number of tests (e.g. for over 10, 000
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(a) (b)

Figure 2: Combined-based confidence envelope made by sequentially rejecting null hypotheses from the most promis-
ing to the least promising p-values. The horizontal dashed lines indicates the 0.1 confidence envelope. The CB and
BJ+ approach is based on a p-value region from 1 ∼ k̂ = 1 − 3 in Panel (a) and a region using all p-values in Panel
(b).

hypothesis tests). A further limitation includes the setting where p-values arrive in a stream with
decisions to accept or reject needing to be made on the fly prior to seeing future data. We note
methods presented in [9] are able to address that setting.

7. Code availability

All the R and C++ code for implementing the algorithms and generating the simulation results
can be found at https://github.com/Jiefei-Wang/exceedance-paper.

8. Supplementary material

Supplementary material available online includes the proofs of the fast algorithm and sequential
selection procedure.
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