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Abstract: Functional pathways involve a series of biological alterations that
may result in the occurrence of many diseases including cancer. With the
availability of various “omics” technologies it becomes feasible to integrate
information from a hierarchy of biological layers to provide a more comprehensive
understanding to the disease. In many diseases, it is believed that only a small
number of networks, each relatively small in size, drive the disease. Our goal in
this study is to develop methods to discover these functional networks across
biological layers correlated with the phenotype. We derive a novel Network
Summary Matrix (NSM) that highlights potential pathways conforming to least
squares regression relationships. An algorithm called Decomposition of Network
Summary Matrix via Instability (DNSMI) involving decomposition of NSM using
instability regularization is proposed. Simulations and real data analysis from
The Cancer Genome Atlas (TCGA) program will be shown to demonstrate the
performance of the algorithm.
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1 Introduction
In biology, identifying mediating processes or pathways is important for under-
standing the causation of an outcome of interest such as disease. An example is
genome-wide association study (GWAS) where considering gene expression as an
intermediate step to disease may explain the association of disease with a host’s
genotype. It has been observed that statistically significant single-nucleotide
polymorphisms (SNPs) often have no immediate causal interpretation, and a
possible explanation for this is their effect on the expression of (possibly distal)
genes. To address this issue in GWAS, Gamazon et al. (2015) have exploited
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recent genotype-tissue gene expression databases to determine linear combina-
tions of SNPs that can be used to predict gene expression. The association of a
predicted expression level for a gene with a trait then can provide mechanistic
insights regarding SNPs by considering the SNPs that predict the expression
of a gene found to associate with disease. In addition to the interpretability of
SNP effects, this approach also enables a number of SNPs each with modest
effect to combine and contribute to a larger gene-level effect.

A second example is the investigation of possible mechanisms by which
microbial communities affect human host physiological status. Morgan et al.
(2015) studied gene expression as a possible mechanism for the influence of
the host microbiome on the presence of an irritable bowel syndrome (IBS) like
affliction. One strategy they employed was dimension reduction. Transcripts
were condensed into groups based on prior evidence of association with disease,
or were organized into principle components using unsupervised methods. The
microbial operational taxonomic units (OTUs) were also condensed into principle
components. Then the analysis of associations among disease, microbiome, and
transcription could be studied effectively.

The two examples mentioned demonstrate the use of synthetic composite
variates to explain disease causation. Those approaches summarize the two
processes measured independently. For example, Morgan et al. (2015) form
transcript clusters, independently of the analysis used to form microbial OTU
clusters.

Recently, methods have been developed for the identification of modules
for high-dimensional data using sparse formulations of canonical correlation
(Parkhomenko et al. (2009), Witten et al. (2009), Witten and Tibshirani (2009),
Lê Cao et al. (2008), and Waaijenborg et al. (2008)). These methods provide
sparse methods for canonical correlation analysis which infer genetic modules
and transcript modules which maximally correlate with each other. This study
extends those approaches by requiring that these modules are also associated
with the outcome in a causal pathway. Also, this study is an expansion of the
previous work done in Miecznikowski et al. (2016) where unsupervised methods
are used to discover gene networks. Here we present an exploratory method which
extends sparse canonical correlation to determine the two correlated variable sets
such that they conform to a clear causal pathway for the outcome. This method
can be applied to applications like the two mentioned above, genotype → disease
and transcript → disease as causal pathways. In Section 2, the proposed method
will be described as well as the latent model and the associated assumptions.
Sections 3 and 4 will focus on simulation and application on a The Cancer
Genome Atlas (TCGA) (Weinstein et al. (2013)) project. The implementation is
described in Section 5. Some discussion and conclusions are given in Sections 6
and 7.
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Figure 1: The graph representing the pathway through which the expression
of gene X modulates the effect of a variable G on outcome Y . G may be SNP
genotype or microbial composition, βY |X.G is the regression coefficient for X
in the model including the additional regressor G and βY |G.X is the regression
coefficient for G in that equation. Likewise, βX|G is the coefficient of G in the
simple regression of X on G. Tracing the path G→ X → Y calculates this effect
as βX|G · βY |X.G.

2 Method
2.1 Latent models and statistical assumptions for one path-

way network
Figure 1 provides a graphical description of the pathway through which the
expression of a variable X modulates the effect of a variable G on outcome Y .
Figure 1 corresponds to the linear system

Y = βY |X.GX + βY |G.XG+ εY |X,G,

X = βX|GG+ εX|G, (1)
G = εG,

where βY |X.G is the regression coefficient for X in the model including the
additional regressor G and βY |G.X is the regression coefficient for G in that
equation. Likewise, βX|G is the coefficient of G in the simple regression of X
on G. Variables εY |X.G, εX|G and εG are uncorrelated random error terms. We
assume linearity, and tracing the path G → X → Y calculates that effect as
βX|GβY |X.G. This is motivated by the familiar formula (Cochran (1938)) for
least squares regression coefficients:

βY |G = βY |G.X + βX|GβY |X.G. (2)

The term βY |G.X encompasses remaining effects of G on Y through the expression
of other genes or other genetic effects.

The linear structure given by (1) defines the covariance of (Y,X,G). To
define the distribution of the data implied by (1) we rewrite (1) as Bz = e where
z = (Y,X,G)T , e = (εY |X,G, εX|G, εG)T , and

B =

 1 −βY |X.G −βY |G.X
0 1 −βX|G
0 0 1

 . (3)
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Then BΣBT = D where Σ is the variance of z and D is the diagonal matrix
with elements (σY |X,G, σX|G, σG) where the first two elements are the residual
variances from the first two equations in (1) and σG = V ar(G) (Wermuth (1992)).
Thus Σ = B−1DB−T can be computed once B and D are defined. This yields

Σ =

 σY |X,G + σX|Gβ
2
Y |X.G + σGτ

2 σX|GβY |X.G + σGβX|Gτ σGτ

σX|GβY |X.G + σGβX|Gτ σX|G + σGβ
2
X|G σGβX|G

σGτ σGβX|G σG


(4)

where τ = βY |G.X + βX|GβY |X.G. Alternatively, Σ can also be obtained by the
usual covariance computation if the inverse is difficult to compute.

For the outcome variable Y , we define α as the importance of the G,X path
to be

α =
βX|GβY |X.G

βY |G
. (5)

2.2 Algorithm
2.2.1 Network Summary Matrix (NSM)

We consider the triple Y,X,G to be a latent causal process. For one subject, sets
of observed variables {gi, i = 1, . . . , a}, {xj , j = 1, . . . , b}, and y are indicators
of a latent G, X, and Y respectively. The distributions of all a+ b indicators
are independent conditional on the latent process given by Figure 1. Each
realization of the (Y,X,G) process determines the distributions of the observed
variables related to the causal process, so the distribution of the {gi} is centered
at G, the distributions of the {xj} are centered at X, and y is sampled around
Y . For N subjects, the sets {gi} and {xj} are assembled into matrices GSig

N×a
and XSig

N×b respectively, where “Sig” denotes signal indicating these are the
matrices containing the biological signal. I.e., the causal pathway. For p ≥ a
we have the N × p matrix G = (GSig,GNoi), where “Noi” means noise and
GNoi = (ga+1, . . . , gp) of which gi is a length N vector of standardized sample
genotypes for the ith SNP and GNoi are observations that are not in the causal
process depicted in Figure 1. Similarly, for q ≥ b, X = (XSig,XNoi) is a
N × q matrix with each column a sampled expression profile of the genes and
XNoi = (xb+1, . . . ,xq) comes from non-causal processes, e.g. noise.

We construct the p × q matrix C where ci,j = β̂y|xj .gi
β̂xj |gi

, and DG =
diag(β̂y|gi

). The β̂’s are obtained by ordinary least squares (OLS) method.
Define the network summary matrix, NSM = [nsmi,j ] = DGC with dimension
p× q. Note that

nsmi,j = β̂y|gi
β̂xj |gi

β̂y|xj .gi

=
[ β̂xj |gi

β̂y|xj .gi

β̂y|gi

]
β̂2
y|gi

(6)

= α̂i,j β̂
2
y|gi
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The expectation of the β̂’s corresponding to given latent variables from a
pathway is an attenuation toward zero of the original coefficients from the same
latent process as the indicators can be viewed as the latent variables observed
with measurement error. That is, the expectations have the same sign as in the
underlying process, but are attenuated. Then the sign of

[ β̂y|xj gi
β̂xj |gi

β̂y|gi

]
β̂2
y|gi

is
the same as αβ2

Y |G in the underlying process. Note that nsmi,j is large when gi
and xj are strongly related to y and to each other, signaling the importance of
gi and the existence of the mechanism depicted in Figure 1.

We make the model assumption that α is a proportion of the overall effect of
G on Y when it exists, that is, 0 ≤ α ≤ 1 and this assumption stipulates two
bounds:

1) 0 ≤ α = βX|GβY |X.G

βY |G
: If this is violated the effect of G on Y mediated

through X (expressed by βX|GβY |X.G) is of different sign (hence different
causal direction) than the overall G effect. Such contradictory effects make
the interpretation of G complex and counterintuitive. This constraint
is checked by verifying that nsmi,j ≥ 0 and NSM is filtered by setting
elements in violation to zero.

2) α = βX|GβY |X.G

βY |G
≤ 1: By 1) α = |α| = |βX|GβY |X.G|

|βY |G|
≤ 1. This is violated

when |βX|GβY |X.G| ≥ |βY |G|. Since βY |G is the total effect of G on Y it
includes the effect mediated through X so there must be some components
of the overall effect of G on Y that oppose the path mediated by X,
complicating the causal narrative for G. Filtering by setting elements of
NSM for which nsmi,j > β2

Y |gi
to zero avoids considering these paths.

Alternatively, if they are retained a more complex overall mechanism needs
to be considered.

Note from here on, we assume NSM is the filtered version. The filtered
NSM matrix can be considered as a consequence of the interaction network
between G, X and outcome Y. The interpretation of nsmi,j is the portion of
the squared change of y for every unit change of gi which is contributed by going
through xj . With this interpretation, our goal is to select large nsmi,j , which
correspond to g, x pairs for which a substantial portion of the g → y effect is
mediated by x. Formally, we form sets A = {i;nsmi,j is selected for some j}
and B = {j;nsmi,j is selected for some i}. We find those sets by decomposing
NSM via instability regularized Penalized Matrix Decomposition (PMD). The
goal of Section 2.2 is to find Â and B̂, the estimators of A and B, from the
observed data.

2.2.2 Decomposition of Network Summary Matrix via Instability
(DNSMI)

The NSM matrix defined in (6) has p rows and q columns. Because the order
of the columns and the smoothness (Tibshirani et al. (2005)) are not among our
primary interest of finding the elements of NSM that are relatively larger than
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the others, we use the so called penalized matrix decomposition “PMD(L1, L1)”
method where L1 denotes the L1-norm for a vector (Witten et al. (2009)). The
L1-norm of a vector z is denoted as ‖z‖ and defined as (

∑
i |zi|). Briefly, the

PMD is a penalized version of singular value decomposition (SVD). For a given
matrix Mp×q of rank K ≤ min(p, q), SVD decomposes M into

M = UDVT , UTU = Ip, VTV = Iq, d1 ≥ d2 ≥ · · · ≥ dK > 0. (7)

The kth column of U is denoted as uk and called the kth left singular vector,
the kth column of V is denoted as vk and called the kth right singular vector,
and dk denotes the kth diagonal element of the diagonal matrix D and called
the kth singular value. Then for any r ≤ K, the first r components of the SVD
will give the best rank-r approximation to M in the sense of the Frobenius norm
(Eckart and Young (1936)) below

r∑
k=1

dkukvTk = arg min
M̂∈N(r)

‖M− M̂‖2
F (8)

where N(r) is the set of rank-r p× q matrices. PMD imposes a penalty on size
of U and V to particularly make some elements zero. If the PMD is applied on
the rank-1 approximation of the original matrix M according to (9)

minimized,u,v 1
2‖M− duvT ‖2

F (9)
subject to ‖u‖2

2 = 1, ‖v‖2
2 = 1, P1(u) ≤ c1, P2(v) ≤ c2, d ≥ 0

where P1 and P2 are penalty functions, it will shrink some small elements of
the left and right singular vectors, u and v, to zero, and hence produce sparse
solutions. More details of PMD and its applications are available in Witten et al.
(2009) and Witten and Tibshirani (2009).

In our study, the network summary matrix (NSM) is the matrix to be
decomposed by PMD, the P1 and P2 penalty functions are both L1-norms and u
and v represent the information from row and column dimensions of NSM. In
order to apply the PMD(L1, L1) method, two tuning parameters c1 and c2 are
required with the ranges 1 ≤ c1 ≤

√
p and 1 ≤ c2 ≤

√
q where c1 and c2 control

the sparsity of u and v, respectively. Smaller c1 leads to sparser u, the same for
c2 and v. Tuning c1 and c2 and thus sparsity for u and v is achieved via the
instability framework.

Instability is generally interpreted as a measure of disagreement of results
across subsamples for a given method and the associated settings. It was
originally developed for choosing regularization parameters for high dimensional
graphical models, see Meinshausen and Bühlmann (2010) and Liu et al. (2010)
for more details. However, the specific formation can be transformed for our
research setting. In this proposal, the element-wise instability for vectors u and
v given tuning parameters c1 and c2 is defined as

ξui (c1, c2) = 2Pr(ui is selected)(1− Pr(ui is selected)) (10)
ξvj (c1, c2) = 2Pr(vj is selected)(1− Pr(vj is selected)) (11)
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where 1 ≤ i ≤ p and 1 ≤ j ≤ q. To estimate (10) and (11), we define

ξ̂ui (c1, c2) = 2P̂r(ui is selected)(1− P̂r(ui is selected)) (12)
ξ̂vj (c1, c2) = 2P̂r(vj is selected)(1− P̂r(vj is selected)) (13)

where

P̂r(ui is selected) = 1
R

R∑
f=1

Iui

f (14)

P̂r(vj is selected) = 1
R

R∑
f=1

I
vj

f (15)

of which R is the total number of subsamples and

Iui

f =
{

1 if ui 6= 0 for subsample Sf , i = 1, . . . , p, f = 1, . . . , R
0 if ui = 0 for subsample Sf , i = 1, . . . , p, f = 1, . . . , R (16)

likewise for Ivj

f . The instability for u under the same setting, denoted as
ξu(c1, c2), is the mean instability averaged over all the elements

ξu(c1, c2) = 1
p

p∑
i=1

ξui (c1, c2) (17)

and it is estimated by ξ̂u(c1, c2) via ξ̂ui (c1, c2) in (12). Same as for the instability
of v, denoted as ξv(c1, c2) and estimated by ξ̂v(c1, c2) via ξ̂vj (c1, c2). In order to
have one scalar that can represent the combined instability derived from the
pair (c1, c2), the maximum between ξu(c1, c2) and ξv(c1, c2) is used and denoted
as ξu,v(c1, c2). Because ξu,v(c1, c2) is not necessarily a monotone function of
either c1 or c2 when the other parameter is fixed, it is then monotonized by
substituting the supremum instability up to (c1, c2) for ξu,v(c1, c2) given a pair
of (c1, c2). The supremum instability at (c1, c2) is defined as

ξ(c1, c2) = sup
1≤s≤c1,1≤t≤c2

ξu,v(s, t). (18)

The optimal pair of (c1, c2) is obtained by grid search and such a grid has h
elements in c1 direction and l elements in c2 direction. At the end, we choose a
pair of (c1, c2) such that

(c1, c2) = arg max
(c1,c2)∈E

∥∥∥∥(c1
c2

)∥∥∥∥
2

(19)

where E = {(c1, c2) | ξ(c1, c2) ≤ δ over the h × l search grid} for a preset
threshold δ which ranges from 0 to 0.5. The detailed algorithm for DNSMI
used on given observation matrices YN×1, XN×q and GN×p to find the pathway
elements Â and B̂ for a given search grid is presented as Algorithm 1 in Appendix
1.
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3 Simulations
3.1 Extended latent model
To create a realistic covariance matrix additional variables are added to the
latent pathway model in Figure 1 to make an extended model (20):

Y = βY |X.GX + βY |G.XG+ βY |SS + βY |HH + εY |X,G,S,H ,

X = βX|GG+ εX|G, (20)
G = εG.

We include a variable S with the same variance as X which is independent
of X and G but adds βY |SS + εY |S to the system equation for Y in (1). The
indicators of S will be a cluster of variables (typically transcripts) related to
Y . Similarly, we include a variable H with the same variance as G which is
independent of X, G and S but adds βY |HH + εY |H to the system equation for
Y in (1). The indicators of H will be a cluster of variables (typically genes or
microbial species abundance) related to Y . This results in the covariance matrix
Σ′ for (Y,X,G, S,H)T as

Σ′ =


σY |X.G.S.H + σX|Gβ

2
Y |X.G + σGτ

2 + σSβ
2
Y |S + σHβ

2
Y |H σX|GβY |X.G + τσGβX|G σGτ βY |SσS βY |HσH

σX|GβY |X.G + τσGβX|G β2
X|GσG + σX|G σGβX|G 0 0

σGτ σGβX|G σG 0 0
βY |SσS 0 0 σS 0
βY |HσH 0 0 0 σH

 ,
(21)

where arbitrarily σS = β2
X|GσG + σX|G so that S has the same variance as X.

We add another null case. X ′, G′ represent a pathway with the same covari-
ance structure as (X,G)T , but are independent of Y . The covariance of (X ′, G′)T
will be the submatrix formed from the second and third rows and columns of Σ′
in (21), call it Σind. Then the covariance for (Y,X,G, S,H,X ′, G′)T is

Σ′′ =
[

Σ′ 0
0 Σind

]
(22)

The extended model is illustrated in Figure 2.

3.2 Other algorithms
In order to evaluate the performance of the proposed algorithm DNSMI, we
compare it to three different algorithms: AMSE-PMD, sSCCA-P and sSCCA-W
where AMSE-PMD stands for Average Mean Squared Error tuned PMD decom-
position of NSM, sSCCA refers to supervised Sparse Canonical Correlation
Analysis and “P” and “W” means that the SCCA takes the form in Parkhomenko
et al. (2009) or Witten and Tibshirani (2009), respectively. AMSE is a regu-
larization method suggested in Witten et al. (2009) used to choose parameters
for PMD. The supervision is carried out by implementing univariate simple
regression on each of the columns of X with Y and then to select features with
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Figure 2: One pathway extended latent model. The left dashed box includes
latent variables from whom the observations will be generated and assembled
into matrix X and the right dashed box includes latent variables from whom
the observations will be generated and assembled into matrix G.
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the p-values controlled for a level of false discovery rate (FDR) using Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg (1995)), for example, at 0.2.
This filtering will result in a new matrix X̃ consisting of the selected features
under the preset FDR rate. Analogously, the selected features from G will be
stored in matrix G̃. After that, both of the SCCA algorithms will be applied
on the resulted G̃ and X̃ matrices. The details of AMSE-PMD, sSCCA-P and
sSCCA-W are completely specified in Algorithm 2, 3 and 4 in Appendix 1.

3.3 Simulation settings and realization
We simulate a model governed by a system of latent variables conforming to
(20). A primary parameter of our simulation is α given by (5), the proportion
of the G effect mediated by X. Without loss of generality we set the scale by
letting βY |G = 1 so α = βX|GβY |X.G. The relation (2) implies that τ = 1 and
βY |G.X = 1− α. We further assume that βX|G = βY |X.G =

√
α so that the links

in the G→ X → Y path are of equal strength. We also set the variance of G to
be 1 and calculate the variance parameters σX|G and σY |X.G.S.H to specify the
predictability of Y and X in (20) to be a specified R2 = R2(X) = R2(Y ). The
R2(X) is defined as

R2(X) =
V ar(X)− σX|G

V ar(X) , (23)

likewise for R2(Y ). Using the relation R2(X) = ασG/(σX|G+ασG) = α/(σX|G+
α) yields σX|G = αγ, with γ = (1−R2)/R2. Similarly, σY |X.G.S.H = γ+α2γ(1+
γ)(1 + α). In addition, we set βY |S = βY |H = α so that each effect is the same
as that of the G→ X → Y pathway.

The latent variable X interpreted as gene expression will act as a driver
for a pathway of transcripts which we will generate as a set of variables with
a normal distribution xj ∼ N(X,σ2

x), j = 1, . . . , b which are independent given
X. Likewise gj ∼ N(G, σ2

g), j = 1, . . . , a independently. The correlation of
xj with the latent variable X driving that module can be set to r by setting
σ2
x = V ar(X)(1− r2)/r2. Likewise the correlation of gj with the latent variable
G driving that module is set to r by setting σ2

g = V ar(G)(1 − r2)/r2 and y
is sampled from N(Y, V ar(Y )(1 − r2)/r2). In addition, we do the same for
observations generated from latent variables S,X ′, H,G′. The noise variables
are generated according to N(0, π2V ar(Y )(1− r2)/r2) where π2 is a parameter
controlling the variance ratio between noise and y.

We thus have the parameters α (the importance of X as a mediator of Y , G
association), R2 (the predictability of the latent variables Y and X), r (specifying
the correlations of the observed variables with their underlying latent variable),
and π2 (variance ratio between noise and y), which can be manipulated to model
various scenarios through simulation of the defined distributions.

We are particularly interested in the performance of different methods as a
function of 3 factors: signal to nonsignal ratio, sample size and sparsity. The
signal here consists of elements indexed by the sets A and B introduced in Section
2.2.1, and the nonsignals indicate {i;nsmi,j} \ A and {j;nsmi,j} \ B. For each
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Table 1: Scenario setting for various signal to nonsignal ratios.

Parameter Signal to nonsignal ratio (Scenario index)
Low (A) Middle (B) High (C)

α 0.35 0.35 0.35
R2 0.35 0.85 0.85
r 0.35 0.35 0.85
π 0.5 1 2
N 500 500 500
a 10 10 10

Number of g′ 63 63 63
Number of h 63 63 63
Number of noise 64 64 64

b 15 15 15
Number of x′ 95 95 95
Number of s 95 95 95
Number of noise 95 95 95
Number of columns of G 200 200 200
Number of columns of X 300 300 300

factor, three different scenarios are set with each scenario having a different level
of that factor while keeping the other factors the same. Scenarios A, B and C are
used to test the signal to nonsignal ratio factor, Scenarios B, D and E are used
for the sample size factor and Scenarios B, F and G are for the sparsity factor.
The outcomes are evaluated via three measures, true positive rate (TPR) or
sensitivity, true negative rate (TNR) or specificity and Cohen’s Kappa statistic,
κ (Cohen (1960)). Cohen’s Kappa is a robust measurement of agreement that
takes into account the agreement that occurs by chance. κ ranges from -1 to 1
with 1 representing complete agreement, 0 indicating no agreement and -1 being
complete disagreement. For information of its interpretation and relationship
between TPR and TNR, see McHugh (2012) and Feuerman and Miller (2008).
Because the outcomes are specific to the rows (u) and columns (v), all three
summaries (TPR, TNR, κ) will be evaluated on each of u, v and the sum of
κ on u and v will be also included as the total accuracy, i.e. κTot = κu + κv
where κu and κv are the Kappa statistic for u and v, respectively.

We perform 100 Monte Carlo simulations for each of the methods under
each of the scenarios. We chose δ = 0.05 and FDR = 0.2 for methods DNSMI,
sSCCA-P, and sSCCA-W.

3.4 Factor 1: signal to nonsignal ratio
Three different scenarios, Scenario A, B and C, ordered by signal to nonsignal
ratio from low, middle to high are set to evaluate the methods in Section 2.2.2
and 3.2. Their settings are listed in Table 1. The NSM matrix is plotted in
Figure 3. Figure 3 shows that in the Low signal to nonsignal ratio scenario the
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Table 2: Summary of TPR and TNR on dimensions u and v for 100 simulations
for low, middle and high signal to nonsignal ratio scenarios. For DNSMI, δ = 0.05.
For sSCCA-P and sSCCA-W, FDR = 0.2.

Method

Dimension Signal to
nonsignal

ratio
(Scenario

index)

u v
TPR TNR TPR TNR

Mean SE Mean SE Mean SE Mean SE
DNSMI 0.12 0.01 0.99 0.00 0.15 0.02 0.98 0.00

Low
(A)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
sSCCA-P 0.00 0.00 0.03 0.02 0.00 0.00 0.03 0.02
sSCCA-W 0.00 0.00 0.04 0.02 0.00 0.00 0.04 0.02
DNSMI 0.40 0.02 1.00 0.00 0.42 0.02 1.00 0.00

Middle
(B)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
sSCCA-P 0.10 0.02 0.28 0.04 0.07 0.02 0.28 0.04
sSCCA-W 0.11 0.02 0.31 0.05 0.08 0.02 0.31 0.05
DNSMI 0.98 0.01 1.00 0.00 1.00 0.00 1.00 0.00

High
(C)

AMSE-PMD 1.00 0.00 0.01 0.01 1.00 0.00 0.01 0.01
sSCCA-P 0.97 0.02 0.99 0.00 0.97 0.02 0.99 0.00
sSCCA-W 0.95 0.02 0.83 0.02 0.84 0.02 0.92 0.01

signals are almost undistinguishable from the nonsignals. In the Middle scenario
the signals become stronger and the signals are completely separated from the
nonsignals in High scenario.

The TPR and TNR are summarized in Table 2. From the outcome, we see
that AMSE-PMD selects almost all elements over all three scenarios regardless
of the signal to nonsignal ratio. Excluding it, we observe a general trend on both
dimensions that TPR and TNR will improve as the signal to nonsignal ratio
increases and reach the maximum under the High scenario. Our proposed method
DNSMI maintains a very high level (> 0.98) of TNR across all three scenarios
and the TPR increases from 0.12 to 0.98 and from 0.15 to 1 on dimensions u
and v, respectively.

The Cohen’s Kappa is summarized in Table 3. As previously indicated by
TPR and TNR, κ confirms that AMSE-PMD has little detection accuracy while
DNSMI at δ = 0.05 level has better performance than the others.

To conclude, signal to nonsignal ratio plays a key role in every method except
AMSE-PMD. Larger signal to nonsignal ratio will lead to larger κ.

3.5 Factor 2: sample size N

We use the middle signal to nonsignal ratio scenario (Scenario B) from Section
3.4 to represent the low sample size scenario plus two new scenarios Scenario D
and E, ordered by sample size, to evaluate the four methods. Their settings are
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(a) Row in Low scenario (b) Column in Low scenario

(c) Row in Middle scenario (d) Column in Middle scenario

(e) Row in High scenario (f) Column in High scenario

Figure 3: NSM for one realization for different signal to nonsignal ratio scenarios
as a function of row and column. Red points indicate pathway elements, i.e.
a = 10 elements on row dimension and b = 15 elements on column dimension.
Low, Middle and High corresponds to scenario A, B and C in Table 113



Table 3: Summary of Cohen’s Kappa, κ, on dimensions u and v for 100 sim-
ulations for low, middle and high signal to nonsignal ratio scenarios. For
DNSMI, δ = 0.05. For sSCCA-P and sSCCA-W, FDR = 0.2. Total accuracy,
κTot = κu + κv.

Method
Dimension Signal to nonsignal

ratio
(Scenario index)κ on u κ on v Total accuracy

Mean SE Mean SE Mean SE
DNSMI 0.15 0.02 0.17 0.02 0.32 0.04

Low
(A)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.00 0.00 0.00 0.00 0.01 0.01
sSCCA-W 0.00 0.00 0.00 0.00 0.01 0.00
DNSMI 0.53 0.02 0.55 0.02 1.08 0.04

Middle
(B)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.11 0.02 0.10 0.02 0.21 0.04
sSCCA-W 0.13 0.02 0.11 0.02 0.24 0.04
DNSMI 0.98 0.01 1.00 0.00 1.98 0.01

High
(C)

AMSE-PMD 0.00 0.00 0.01 0.01 0.01 0.01
sSCCA-P 0.91 0.02 0.93 0.02 1.85 0.04
sSCCA-W 0.51 0.04 0.66 0.03 1.17 0.06

listed in Table 4 with Low, Middle and High scenarios having 500, 1000, and
1500 sample size. The NSM matrices are plotted in Figure 4. It appears that
the signals get stronger as the sample size increases.

The TPR and TNR are summarized in Table 5. Similar to Section 3.4, AMSE-
PMD selects all elements regardless of the change on sample size. However, the
increase in sample size has a large improvement of TPR for method DNSMI
while having almost no effect on TNR. For example, on u dimension, DNSMI
has a mean TPR of 0.40, 0.66 and 0.84 for Low, Middle and High scenarios,
respectively, and a mean TNR of 1. On the other hand, the increase in sample
size has a larger positive effect on both measures on the supervised SCCA. For
instance, sSCCA-P has mean TPR’s of 0.1, 0.42 and 0.54 and mean TNR’s of
0.28, 0.66 and 0.68 on u dimension under the Low, Middle and High scenarios,
respectively.

The results of Cohen’s Kappa are summarized in Table 6. Similarly, κ of
DNSMI improves greatly as sample size increases. AMSE-PMD is unaffected by
sample size. sSCCA-P and sSCCA-W will also have larger κ when sample size
increases, however, with larger variance as well.

In conclusion, increasing the sample size N will improve the performance
of DNSMI, sSCCA-P and sSCCA-W. Particularly, κTot for DNSMI greatly
increases as a function of sample size.
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Table 4: Scenario setting for various sample size N . Low, Middle and High
represent 500, 1000 and 1500 sample sizes.

Parameter Sample Size (Scenario index)
Low (B) Middle (D) High (E)

α 0.35 0.35 0.35
R2 0.85 0.85 0.85
r 0.35 0.35 0.35
π 1 1 1
N 500 1000 1500
a 10 10 10

Number of g′ 63 63 63
Number of h 63 63 63
Number of noise 64 64 64

b 15 15 15
Number of x′ 95 95 95
Number of s 95 95 95
Number of noise 95 95 95
Number of columns of G 200 200 200
Number of columns of X 300 300 300

Table 5: Summary of TPR and TNR on dimensions u and v for 100 simulations
for sample size N = 500, 1000 and 1500 scenarios. For DNSMI, δ = 0.05. For
sSCCA-P and sSCCA-W, FDR = 0.2.

Method

Dimension Sample
size

(Scenario
index)

u v
TPR TNR TPR TNR

Mean SE Mean SE Mean SE Mean SE
DNSMI 0.40 0.02 1.00 0.00 0.42 0.02 1.00 0.00

Low
(B)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
sSCCA-P 0.10 0.02 0.28 0.04 0.07 0.02 0.28 0.04
sSCCA-W 0.11 0.02 0.31 0.05 0.08 0.02 0.31 0.05
DNSMI 0.66 0.02 1.00 0.00 0.64 0.02 1.00 0.00

Middle
(D)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.01 0.01
sSCCA-P 0.42 0.04 0.66 0.05 0.39 0.03 0.67 0.05
sSCCA-W 0.42 0.04 0.65 0.05 0.37 0.03 0.67 0.05
DNSMI 0.84 0.02 1.00 0.00 0.82 0.02 1.00 0.00

High
(E)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.01 0.00
sSCCA-P 0.54 0.04 0.68 0.05 0.49 0.04 0.69 0.05
sSCCA-W 0.59 0.04 0.73 0.04 0.51 0.03 0.76 0.04
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(a) Row in Low scenario (b) Column in Low scenario

(c) Row in Middle scenario (d) Column in Middle scenario

(e) Row in High scenario (f) Column in High scenario

Figure 4: NSM for one realization for different sample size N scenarios as a
function of row and column. Red points indicate pathway elements, i.e. a = 10
elements on row dimension and b = 15 elements on column dimension. Low,
Middle and High correspond to scenario B, D and E in Table 4 and represent N
= 500, 1000 and 1500. 16



Table 6: Summary of Cohen’s Kappa, κ, on dimensions u and v for 100 simula-
tions for sample size N = 500, 1000 and 1500 scenarios. For DNSMI, δ = 0.05.
For sSCCA-P and sSCCA-W, FDR = 0.2. Total accuracy, κTot = κu + κv.

Method
Dimension Sample size

(Scenario index)κ on u κ on v Total accuracy
Mean SE Mean SE Mean SE

DNSMI 0.53 0.02 0.55 0.02 1.08 0.04
Low
(B)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.11 0.02 0.10 0.02 0.21 0.04
sSCCA-W 0.13 0.02 0.11 0.02 0.24 0.04
DNSMI 0.77 0.02 0.76 0.01 1.53 0.03

Middle
(D)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.44 0.04 0.44 0.04 0.88 0.07
sSCCA-W 0.41 0.04 0.43 0.04 0.84 0.07
DNSMI 0.89 0.02 0.88 0.01 1.78 0.03

High
(E)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.53 0.04 0.52 0.04 1.05 0.08
sSCCA-W 0.49 0.03 0.57 0.04 1.06 0.07

3.6 Factor 3: sparsity, a/p and b/q

Two additional scenarios are introduced to test the performance for each method
under different sparsity settings. They are built by varying the sparsities calcu-
lated via a/p and b/q such that they have sparsities 0.05, 0.15 and 0.25 for both
u and v dimensions. Their settings are listed in Table 7 and the NSM matrices
are plotted in Figure 5.

Table 8 contains the numerical results of TPR and TNR for each method
under each scenario. From the results we see that the most significant change is
the decreasing trend of mean TPR as the sparsity decreases for method DNSMI.
On u dimension, TPR decreases from 0.4 to 0.18 and to 0.11 while it drops from
0.42 to 0.20 and to 0.12 on v dimension. However, the TNR is 1.00 across all
three scenarios on both dimensions.

From the results of Cohen’s Kappa, Table 9, we also see that the mean total
accuracy drops from 1.08 to 0.57 and to 0.32 as the sparsity changes downwards.
In conclusion, sparsity level is a crucial factor affecting the performance of
DNSMI where the more sparse the better to apply DNSMI. Importantly, we
note that DNSMI performs very well in very sparse settings.
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Table 7: Scenario setting for various sparsities, a/p and b/q. High, Middle and
Low represent a/p = b/q = 0.05, 0.15 and 0.25.

Parameter Sparsity (Scenario Index)
High (B) Middle (F) Low (G)

α 0.35 0.35 0.35
R2 0.85 0.85 0.85
r 0.35 0.35 0.35
π 1 1 1
N 500 500 500
a 10 30 50

Number of g′ 63 56 49
Number of h 63 56 49
Number of noise 64 58 52

b 15 45 75
Number of x′ 95 85 75
Number of s 95 85 75
Number of noise 95 85 75
Number of columns of G 200 200 200
Number of columns of X 300 300 300

Table 8: Summary of TPR and TNR on dimensions u and v for 100 simulations
for sparsities a/p = b/q = 0.05, 0.15 and 0.25 scenarios. For DNSMI, δ = 0.05.
For sSCCA-P and sSCCA-W, FDR = 0.2.

Method

Dimension Sparsity
(Scenario

index)
u v

TPR TNR TPR TNR
Mean SE Mean SE Mean SE Mean SE

DNSMI 0.40 0.02 1.00 0.00 0.42 0.02 1.00 0.00
High
(B)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
sSCCA-P 0.10 0.02 0.28 0.04 0.07 0.02 0.28 0.04
sSCCA-W 0.11 0.02 0.31 0.05 0.08 0.02 0.31 0.05
DNSMI 0.18 0.01 1.00 0.00 0.20 0.00 1.00 0.00

Middle
(F)

AMSE-PMD 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
sSCCA-P 0.22 0.03 0.50 0.05 0.19 0.02 0.50 0.05
sSCCA-W 0.19 0.02 0.50 0.05 0.16 0.02 0.50 0.05
DNSMI 0.11 0.00 1.00 0.00 0.12 0.00 1.00 0.00

Low
(G)

AMSE-PMD 1.00 0.00 0.05 0.01 0.99 0.00 0.13 0.01
sSCCA-P 0.28 0.03 0.58 0.05 0.25 0.03 0.59 0.05
sSCCA-W 0.24 0.02 0.63 0.05 0.21 0.02 0.63 0.05
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(a) Row in High scenario (b) Column in High scenario

(c) Row in Middle scenario (d) Column in Middle scenario

(e) Row in Low scenario (f) Column in Low scenario

Figure 5: NSM for one realization for different sparsities, a/p and b/q, scenarios
as a function of row and column. Red points indicate pathway elements, i.e.
a = 10, 30 and 50 elements on row dimension and b = 15, 45 and 75 elements on
column dimension. Low, Middle and High indicate scenario G, F and B in Table
7 and represent sparsity 0.25, 0.15 and 0.05.19



Table 9: Summary of Cohen’s Kappa, κ, on dimensions u and v for 100
simulations for sparsities a/p = b/q = 0.05, 0.15 and 0.25 scenarios. For
DNSMI, δ = 0.05. For sSCCA-P and sSCCA-W, FDR = 0.2. Total accuracy,
κTot = κu + κv.

Method
Dimension Sparsity

(Scenario
index)

κ on u κ on v Total accuracy
Mean SE Mean SE Mean SE

DNSMI 0.53 0.02 0.55 0.02 1.08 0.04
High
(B)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.11 0.02 0.10 0.02 0.21 0.04
sSCCA-W 0.13 0.02 0.11 0.02 0.24 0.04
DNSMI 0.27 0.01 0.29 0.01 0.57 0.01

Middle
(F)

AMSE-PMD 0.00 0.00 0.00 0.00 0.00 0.00
sSCCA-P 0.25 0.03 0.22 0.03 0.47 0.05
sSCCA-W 0.25 0.03 0.21 0.03 0.46 0.05
DNSMI 0.15 0.00 0.17 0.00 0.32 0.01

Low
(G)

AMSE-PMD 0.03 0.01 0.07 0.01 0.10 0.01
sSCCA-P 0.30 0.03 0.27 0.03 0.58 0.06
sSCCA-W 0.29 0.03 0.26 0.03 0.55 0.05

4 Data analysis
4.1 Background
In this section, an example application of DNSMI using data from The Cancer
Genome Atlas (TCGA) (Weinstein et al. (2013)) is presented. TCGA is a project
supervised by the National Cancer Institute’s Center for Cancer Genomics and
the National Human Genome Research Institute. Using genome sequencing and
bioinformatics as well as applying high-throughput genome analysis techniques,
TCGA aims to improve the ability to diagnose, treat, and prevent cancer
through a better understanding of the genetic basis of this disease. TCGA has
now expanded to cover 60 primary cancer sites and include 40 different research
projects. We choose the Uterine Corpus Endometrial Carcinoma (UCEC) project
as our example. An outline of the TCGA-UCEC project is listed in Table 10.

Endometrial cancer is a cancer that originates from the endometrium. In
2012, there were 320,000 new occurrences and 76,000 deaths, which makes it the
third lethal cancer in cancers for women following ovarian and cervical cancer
(McGuire (2016)). The overall five-year survival rate in the United States is
greater than 80% if the disease is diagnosed at an early stage (Sheets (2015)).
Endometrial cancers may be tumours derived from epithelial cells (carcinomas),
mixed epithelial and mesenchymal tumours (carcinosarcomas), or mesenchymal
tumours. There is a strong correlation between the histologic tumor grade, the
depth of myometrial invasion and the prevalence of lymph node metastasis and
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Table 10: Basic information about TCGA-UCEC project.

Data Category Data Type Workflow Type Cases

Raw Sequencing Data Aligned Reads

BWA with Mark

559Duplicates and Cocleaning
STAR 2-Pass
BWA-aln

Transcriptome Profiling
Gene Expression Quantification
Isoform Expression Quantification
miRNA Expression Quantification

BCGSC miRNA Profiling

559HTSeq - Counts
HTSeq - FPKM
HTSeq - FPKM-UQ

Simple Nucleotide Variation

Annotated Somatic Mutation 12 types
see TCGA website
for details.

542Raw Simple Somatic Mutation
Aggregated Somatic Mutation
Masked Somatic Mutation

Copy Number Variation Copy Number Segment DNAcopy 547Masked Copy Number Segment
DNA Methylation Methylation Beta Value Liftover 559
Clinical Clinical Supplement NA 548
Biospecimen Biospecimen Supplement NA 560

the patient survival (Boronow et al. (1984)). The myometrial invasion ratio
determines the International Federation of Gynecology and Obstetrics stage and
has a direct influence on treatment (Lin et al. (2009)).

From past studies, TCGA researchers have characterized the marked differ-
ences between the two types of endometrial tumors (endometrioid and serous),
and discovered that some endometrioid tumors have developed a very similar
pattern to serous tumors, suggesting they may benefit from a common treatment
(Network (2013)). Particularly, the serous and some of the endometrioid tumors
are characterized by frequent mutations in TP53, extensive copy number alter-
ations and few DNA methylation changes. The rest of the endometrioid tumors
are characterized by few copy number alterations, scarce mutations in TP53 and
frequent mutations in PTEN and KRAS. TP53 and PTEN are abbreviations
of tumor protein p53 and phosphatase and tensin homolog, both are tumor
suppressors (Surget et al. (2014) and Steck et al. (1997)). The normal KRAS
protein performs essentially tissue signaling, and the mutation of a KRAS gene
is an essential step in the development of many cancers (Kranenburg (2005)).
PTEN, KRAS and TP53 genes are located on chromosome 10, 12 and 17, respec-
tively. In this study, we focus on chromosome 10 due to the size of computations
required.

4.2 Data preparation
According to the biological functional hierarchy and the nature of method DNSMI
we decide to use DNA methylation beta value as G, transcriptome profiling as
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Table 11: RDT0 data retrieval criteria from GDC for TCGA-UCEC project. Y
is specifically percent tumor invasion and it is defined as the value for percent
calculated as depth of myometrial invasion divided by depth of myometrial
thickness.

G X Y
Data Category DNA Methylation Transcriptome Profiling Clinical

Data Type Methylation Beta Value Gene Expression Clinical SupplementQuantification
Workflow Type Liftover HTSeq - FPKM-UQ NA

Platform Illumina Human NA NAMethylation 450
Dimension 485 x 485577 587 x 56963 548 x 1

X and percent tumor invasion as Y. The criteria used to retrieve data from
Genomic Data Commons Data Portal (GDC) and the resulting data dimension
are in Table 11, the data set (G, X , Y) is named Reduction Data 0 (RDT0).

The RDT0 data set is then filtered by only choosing primary solid tumor
for sample type and endometrioid endometrial adenocarcinoma for histological
type as well as excluding any missing values. The resulted data set is named
RDT1 (G (269 x 10135), X (269 x 2107), Y (269 x 1)). For methylation data,
we transform Beta-values to M-values since M-values are more statistically valid
(Du et al. (2010)). RDT1 is used as input to DNSMI as well as other algorithms
in Section 3.2. The range of percent tumor invasion is shown in Figure 6.

4.3 Results
4.3.1 Results of DNSMI

Using δ = 0.05, DNSMI selects 278 DNA methylation composite elements out
of 10135 and 39 genes out of 2107. We examine the interactions between the
selected gi’s, xj ’s and the outcome y, percent tumor invasion, by univariate
hypothesis tests. Results show that 101 out of 278 (36.3%) DNA methylation
elements and 35 out of 39 (89.7%) genes are individually statistically significantly
associated with the outcome y at 0.05 level. Table 1 and 2 of Appendix 3 show
the annotations, p-values as well as estimates and correlations for the 278 and
39 found elements. Within the 278 DNA methylation elements and the 39 genes,
i.e. 10842 pairs of DNA methylation and genes, 7515 pairs (69.3%) show a
significant association between the pair elements. These pairs may be pathway
variables that cannot be discovered by standard methods. In conclusion, DNSMI
suggests several causal pathway candidates in which each pathway component is
significantly associated with each other and with the outcome.

Among the genes and DNA methylation sites found by DNSMI for UCEC
project many are demonstrated to be closely associated with endometrial cancer
or other epithelial cancers. Qiu et al. (2013) found that EMX2 (the human
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Figure 6: Decreasingly sorted percent tumor invasion variable used as outcome
in our analysis.
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homologue of Drosophila empty spiracles gene 2) was significantly downregulated
in endometrial cancer tissues and this was correlated with the tumor stage, grade,
and the depth of myometrial invasion. Similar downregulation of EMX2 was also
observed in lung cancer samples in Okamoto et al. (2010) and this downregulation
was associated with methylation of the EMX2 promoter. In Table 1 of Appendix
3 we see that the DNA methylation level of EMX2 (cg07895186) is positively
associated with the degree of tumor invasion and because DNA methylation acts
to repress transcription, high level of methylation means low level of expression
and this is consistent with the aforementioned findings.

Li et al. (2016) identified that the overexpression of MCM10 (Minichromosome
Maintenance Complex Component 10), a member of MCM gene family who are
key factors for the initiation of DNA replication, was associated with unfavorable
clinicopathological characteristics and independent negative prognostic effects,
justifying its potential therapeutic and diagnostic value in urothelial carcinoma,
an epithelial cancer. In our example, the DNA methylation level of MCM10
(cg05505307, cg01237870) is found to be negatively correlated with the degree of
tumor invasion, which means that the expression level is positively correlated
with the invasion and this also matches the findings in Li et al. (2016).

In addition, PAR3 (partition defective 3) protein, encoded by PARD3 gene,
has an important role in mammals in the formation in the epithelia of the
tight junctions which is a specialized type of intercellular adhesion complex that
defines the apical–lateral border of the cell membrane compartments (Goldstein
and Macara (2007), Laprise and Tepass (2011), and Martin-Belmonte and Perez-
Moreno (2012)). The deletion and reduced expression of PARD3 was observed
to be a novel mechanism that is behind the progression and metastasis of
lung squamous cell carcinomas (LSCC) in Bonastre et al. (2015) and human
esophageal squamous cell carcinoma (ESCC) in Zen et al. (2009). In DNSMI
result, the expression of PARD3 is negatively related to the tumor invasion
adjusted for other covariates, however, it is not significant after the adjustment.

On the other hand, Xu et al. (2013) reported that DHTKD1 (dehydroge-
nase E1 and transketolase domain-containing 1) plays a critical role in energy
production in mitochondria which are vital energy factories involved in cell
cycle, cell differentiation, metabolic rates and energy requirement (Liesa et al.
(2009)). It’s also worth to note that there are 4 genes, i.e. DDX21 (DEAD
(Asp-Glu-Ala-Asp)-box RNA helicase), C10orf91 (chromosome 10 open reading
frame 91), DHTKD1 and FUT11 (fucosyltransferase 11) are still significant
after the adjustment (Table 2 of Appendix 3).

However, the PTEN gene mentioned in Section 4.1 is not selected by DNSMI.
It may be because the values of the elements in NSM that involve PTEN, either
in methylation or transcription, are very small. The PTEN associated values in
NSM, 115435 of them, have a maximum of 17.86 with a mean of 0.18 while the
maximum and the mean of the entire NSM is 111.98 and 0.23 (Table 12a) and
the maximum and the mean for DNSMI selections are 109.26 and 18.7 (Table
12b).
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Table 12: Distribution of elements values for:

(a) NSM (10135 × 2107) generated from RDT1

N Min. 1st Qu. Median Mean 3rd Qu. Max.
21354445 0.00 0.00 0.00 0.23 0.07 111.98

(b) Submatrix (278 × 39) formed by DNSMI selected elements from NSM (10135 ×
2107) generated from RDT1

N Min. 1st Qu. Median Mean 3rd Qu. Max.
10842 0.00 11.69 16.80 18.70 23.74 109.26

4.3.2 Results of AMSE-PMD, sSCCA-P and sSCCA-W

Among the 10135 DNA methylation sites and 2107 genes, AMSE-PMD using
the same search grid as DNSMI in 4.3.1 selects 9813 DNA methylation sites and
all 2107 genes while sSCCA-P and sSCCA-W have a G̃ with 145 columns and a
X̃ of 0 columns after the first filteration step using FDR = 0.2, which means
there is no discovery for these two methods.

5 Implementation
5.1 Simulation
The simulation codes have been made public at https://github.com/fzhang8/
DNSMI-simulation including a help file.

5.2 UCEC example
RDT0 data set was generated by using the R packages “TCGAbiolinks” (Co-
laprico et al. (2016)) and “SummarizedExperiment” (Morgan et al. (2017)),
where clinical data contains the variable percent tumor invasion. After RDT1
was generated and according to Step 1 and 2 from Algorithm 1 (Appendix
1), NSMr, r = 1, . . . , 100 were generated. A search grid of dimension 100 ×
46, i.e. h = 100, l = 46 from Algorithm 1 (Appendix 1), was used. Then a
centralized hub file (CHF) was created with each record being a unique index
combination between NSMr and 4600 search grid points and thus this hub
file has 460000 records. The CHF is then sent to each processor of a high-
performance server which has 1024 processors across over 64 nodes and each
node has 64 GB memory. For each of the processors, it will independently and
randomly draw a record from the CHF and does the PMD using the NSMr

and (c1, c2) that are associated with that record. Due to the duplication from
the randomness of the drawing, manual shrinkage on the CHF was carried
out periodically to improve the efficiency until there was 0 record left in the
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CHF. The results from all the 460000 decompositions were assembled and pro-
cessed following the rest steps from Algorithm 1 (Appendix 1). The codes
to make RDT1 data set from extracting data from TCGA have been made
public at https://github.com/fzhang8/DNSMI_example_TCGA with a help file
of illustrations.

6 Discussion
From the simulations sparsity plays a crucial role in the performance of DNSMI,
where, by design, the sparser the better, i.e. small a/p and b/q. The PMDmethod
in DNSMI uses a binary search to find the threshold of the soft thresholding
operator which is used to constrain the u and v as in (9). Thus large values
of u and v will be selected before small values. In other words, signals will
be selected before low signal noise and large signals before small signals. The
selection of large signals across all the subsamples contribute little instability,
but they account for a large portion of the constraints to be met, i.e. c1 and c2
in (9). This results in a situation where there is only a modest nonsignal added
before the instability threshold is achieved. Using a low instability threshold of
0.05 is signal conservative and will force the algorithm to favor sparse settings.
As a consequence, in less sparse cases, only a small portion of the signals are
selected, leading to a low TPR and a high TNR as shown in Table 8.

Two components for each element of the NSM are derived from simple
regression using OLS: β̂y|gi

and β̂xj |gi
. Therefore, the selected elements on both

dimensions may contain the effects from other elements that are not included
in the regression. And this confounding issue is reflected as shown in Table 2
of Appendix 3. On the other hand, the predictors are in their first order and
thus only the linear relations are captured by DNSMI. An implicit assumption
of DNSMI is that the hierarchical relation between the two information layers
as well as the outcome is known. Therefore, DNSMI may not be well suited
under those circumstances where this relation is unknown or where there exists
a feedback loop within the hierarchy.

The indices of the selected elements by DNSMI on both dimensions can be
used to extract a submatrix from the original NSM matrix. For example, such
submatrix is of dimension 278 × 39 for the RDT1 dataset in Section 4.3.1 and
the distribution of its elements is listed in Table 12b. Outside of such submatrix,
NSM may still have some elements that are larger than the maximum value in
such a submatrix. Such elements and the associated marginal elements should
also be monitored given the goal of the DNSMI and the belief that large elements
represent large effects. For instance, there are 3 such elements in NSM generated
from RDT1 of Section 4.3.1. These elements span 2 DNA methylation sites and
3 genes (Table 13) and the aforementioned EMX2 also appears in this list.

Note DNSMI is very computationally intensive and memory consuming for
certain applications. For example, in Section 5.2, we used a parameter search grid
of 4600 points (100 and 46 on u and v dimensions) and each point will be used to
implement 100 PMD decompositions of which each PMD is on a different NSM
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Table 13: Annotations and significance of DNA methylation sites and transcrip-
tome that are associated with NSM elements which are larger than that of
DNSMI selections from RDT1.

(a) DNA methylation

Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg04683551 chr10 CDNF|HSPA14 0.02 24.485 0.142
cg07895186 chr10 EMX2|EMX2OS 0.021 23.769 0.141

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.

(b) Transcriptome

Ensemble Chromosome Gene name p-valuea Estimateb Correlationc
Gene ID

ENSG00000148773 chr10 MKI67 0.002 0 0.184
ENSG00000186766 chr10 FOXI2 0.055 0 0.117
ENSG00000213551 chr10 DNAJC9 0.020 0 0.142

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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matrix whose dimension is 10135 × 2107. As a result, 460000 decompositions
need to be carried out. The first issue here is the memory capacity. Since numeric
vectors occupy 8 bytes for every element in R, loading those 100 NSM matrices
into memory alone will take about 16 GB. Furthermore, every such decomposition
will averagely cost about 55.72 seconds (timed by “microbenchmark” package) on
a laptop which is equipped with Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
with 16.0 GB RAM. In other words, it will take roughly 300 days to do the
analysis as in Section 4 if it is to be carried out without parallelism on a laptop
with the similar settings. Thus, in practice, DNSMI is more suited for use on
high performance computing clusters.

7 Conclusions
In this study, we proposed an algorithm called Decomposition of Network
Summary Matrix via Instability (DNSMI) which provides a supervised and
sparse solution for network detection. Simulations were carried out to test its
performance regarding three different factors: signal to nonsignal ratio, sample
size and sparsity. DNSMI performed very well for each of the factors compared
to other methods, especially in sparse setting. DNSMI is then applied on the
TCGA-UCEC project and a sparse solution is obtained which contains several
known biologically meaningful pathway candidates. The implementation of
DNSMI and its limitations are also discussed.

Main tools: Software: RStudio (1.1.383), R (3.4.1), “PMA” package (1.0.9),
“microbenchmark” package (1.4.3), “TCGAbiolinks” package (2.5.9), “Summa-
rizedExperiment” package (1.6.5), “biomaRt” package (2.32.1), “stringr” package
(1.2.0), “GenomicRanges” package (1.28.6), “parallel” package (3.4.1). Hard-
ware: DELL laptop with 8 processors each being Intel(R) Core(TM) i7-6700HQ
CPU @ 2.60GHz plus 16.GB RAM and 1 TB hard drive, Roswell Park Compre-
hensive Cancer Center high-performance computing (HPC) resources for which
there are 64 nodes having 2 Intel(R) Xeon(R) CPU E5-2670 HP SL230 G8
Servers with @ 2.60GHz with 8 cores each on the main partition.

Acknowledgement: The authors would like to present special thanks to
Martin Morgan, PhD, director of R/Bioconductor project, for his assistance with
portions of the R coding and for providing access to Roswell Park Comprehensive
Cancer Center high-performance computing resources.
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Algorithm 1 DNSMI at δ level for observation matrices YN×1, XN×q and
GN×p for a search grid containing h elements on c1 direction and l elements on
c2 direction.
1: Generate subsampled YS

r (0.5N×1), r = 1, . . . , R, by drawing 0.5N observa-
tions randomly without replacement from Y where “S” indicates subsample.
Likewise for XS

r (0.5N × q) and GS
r (0.5N × p).

2: Calculate NSMr matrix for each subsampled (YS
r , XS

r , GS
r ).

3: Given a (c1m, c2n) pair, m = 1, 2, . . . , h, n = 1, 2, . . . , l.
4: Calculate Up×R = (u1, . . . ,ur, . . . ,uR),Vq×R = (v1, . . . ,vr, . . . ,vR) where

ur and vr are sparse solutions from applying PMD using c1m and c2n from
3) on NSMr from 2). Set all nonzero elements in U and V to 1.

5: Calculate θu = P̂r

 u1 is selected
...

up is selected


p×1

,θv = P̂r

 v1 is selected
...

vq is selected


q×1

by computing row means for U and V.
6: Calculate

ξ̂u(c1m, c2n) = 2θu(1− θu) =

 ξ̂u1 (c1m, c2n)
...

ξ̂up (c1m, c2n)


p×1

ξ̂v(c1m, c2n) = 2θv(1− θv) =

 ξ̂v1 (c1m, c2n)
...

ξ̂vq (c1m, c2n)


q×1

7: Calculate
ξ̂u(c1m, c2n) = mean(ξ̂u(c1m, c2n)), ξ̂v(c1m, c2n) = mean(ξ̂v(c1m, c2n))

8: Compute ξ̂u,v(c1m, c2n) = max(ξ̂u(c1m, c2n), ξ̂v(c1m, c2n))
9: Compute ξ̂(c1m, c2n) = sup1≤s≤c1m,1≤t≤c2n

ξ̂u,v(s, t)
10: Select

(c1, c2) = arg max
(c1m,c2n)∈E

∥∥∥∥(c1m
c2n

)∥∥∥∥
2

where E = {(c1m, c2n) | ξ̂(c1m, c2n) ≤ δ over the h× l search grid for a preset
δ}.

11: Apply PMD using the selected (c1, c2) from 10) on NSM that is gener-
ated from YN×1, XN×q and GN×p. The indices corresponding to nonzero
elements in the sparse output u and v represent the Â and B̂, respectively.
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Algorithm 2 Average Mean Squared Error tuned PMD decomposition of NSM
(AMSE-PMD)
1: Given matrix NSM, randomly delete 10% of the data elements over the

entire matrix, resulting in NSMi, i = 1, 2, . . . , 10. Note that for each i, the
10% data are nonoverlapping.

2: Apply PMD on the 10 NSMi’s using a given pair (c1, c2).
3: Calculate for each i the mean squared error only of the missing locations in

NSMi to that of NSM.
4: The AMSE is the average of the 10 means from above step, and each pair of

(c1, c2) will be associated with one such error.
5: The optimal (c1, c2) will be the one that corresponds to the smallest AMSE

over the entire search grid if there is one.
6: Apply PMD using the selected (c1, c2) from 5) on NSM. The indices

corresponding to nonzero elements in the sparse output u and v represent
the Â and B̂, respectively.
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Algorithm 3 Supervised Sparse Canonical Correlation Analysis with SCCA
from Parkhomenko et al. (2009) (sSCCA-P)
1: Prefilter features in G and X by Benjamini-Hochberg (BH) procedure for

FDR = 0.2, which produce G̃ and X̃ .
2: Center and standardize the X̃ and G̃ matrices so that they have zero column

means and unit variances.
3: Calculate sample correlation matrix between X̃ and G̃ as K.
4: Given a pair of parameters (ζu, ζv) each of which ranges from 0 to 2.
5: Select initial values u0 and v0 and set i = 0.
6: Update u:

(a) ui+1 ← Kvi

(b) Normalize: ui+1 ← ui+1

‖ui+1‖

(c) Apply soft thresholding to obtain sparse solution: ui+1
j ← (|ui+1

j | −
1
2ζu)+Sign(ui+1

j ) for j = 1, . . . , p .

• (.)+ equals to x if x ≥ 0 and 0 if x < 0

• Sign(x) =

 −1 if x < 0,
1 if x > 0,
0 if x = 0.

(d) Normalize: ui+1 ← ui+1

‖ui+1‖

7: Update v:
(a) vi+1 ← K ‘ui+1

(b) Normalize: vi+1 ← vi+1

‖vi+1‖

(c) Apply soft thresholding to obtain sparse solution: vi+1
j ← (|vi+1

j | −
1
2ζv)+Sign(vi+1

j ) for j = 1, . . . , q

(d) Normalize: vi+1 ← vi+1

‖vi+1‖

8: i← i+ 1
9: Repeat steps 6 and 7 until convergence.
10: The optimal pair of (ζu, ζv) will be determined by using k-fold cross-validation

and will be the one who corresponds to the highest ∆cor in the search grid
where

∆cor = 1
k

k∑
j=1
|cor(X jv̂−j ,Gjû−j)|,

11: Repeat steps 5–9 using the selected parameters from 10) and the indices
corresponding to nonzero elements in the sparse output u and v represent
the Â and B̂, respectively.
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Algorithm 4 Supervised Sparse Canonical Correlation Analysis with SCCA
from Witten and Tibshirani (2009) (sSCCA-W)
1: Prefilter features in G and X by Benjamini-Hochberg (BH) procedure for

FDR = 0.2, which produce G̃ and X̃ .
2: Center and standardize the G̃ and X̃ matrices so that they have zero column

means and unit variances.
3: Given a pair of parameters (c1, c2).
4: Set w2 to have L2 norm 1.
5: Iterate (a) and (b) until convergence:

(a) w1 ← S(G̃
T

X̃ w2, ∆1)
‖S(G̃

T
X̃ w2,∆1)‖2

, where ∆1 = 0 if this results in ‖w1‖1 ≤ c1;
otherwise, ∆1 > 0 is chosen so that ‖w1‖1 = c1.

(b) w2 ← S(X̃
T

G̃w1, ∆2)
‖S(X̃

T
G̃w1,∆2)‖2

, where ∆2 = 0 if this results in ‖w2‖1 ≤ c2;
otherwise, ∆2 > 0 is chosen so that ‖w2‖1 = c2. . S(.) denotes the
soft-thresholding operator; that is, S(a, c) = sgn(a)(|a| − c)+.

6: Compute z = Cor(X̃w1, G̃w2).
7: For i ∈ 1, . . . , N , N is a large number for permutation purpose.

I Permute the rows of G̃ to obtain the matrix G̃
i
, and compute canonical

vectors wi
1 and wi

2 using data G̃
i
and X̃ and tuning parameter (c1, c2).

II Compute zi = Cor(G̃
i
wi

1, X̃wi
2).

8: Calculate the p-value p = 1
N

∑N
i=1 I(zi ≥ z).

9: Select the pair of (c1, c2) having the smallest p-value over the search grid.
10: Apply PMD using the selected (c1, c2) from 9) on G̃

T
X̃ . The indices corre-

sponding to nonzero elements in the sparse output u and v represent the Â
and B̂, respectively.
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Appendix 2: Notation dictionary
G : Latent variable for genes
G′ : Latent variable for genes but is independent of Y
H : Latent variable for genes that is associated with Y but is independent of others
X : Latent variable for transcripts
X ′ : Latent variable for transcripts but is independent of Y
S : Latent varialbe for transcripts that is associated with Y but is independent of others
Y : Latent variable for outcome

G,X ,Y : Observation matrices for genes, transcripts and outcome
X̃ , G̃ : Filtered observation matrices by supervision criterion

a : Number of pathway genes
A : set of indices of gi’s elements involved in pathway
Â : estimator of A
b : Number of pathway transcripts
B : set of indices of xi’s elements involved in pathway
B̂ : estimator of B
c1 : Tuning parameter of PMD decomposition method on row direction
c2 : Tuning parameter of PMD decomposition method on column direction
d : Singular value or sparse singular value for Sd-PMD, depending on the context
h : Number of elements on c1 direction of search grid
l : Number of elements on c2 direction of search grid
N : Total subjects number or sample size
p : Number of rows of matrix W, same as number of genes in analysis
q : Number of columns of matrix W, same as number of transcripts in analysis
r : Correlation between observation and the corresponding latent variable
R : Number of subsamples to use IPMDW
R2 : Predictability
u : First left singular vector, sparse or not depends on the context
v : First right singular vector, sparse or not depends on the context
α : Importance of the G → X → Y path to the total effect of G on Y
γ : (1−R2)/R2

δ : Preset instability level
κ : Cohen’s Kappa statistic

ξui (c1, c2) : Instability of ith element of vector u
ξvj (c1, c2) : Instability of jth element of vector v
ξu(c1, c2) : Mean instability of u vector
ξv(c1, c2) : Mean instability of v vector

ξu,v(c1, c2) : Combined instability from u and v vectors
ξ(c1, c2) : Supremum instability at (c1, c2)

π2 : Variance ratio coefficient between noise and y
τ : Total effect of G on Y, τ = βY |G.X + βX|GβY |X.G
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Appendix 3: Annotations of DNA methylation
sites and transcriptome from DNSMI on UCEC
project.

Table 1: Annotations and significance of 278 DNSMI selected DNA methylation sites from
NSM generated from RDT1.

Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg00282704 chr10 CASC10|MIR1915 0.002 -10.236 -0.18
cg00363811 chr10 BTRC 0.021 -11.686 -0.14
cg00451513 chr10 ASCC1 0.022 12.044 0.14
cg00520540 chr10 CDNF|HSPA14 0.028 -11.545 -0.13
cg00766678 chr10 NPM3 0.036 -11.231 -0.13
cg00997424 chr10 PI4K2A|RP11-548K23.11 0.029 -9.053 -0.13
cg01068136 chr10 DCLRE1A|NHLRC2 0.001 -11.327 -0.2
cg01087392 chr10 GBF1 0.036 -9.99 -0.13
cg01237870 chr10 MCM10 0.004 -18.268 -0.18
cg02016328 chr10 RAB18 0.035 -15.245 -0.13
cg02024446 chr10 C10orf111|RPP38 0.035 -10.933 -0.13
cg02156071 chr10 FAM204A 0.015 -12.841 -0.15
cg02180545 chr10 C10orf2|MRPL43 0.017 -9.124 -0.14
cg02452627 chr10 ZNF438 0.01 -11.107 -0.16
cg02550110 chr10 DDX50 0.019 -12.005 -0.14
cg02733266 chr10 GSTO1 0.005 -11.123 -0.17
cg02878913 chr10 SH3PXD2A 0 -23.138 -0.27
cg02956254 chr10 RP11-298J20.4 0.04 -11.503 -0.13
cg03539850 chr10 PANK1|RP11-80H5.2 0.018 -13.527 -0.14

cg03576467 chr10 DNAJC9-AS1|MRPS16 0.033 -15.373 -0.13RP11-152N13.5
cg03727700 chr10 DCLRE1A|NHLRC2 0.006 -9.508 -0.17
cg03801898 chr10 ADD3|ADD3-AS1 0.048 -8.146 -0.12
cg04036272 chr10 CCDC6 0.032 -10.619 -0.13
cg04126427 chr10 EIF3A 0.002 -12.379 -0.18
cg04290666 chr10 WNT8B 0.016 12.09 0.15
cg04446777 chr10 BTRC 0.024 -11.41 -0.14

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg04683551 chr10 CDNF|HSPA14 0.02 24.485 0.14
cg04959674 chr10 MMS19|UBTD1 0.018 -13.782 -0.14
cg05505307 chr10 MCM10 0.049 -12.503 -0.12
cg06206603 chr10 RP11-574K11.24|SEC24C 0.014 -10.294 -0.15
cg07203258 chr10 DDX50 0.04 -8.986 -0.13
cg07217563 chr10 WDR37 0.012 -12.144 -0.15
cg07895186 chr10 EMX2|EMX2OS 0.021 23.769 0.14
cg08069263 chr10 MXI1 0.032 -12.995 -0.13
cg08096168 chr10 CCDC6 0.045 -8.923 -0.12
cg08299755 chr10 ZFYVE27 0.025 -13.161 -0.14
cg09152955 chr10 NPM3 0.026 -10.445 -0.14
cg09269103 chr10 NFKB2 0.004 -10.915 -0.18
cg09333812 chr10 ARHGAP19|ARHGAP19-SLIT1 0.044 -12.06 -0.12
cg09478103 chr10 CAP1P2|ZNF485 0.007 -15.592 -0.17
cg09655100 chr10 TCF7L2 0.003 -11.73 -0.18

cg09747456 chr10 PANK1|RP11-80H5.2 0.027 -11.051 -0.14RP11-80H5.5
cg09886360 chr10 CSGALNACT2|RP11-351D16.3 0.014 -10.535 -0.15
cg10325336 chr10 RP11-574K11.24|SEC24C 0.021 -10.008 -0.14
cg10708548 chr10 ARID5B 0.014 -9.667 -0.15
cg10739686 chr10 KAT6B 0.05 -9.895 -0.12
cg10800082 chr10 PDCD4|PDCD4-AS1 0.023 -11.631 -0.14
cg10878076 chr10 NDUFB8|RP11-411B6.6 0.015 9.511 0.15
cg10905918 chr10 RPS24 0.027 -14.052 -0.13
cg11223711 chr10 EIF3A 0.012 -11.642 -0.15
cg11423178 chr10 HNRNPH3|PBLD 0.04 -12.218 -0.13
cg11499984 chr10 BLOC1S2 0.006 -13.085 -0.17
cg11996395 chr10 NOLC1 0.033 -10.888 -0.13
cg12198729 chr10 BTRC 0.011 -12.527 -0.15
cg12226046 chr10 PANK1|RP11-80H5.2 0.012 -11.05 -0.15
cg12563239 chr10 ANKRD26 0.02 -10.82 -0.14
cg13800022 chr10 ITGB1|RP11-462L8.1 0.014 -16.688 -0.15
cg13830636 chr10 RP11-574K11.24|SEC24C 0.014 -10.169 -0.15
cg13962355 chr10 BTRC 0.03 -11.111 -0.13
cg14039939 chr10 LRRC27|STK32C 0.001 12.222 0.21

cg14052593 chr10 BMS1P4|DUSP8P5 0.018 -13.196 -0.14|GLUD1P3|RP11-464F9.1
cg14461522 chr10 NPM3 0.006 -14.121 -0.17

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg14562081 chr10 TCF7L2 0.008 -10.501 -0.16
cg14700647 chr10 ASAH2B 0.031 -11.586 -0.13
cg15322766 chr10 POLR3A 0.035 -10.921 -0.13
cg15384821 chr10 EGR2 0.049 -11.094 -0.12
cg15523443 chr10 POLR3A 0.012 -12.58 -0.15
cg15831653 chr10 DNAJC1 0.001 -17.937 -0.2
cg15939466 chr10 VTI1A|ZDHHC6 0.004 -11.788 -0.17
cg15952994 chr10 VTI1A|ZDHHC6 0.021 -11.298 -0.14
cg16754967 chr10 RSU1 0.002 -11.832 -0.18
cg17555499 chr10 CHCHD1 0.015 -10.032 -0.15
cg18493566 chr10 C10orf76 0.032 -12.277 -0.13
cg18510056 chr10 ZNF503-AS2 0.013 -8.904 -0.15
cg18762013 chr10 ZNF33A 0.022 -8.76 -0.14
cg18913254 chr10 ANXA7 0.01 -11.69 -0.16
cg18928584 chr10 CUEDC2 0.04 -11.02 -0.13
cg19014323 chr10 HNRNPF 0.033 -9.228 -0.13
cg19032306 chr10 CPEB3|MARCH5 0.008 -10.692 -0.16
cg19040518 chr10 NDST2|RP11-574K11.31 0.018 -12.549 -0.14
cg19138900 chr10 KLF6 0.038 -7.942 -0.13
cg20444320 chr10 STAM|STAM-AS1 0.014 -11.784 -0.15
cg21374208 chr10 DNAJC1 0.017 -14.929 -0.15
cg21949958 chr10 BUB3 0.027 -9.949 -0.14
cg23087635 chr10 INPP5A 0.004 -17.151 -0.18
cg23319797 chr10 RAB18 0.049 -12.962 -0.12
cg23751407 chr10 RP11-95I16.2 0.028 -9.458 -0.13
cg23936098 chr10 NOLC1 0.007 -15.037 -0.16
cg23991622 chr10 VIM|VIM-AS1 0.016 -12.909 -0.15
cg24166097 chr10 NPM3 0.032 -10.913 -0.13
cg24573310 chr10 CISD1 0.042 -10.687 -0.12

cg25089494 chr10 C10orf131|ENTPD1-AS1 0.045 -10.352 -0.12RP11-248J23.7
cg25355065 chr10 ARL3|SFXN2 0.048 -10.477 -0.12
cg25648639 chr10 ARHGAP12 0.015 -12.949 -0.15
cg26002628 chr10 ARID5B 0.015 -9.416 -0.15
cg26306372 chr10 VIM|VIM-AS1 0.043 -11.096 -0.12
cg26625369 chr10 CDC123|NUDT5 0.037 -11.197 -0.13
cg26881277 chr10 PDCD4|PDCD4-AS1 0.003 -12.846 -0.18
cg26964061 chr10 MXI1 0.004 -13.658 -0.18

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg27255678 chr10 LZTS2 0.05 -12.631 -0.12
cg27510901 chr10 DNAJC1 0.046 -11.448 -0.12
cg00440043 chr10 ZEB1|ZEB1-AS1 0.062 -9.479 -0.11
cg00588577 chr10 CCAR1 0.161 -9.448 -0.09
cg00879184 chr10 MLLT10 0.16 -6.801 -0.09
cg01021053 chr10 ZWINT 0.292 -6.844 -0.06
cg01042749 chr10 FAM178A|RP11-179B2.2 0.105 -9.749 -0.1
cg01154046 chr10 VIM|VIM-AS1 0.099 -10.199 -0.1
cg01367750 chr10 ACBD5|RP11-85G18.6 0.084 -7.675 -0.11
cg01431972 chr10 ZNF503-AS2 0.053 -10.168 -0.12
cg02150674 chr10 PHYH 0.091 -7.866 -0.1
cg02351056 chr10 METTL10|RP11-12J10.3 0.159 -8.332 -0.09
cg02622557 chr10 EIF3A 0.204 -6.689 -0.08
cg02952711 chr10 LRRC27|STK32C 0.232 -8.554 -0.07
cg03020000 chr10 ARID5B 0.179 -8.616 -0.08
cg03141879 chr10 PITRM1|RP11-298E9.7 0.203 6.307 0.08
cg03211233 chr10 SIRT1 0.273 -7.445 -0.07
cg03361817 chr10 ARID5B 0.178 -8.511 -0.08
cg03524461 chr10 MLLT10 0.092 -9.21 -0.1
cg03588299 chr10 DIP2C 0.276 6.334 0.07
cg03714691 chr10 WDR37 0.149 6.397 0.09
cg03922645 chr10 MEIG1 0.298 -5.658 -0.06
cg03941040 chr10 TFAM 0.468 -5.432 -0.04
cg04167018 chr10 ECD|FAM149B1 0.109 -10.809 -0.1
cg04179819 chr10 TAF3 0.14 13.568 0.09
cg04534276 chr10 PPP3CB|PPP3CB-AS1 0.07 -10.027 -0.11
cg04622176 chr10 MCMBP|SEC23IP 0.25 -8.036 -0.07
cg04646451 chr10 DDX50 0.29 -6.457 -0.06
cg04733624 chr10 ADK 0.074 17.371 0.11
cg04749667 chr10 ECD|FAM149B1 0.064 -9.771 -0.11
cg05088677 chr10 CASC10|MIR1915 0.243 -6.805 -0.07
cg05313070 chr10 ARHGAP12 0.213 -6.889 -0.08
cg05420251 chr10 OLMALINC 0.053 -10.755 -0.12
cg06583105 chr10 PPRC1 0.414 -5.95 -0.05
cg06649808 chr10 RP11-574K11.24|SEC24C 0.133 -8.762 -0.09
cg06782748 chr10 CREM|RP11-297A16.2 0.313 -5.926 -0.06
cg07030336 chr10 VTI1A|ZDHHC6 0.311 -4.968 -0.06
cg07301505 chr10 PI4K2A|RP11-548K23.11 0.102 -7.745 -0.1

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Composite
Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg07636870 chr10 ACTR1A|SUFU 0.273 -5.608 -0.07
cg07679896 chr10 RP11-298J20.4 0.084 -10.818 -0.11
cg07855525 chr10 TAF3 0.162 -8.624 -0.09
cg07900823 chr10 NUTM2B-AS1|RP11-182L21.6 0.141 10.984 0.09
cg08395899 chr10 UPF2 0.233 -7.141 -0.07
cg08616269 chr10 CCAR1 0.116 -10.837 -0.1
cg08668510 chr10 IDI1|WDR37 0.112 -8.677 -0.1
cg08797625 chr10 CAMK2G 0.286 -5.494 -0.07
cg08799865 chr10 NT5C2 0.136 -8.556 -0.09
cg08905519 chr10 FAM208B 0.09 -12.262 -0.1
cg09219177 chr10 ACBD5|RP11-85G18.6 0.149 -8.413 -0.09
cg09391093 chr10 RP11-393J16.4|ZNF25 0.077 -9.92 -0.11
cg09526975 chr10 SEPHS1 0.13 -8.258 -0.09
cg09563120 chr10 RP11-108L7.15 0.07 -8.55 -0.11
cg09688285 chr10 XPNPEP1 0.199 -8.006 -0.08
cg09933375 chr10 CCAR1 0.136 -8.499 -0.09
cg10295800 chr10 TFAM 0.146 -8.161 -0.09
cg10436918 chr10 VTI1A|ZDHHC6 0.271 -7.126 -0.07
cg10526556 chr10 SEPHS1 0.338 -6.629 -0.06
cg10609984 chr10 RP11-393J16.4|ZNF25 0.202 -6.433 -0.08
cg10831391 chr10 PFKP 0.064 17.827 0.11
cg10894697 chr10 CASP7 0.192 -7.271 -0.08
cg10928925 chr10 ZCCHC24 0.062 -10.162 -0.11
cg11271505 chr10 ZSWIM8 0.132 -8.726 -0.09
cg11420031 chr10 VPS26A 0.126 -9.04 -0.09
cg11460820 chr10 RPS24 0.065 -11.18 -0.11
cg11504511 chr10 ZMIZ1|ZMIZ1-AS1 0.094 -9.122 -0.1
cg11655691 chr10 MICU1 0.146 -8.186 -0.09
cg11660725 chr10 ANKRD26 0.179 -7.058 -0.08
cg11814667 chr10 PDCD11|USMG5 0.077 -11.843 -0.11
cg11977348 chr10 SMC3 0.076 -11.558 -0.11
cg12143181 chr10 LIPA 0.057 -8.017 -0.12
cg12144272 chr10 ZMIZ1|ZMIZ1-AS1 0.066 -9.189 -0.11
cg12276298 chr10 ECD|FAM149B1 0.234 -7.105 -0.07
cg12294817 chr10 METTL10|RP11-12J10.3 0.124 -7.881 -0.09
cg12536451 chr10 ZFYVE27 0.057 -12.562 -0.12
cg12580870 chr10 CCAR1 0.169 -7.792 -0.08
cg12823012 chr10 CCAR1 0.156 -8.948 -0.09

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Chromosome Gene symbol p-valuea Estimateb CorrelationcElement

Reference
cg12832988 chr10 CDNF|HSPA14 0.085 -8.824 -0.11
cg13188511 chr10 CUL2 0.292 -6.597 -0.06
cg13320518 chr10 VTI1A|ZDHHC6 0.143 -7.643 -0.09
cg13509954 chr10 MTPAP 0.477 -4.996 -0.04
cg13708259 chr10 C10orf2|MRPL43 0.325 -5.19 -0.06
cg13763308 chr10 ADK|AP3M1 0.111 -11.26 -0.1
cg13799287 chr10 WAC|WAC-AS1 0.253 -9.547 -0.07
cg13817732 chr10 BLOC1S2 0.319 -5.838 -0.06
cg14193565 chr10 INPP5F 0.05 -11.468 -0.12
cg14409890 chr10 PCGF6 0.156 -9.557 -0.09
cg14434255 chr10 ENTPD7 0.244 -6.679 -0.07
cg14440794 chr10 FAM171A1 0.051 12.832 0.12
cg14631462 chr10 ZEB1|ZEB1-AS1 0.191 -6.402 -0.08
cg14694828 chr10 ZMYND11 0.074 -9.632 -0.11
cg14825384 chr10 CASP7 0.41 -6.934 -0.05
cg14924826 chr10 BBIP1|SHOC2 0.144 -7.789 -0.09
cg15055039 chr10 BAG3 0.423 -5.22 -0.05
cg15169471 chr10 LINC00863|NUTM2A-AS1 0.395 -6.242 -0.05
cg15172601 chr10 CDK1 0.064 -12.138 -0.11
cg15317221 chr10 ABI1 0.094 -7.683 -0.1
cg15317837 chr10 GTPBP4|RP11-363N22.3 0.454 -5.371 -0.05
cg15363487 chr10 VIM|VIM-AS1 0.256 9.5 0.07
cg15433901 chr10 NMT2 0.121 -8.11 -0.09
cg15462502 chr10 BMS1 0.29 -7.432 -0.06
cg15563952 chr10 DHTKD1 0.188 -8.475 -0.08
cg15825287 chr10 NRBF2 0.21 -7.643 -0.08
cg15834928 chr10 LRRC27|STK32C 0.346 -5.805 -0.06
cg15872329 chr10 BLOC1S2 0.084 -9.828 -0.11
cg16124546 chr10 ECD|FAM149B1 0.181 -9.093 -0.08
cg16139770 chr10 ARID5B 0.261 -8.344 -0.07
cg16423650 chr10 DNMBP 0.188 -8.155 -0.08
cg16584947 chr10 LARP4B 0.057 -9.119 -0.12
cg16742925 chr10 PDCD11|USMG5 0.337 -6.308 -0.06
cg16905311 chr10 ARL5B|NSUN6 0.235 -7.037 -0.07
cg17012863 chr10 LIPA 0.069 -13.118 -0.11
cg17122475 chr10 DIP2C 0.057 -15.102 -0.12
cg17465063 chr10 MXI1 0.402 -5.149 -0.05
cg17586365 chr10 CDC123|NUDT5 0.103 -8.543 -0.1

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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cg17629447 chr10 CHUK|RP11-316M21.6 0.34 -7.511 -0.06
cg17710288 chr10 NPM3 0.068 -10.053 -0.11
cg17982459 chr10 SFR1 0.141 -9.884 -0.09
cg18035301 chr10 MAP3K8 0.257 -6.526 -0.07
cg18221224 chr10 ACBD5 0.12 -8.052 -0.1
cg18375586 chr10 FAM171A1 0.25 -7.871 -0.07
cg18409845 chr10 CPEB3|MARCH5 0.054 -7.817 -0.12
cg18691055 chr10 MKI67 0.275 -5.129 -0.07
cg18803045 chr10 PDCD4|PDCD4-AS1 0.173 -6.725 -0.08
cg18827378 chr10 CDK1 0.095 -8.558 -0.1
cg19038917 chr10 GSTO1 0.124 -7.03 -0.09
cg19210816 chr10 EIF3A 0.075 -8.966 -0.11
cg19391892 chr10 DDX50 0.156 -6.993 -0.09
cg19402405 chr10 EGR2 0.304 -5.531 -0.06
cg19535032 chr10 KIF5B|Y_RNA 0.106 -8.799 -0.1
cg19559179 chr10 C10orf76 0.055 -12.012 -0.12
cg19577016 chr10 ANAPC16|ASCC1 0.164 -8.853 -0.09
cg19603966 chr10 DNAJC1 0.336 -6.415 -0.06
cg19716967 chr10 FAM204A 0.203 -7.977 -0.08
cg19839763 chr10 ITPRIP 0.161 -6.85 -0.09
cg19874323 chr10 ARL5B|NSUN6 0.051 -9.793 -0.12
cg20203089 chr10 NFKB2 0.058 -8.164 -0.12
cg20264529 chr10 MTPAP 0.065 -11.269 -0.11
cg20318353 chr10 ABI1 0.06 -10.792 -0.11
cg20355062 chr10 KLF6 0.158 -9.552 -0.09
cg20475000 chr10 PDCD11|USMG5 0.087 -9.876 -0.1
cg20489345 chr10 CASP7 0.072 -11.237 -0.11
cg20778294 chr10 PPRC1 0.112 -11.411 -0.1
cg21201659 chr10 MCMBP|SEC23IP 0.137 -10.717 -0.09
cg22553140 chr10 PRDX3 0.353 -6.281 -0.06
cg22593633 chr10 ZMYND11 0.165 -7.13 -0.08
cg22635723 chr10 ADD3|ADD3-AS1 0.069 -7.749 -0.11
cg22664157 chr10 PWWP2B 0.377 -6.383 -0.05
cg22860891 chr10 RBM17 0.288 -6.565 -0.06
cg23026419 chr10 ITPRIP 0.128 -6.523 -0.09
cg23087130 chr10 ABI1 0.152 -9.211 -0.09
cg23635883 chr10 MASTL|YME1L1 0.143 -8.063 -0.09
cg23638686 chr10 INPP5A 0.096 -13.741 -0.1

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Reference
cg23654971 chr10 GBF1 0.184 -8.348 -0.08
cg24182333 chr10 PSAP 0.165 -9.404 -0.08
cg24201716 chr10 CCDC186|MIR2110 0.344 -6.744 -0.06
cg24293903 chr10 ENTPD7 0.29 -7.636 -0.06
cg24315770 chr10 PDCD11|USMG5 0.169 -8.374 -0.08
cg24807448 chr10 SMC3 0.432 -5.864 -0.05
cg24826355 chr10 KIF5B|Y_RNA 0.219 -8.398 -0.08
cg24980609 chr10 DPCD|POLL 0.228 -7.428 -0.07
cg25243854 chr10 BCCIP|UROS 0.075 -13.147 -0.11
cg25713684 chr10 TAF5 0.08 -9.639 -0.11
cg25822326 chr10 NET1 0.16 -8.127 -0.09
cg26022877 chr10 ACADSB|IKZF5 0.08 -9.874 -0.11
cg26075202 chr10 SIRT1 0.407 -6.149 -0.05
cg26097210 chr10 HNRNPH3|PBLD 0.111 -8.36 -0.1
cg26213561 chr10 CASC10|MIR1915 0.336 -6.234 -0.06
cg26273962 chr10 SORBS1 0.112 -10.027 -0.1
cg26358059 chr10 GSTO1 0.348 -5.792 -0.06
cg26485946 chr10 IDI1|WDR37 0.116 -8.325 -0.1
cg26538046 chr10 WDR11|WDR11-AS1 0.207 -7.981 -0.08
cg26538214 chr10 KLF6 0.16 -9.496 -0.09
cg27350398 chr10 PITRM1 0.366 -5.73 -0.06
cg27352063 chr10 PPIF 0.287 10.936 0.07
cg27445265 chr10 BCCIP|UROS 0.103 -9.767 -0.1
cg27503573 chr10 PAOX 0.391 -5.837 -0.05
cg27521563 chr10 ADRB1 0.35 -5.867 -0.06
cg27523141 chr10 ZNF37BP 0.055 -8.999 -0.12
cg27636376 chr10 C10orf111|RPP38 0.381 -7.108 -0.05

aSimple linear regression using percent tumor invasion as response variable.
bSimple linear regression coefficient estimate using percent tumor invasion as response

variable.
cCorrelation with percent tumor invasion.
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Table 2: Annotations and significance of 39 DNSMI selected Transcriptome elements from
NSM generated from RDT1.

Ensemble Chromosome Gene name p-valuea p-valueb Estimatec Correlationd
Gene ID

ENSG00000057608 chr10 GDI2 0.002 0.445 5e-06 0.19
ENSG00000095787 chr10 WAC 0.037 0.175 -7.4e-05 0.13
ENSG00000099194 chr10 SCD 0 0.092 3e-06 0.22
ENSG00000107771 chr10 CCSER2 0.031 0.587 2.4e-05 0.13
ENSG00000108055 chr10 SMC3 0.004 0.31 3.3e-05 0.18
ENSG00000108094 chr10 CUL2 0.039 0.959 4e-06 0.13
ENSG00000119969 chr10 HELLS 0.033 0.566 -5.8e-05 0.13
ENSG00000136758 chr10 YME1L1 0.025 0.71 -1.1e-05 0.14
ENSG00000138107 chr10 ACTR1A 0.02 0.803 -2e-06 0.14
ENSG00000138160 chr10 KIF11 0.005 0.297 -4.1e-05 0.17
ENSG00000138182 chr10 KIF20B 0.004 0.164 0.000208 0.18
ENSG00000148498 chr10 PARD3 0.007 0.726 -1.3e-05 0.16
ENSG00000148660 chr10 CAMK2G 0.011 0.917 -7e-06 0.15
ENSG00000151461 chr10 UPF2 0.006 0.167 6e-05 0.17
ENSG00000151465 chr10 CDC123 0.044 0.839 -3e-06 0.12
ENSG00000155252 chr10 PI4K2A 0.033 0.345 4.1e-05 0.13
ENSG00000165632 chr10 TAF3 0.011 0.843 1.9e-05 0.15
ENSG00000165637 chr10 VDAC2 0.031 0.914 -1e-06 0.13
ENSG00000165732 chr10 DDX21 0.035 0.039 -3.5e-05 0.13
ENSG00000166135 chr10 HIF1AN 0.041 0.816 -2.1e-05 0.12
ENSG00000170759 chr10 KIF5B 0.015 0.586 -6e-06 0.15
ENSG00000171314 chr10 PGAM1 0.002 0.228 1.9e-05 0.19
ENSG00000172731 chr10 LRRC20 0.001 0.168 3.6e-05 0.2
ENSG00000173848 chr10 NET1 0.011 0.492 4e-06 0.16
ENSG00000176171 chr10 BNIP3 0.001 0.416 8e-06 0.21
ENSG00000180066 chr10 C10orf91 0.007 0.036 0.000144 0.16
ENSG00000181192 chr10 DHTKD1 0.004 0.029 4.8e-05 0.17
ENSG00000181915 chr10 ADO 0.005 0.078 7.6e-05 0.17
ENSG00000187522 chr10 HSPA14 0.002 0.214 7.8e-05 0.19
ENSG00000196072 chr10 BLOC1S2 0.05 0.142 -4.7e-05 0.12
ENSG00000196968 chr10 FUT11 0.001 0.04 8.7e-05 0.21
ENSG00000197771 chr10 MCMBP 0.014 0.232 -5.9e-05 0.15

aSimple linear regression using percent tumor invasion as response variable.
bMultiple linear regression using percent tumor invasion as response variable and all 39

genes as independent variables.
cMultiple linear regression coefficient estimate using percent tumor invasion as response

variable and all 39 genes as independent variables.
dCorrelation with percent tumor invasion.
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Ensemble Chromosome Gene name p-valuea p-valueb Estimatec Correlationd
Gene ID

ENSG00000198825 chr10 INPP5F 0.003 0.164 0.000155 0.18
ENSG00000213390 chr10 ARHGAP19 0.003 0.603 -6.2e-05 0.18
ENSG00000260917 chr10 AL158212.3 0.01 0.119 0.000361 0.16
ENSG00000108239 chr10 TBC1D12 0.079 0.384 -0.000121 0.11
ENSG00000136738 chr10 STAM 0.083 0.628 -3.2e-05 0.11
ENSG00000165660 chr10 ABRAXAS2 0.076 0.684 -3.6e-05 0.11
ENSG00000173145 chr10 NOC3L 0.089 0.457 7.3e-05 0.1

aSimple linear regression using percent tumor invasion as response variable.
bMultiple linear regression using percent tumor invasion as response variable and all 39

genes as independent variables.
cMultiple linear regression coefficient estimate using percent tumor invasion as response

variable and all 39 genes as independent variables.
dCorrelation with percent tumor invasion.
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