A novel exact method for significance of higher criticism via Steck’s
determinant

Jeffrey C. Miecznikowski®*, Jiefei Wang?, Daniel P. Gaile*, David L. Tritchler®P

% Department of Biostatistics, SUNY University at Buffalo, 3435 Main St, Buffalo, NY 1421/
b Division of Biostatistics, University of Toronto

Abstract

In this note we provide a novel straightforward approach to calculating the significance for
higher criticism statistics using a general result due to Steck (1971) coined Steck’s deter-
minant. This result allows users to directly assess higher criticism significance without the
need for simulation or asymptotic results.
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1. Introduction

Higher criticism (HC) is commonly employed in large scale inference to assess whether
there is a rare but weak biological signal present in a dataset. Higher criticism biological
applications may include gene expression microarray analysis, genome wide association stud-
ies (GWAS), and DNA copy number variation. There are several flavors of HC statistics

beginning with John Tukey’s original proposal discussed in Tukey (1989, 1994). He proposes
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the statistic
HCnpos = VvV N (Fraction of tests significant at 5% — 0.05) /+/0.05 x 0.95 (1)

where N is the total number of tests. The equation in (1) is based on a 0.05 significance

level and can be generalized to an arbitrary a as
HCy, = VN (Fraction of tests significant at a — a) /v/a x (1 — a). (2)

If the overall set of tests is significant then we expect HCy, to be large for some o and

hence the significance of the overall set of tests can be captured via

HCy = max HCn,, (3)

{0<a<ap}

where o € (0, 1) is a tuning parameter.
Consider the set of N uncorrelated tests and let the individual p-values be denoted by p;
and the ordered p-values (ascending) be denoted by p(;). Then the higher criticism statistic

in (3) can be written as:

HCy = max HCy,, (4)
{1<iLao N}
where
N — pg
HCMﬁEVN'@/ )P0 (5)

Ve (1= pey)

In the next section we develop a framework to use higher criticism in a hypothesis test

setting.



2. HC in a Testing Framework

Suppose we have test statistics X; with ¢ € {1,2,..., N} for individual tests of, say, genes.
With higher criticism, we are interested in testing whether all test statistics follow the null
distribution e.g., N(0, 1), (or, say, an empirical null distribution) versus the alternative that a

small fraction are distributed as something else. That is, we want to test the null hypothesis:

72N X, %M N0,1), 1<i<N, (6)
against an alternative,
H™ - at least one X; not N(0,1). (7)

To use higher criticism as a level a test of (6), we must find a critical value h(N, a) so
that

Pryo (HCN > h(N,a)) < «, (8)

or similarly for an observed HC statistic, h, we can calculate a valid p-value, p, as
P = Pryon (HCx > 1), (9)

where h is the observed statistic and level « significance is assigned when p;, < «.
In the next section we develop a novel exact method to calculate h(N, &) and/or pj, using

Steck’s determinant.

3. Steck’s Determinant and Higher Criticism

If we let Uy < Uy < -+ < Uy denote the order statistics from an independent and
identically distributed sample of size N from a uniform U(0, 1) distribution. Steck (1971)
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proved that:

for any arbitrary set of {l;} and {m;} such that [; < [, and m; < m;y;. S is a matrix with
elements S;; = (j—g-&-l) (m; — lj)‘i_i+1 or 0 according as 7 — ¢ + 1 is non negative or negative
across i = 1,2,..., N and (x)y = max(0,x). This result has been used before in a multiple
testing framework, see Hutson (2002).

From work in Li et al. (2015) for 1 < kg < k; < N let

Zy = max VN{k/N = U}/ {Unm(1 = Up)}". (11)

ko<k<ki
Let C(z) = C(z,€) = {x +[e2 — e(e + 4(1 — 2)x)"/?]/2} /(1 + €?) and observe that Zy > b if
and only if Uy < C(k/N,b/N/?) for at least one kg < k < k.

From combining (4), (5), (9), (10), and (11) and assuming our p-values are independent

and U(0,1) under the null hypothesis, we have



Pn = PTH(()N) (HC;] > h) (12&)

= Pr,m ( max HCy,; > h) (12b)
0 {

1<i<aoN}

= Prym ( max VN (/) _p(i)) > h) (12¢)
)

o\ {1<i<aoN} P (1 —pi

{isiseoN} /U (1 = Upy)

= Pr(Zyx > h) with Zy asin (11) and ko = 1 and k1 = apN (12e)

= Pr ( max VN (/) = U > h) (12d)

= Pr ({Uw < C (k/N, h/Nl/Q) for at least one k where 1 < k < agN}) (12f)

=1-Pr ({Up > C (k/N,h/N'?) forall 1 <k < agN}) (12g)
=1—Pr(Up >l k=1,2,...,a0N) (12h)
=1 — det(9) (12i)

where §' is a matrix with S;; = (,_7,,)(1-1;)5"" and [; = C(j/N,h/N'/?). To derive (12h)
from (12g), we need to show {l;} is an increasing sequence (see proof in appendix). In the

next section we explore computational methods to compute the determinant of S.

4. Computational Methods to Evaluate Steck’s Determinant

In R there are several methods to calculate the determinant of S; one can simply use the
det function or QR decomposition (QR factorization) of S via the qr function The above
methods work well when the dimension of S is relatively small (N < 20). However, they will
be inaccurate when N is larger. The determinant of S since it estimates a p-value should be
bounded between 0 and 1. However using the det or qr functions in R one can easily get an
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arbitrarily large determinant when N is large. The breakdown occurs since the computation
of a determinant of an N-dimensional matrix requires the multiplication of N numbers by
the Leibniz formula (Hazewinkel, 1987). If the S matrix contains a small rounding error
then that error will propagate through the multiplication resulting in an arbitrarily large
determinant. Therefore calculating the S matrix in a double precision format such as in R
will not be accurate for large N.

In order to compute an accurate determinant of S, the rounding error in computing
elements of S should be controlled or eliminated. MATLAB has a symbolic math toolbox
with a symbolic data format that has the capability to store and compute numbers with
infinite precision (MATLAB, 2010). Therefore with symbolic computation of S in MATLAB
the rounding error can be eliminated and the determinant will be accurate. However there is
a memory computing cost involved with a symbolic framework such that for N larger than
800, the memory usage is overwhelmed in many computing environments.

To overcome the memory issue we note that .S is an upper Hessenberg matrix. That is, S

is 1 on the first subdiagonal and has zeroes for all entries below the first subdiagonal. That



is, S follows the form

S1.N-1
So.N-1
SsN—1

San-1

Si,n

Sa.N

S3,N

San

SN,N

(13)

We can transform S via elementary operations (see Chapter 4 in Healy (2000)) to a matrix

with a straightforward determinant. Firstly we zero-out the first row of S, Si., except for

a single non-zero element S}, by adding multiples of the other rows of S (see elementary

operations in Chapter 4 in Healy (2000)).

S;. =1[0,0,0,...,0,5%,] and S* is:

S*

So,N-1
Sy N-1

Sa,N-1

ST N
Sa.N
S3.n

SaN

SN.N

That is, let ST be the first row of S* given by

(14)

Note S* = S except for the first row. For example, the zero in ST, is obtained via 5. —

S11 X Sy.. Similarly we zero out the other elements S;.. Importantly, we only need 2 rows

in memory for each elementary operation thus greatly reducing the memory required in



MATLAB. Also, note since S* was obtained from S via elementary operations of adding a
multiple of one row to another row in S, det(S) = det(S*).
Second, we rearrange the columns of the S* matrix. Let S** be the matrix obtained after

permuting the first and last columns of S*. Therefore S** is given by

Son 1 Sao . San—2 San-a

Ssy 0 1 .. Szyn-o S3noa

S = (15)
San 0 0 .. Syn_o Szn_1
Syx 0 0 .. 0 1

Since permuting columns does not change the determinant we have

det(S) = det(S™) = det(5™) = ST v (16)

In the following section we perform a simulation to compare our exact approach with an

asymptotic approach presented in Donoho and Jin (2004).
5. Simulation
We perform a simulation to compare our proposed exact critical value based on Steck’s

determinant with an asymptotic critical value. The asymptotic approach for N — oo is

derived in Jaeschke (1979); Donoho and Jin (2004). In the asymptotic approach, the critical



value h(N, a) is given by

h(N,a) = by' (cn — loglog (L» : (17)

1 -«
with by = /2loglog(N) and ¢y = 2loglog(N) + (1/2)(logloglog(N) — log(4m)).

In our simulation for a fixed N and «, we compute the p-values for a range of HC statistics
via (16) with symbolic representation in MATLAB. Then we choose the statistic with a p-
value nearest to a as the a level critical value. We also compute the asymptotically derived
critical value in (17) and compare the exact and asymptotic critical values. As (17) is an
asymptotic result we expect that our exact method will be superior in terms of performance
with small to moderate N. Figure 1 confirms the asymptotic results are inaccurate for small
N but become more accurate as N and « increase. Further, the asymptotic critical values
are smaller than the exact critical values inflating the actual significance. Figure 1 also
includes the mean Monte Carlo (MC) estimates with 95% confidence bands based on 1000
MC resamplings. As expected, the MC estimates are in line with the exact method. Note
a single MC critical value estimate for a given N and « is obtained by repeatedly drawing
N observations from a uniform distribution on (0,1) to act as the p;, calculating HC}, for
each vector of p-values and then empirically determining the ath percentile of HCRs. The
95% confidence bands are obtained by repeating the MC procedure 1000 times and taking

the 5th and 95th percentiles.
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Figure 1: The plot of exact, asymptotic (Asymp) and Monte Carlo (MC) critical values for different choices
of N and . The shaded region provides the estimated 95% confidence intervals for the MC estimates.

6. Application

For an example of our approach we use data from Garcia-Arenzana et al. (2014) where
the authors tested associations of 25 dietary variables with mammographic density, a known
risk factor for breast cancer. The p-values for association of each dietary variable with
mammographic density are presented in Table 2.

For this example, HC* is 6.17 and the p-value via our exact approach is 0.028 indicating
higher criticism at level of 0.05. Note with N = 26 the asymptotic p-value is 0.0002, inflating
the actual significance. This study is further discussed in light of other multiple testing

concerns in McDonald (2009).
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Dietary variable p-value
Total calories 0.001
Olive oil 0.008

Whole milk 0.039
White meat 0.041
Proteins 0.042

Nuts 0.06

Cereals and pasta 0.074
White fish 0.205
Butter 0.212
Vegetables 0.216
Skimmed milk 0.222
Red meat 0.251

Fruit 0.269

Eggs 0.275

Blue fish 0.34
Legumes 0.341
Carbohydrates 0.384
Potatoes 0.569

Bread 0.594

Fats 0.696

Sweets 0.762

Dairy products 0.94
Semi-skimmed milk 0.942
Total meat 0.975
Processed meat 0.986

Table 1: The p-values for the breast cancer risk study in Garcia-Arenzana et al. (2014).
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7. Discussion

As noted earlier S is an (upper) Hessenberg matrix and from results in Kaygisiz and
Sahin (2012) there is a recursive formula to compute the determinant for Hessenberg matri-
ces. We plan to explore the computational advantage, if any, to using the recursive formula
to compute the determinant of S. From our simulations the approach of calculating the de-
terminant via (16) in MATLAB with symbolic representation works well for N < 1500 while
larger N will take substantial computation time. We note that for large NV the asymptotic
approximation in (17) works well. Also, underlying our method is the assumption that the
individual p-values for each test under the null are independent and identically distributed
as U(0, 1) random variables. We are currently investigating the robustness of our technique

to deviations from this assumption.

8. Conclusion

In this note we propose a simple straightforward novel method to compute the signifi-
cance of higher criticism useful in large scale inference. This avoids the need for asymptotic

approximations and works well for N up to 5000.
9. Appendix

Here we provide a proof to show I, < 41 forallk = 1,2, ..., agN where [, = C(k/N,b/N/?)
with b, N as positive constants. Showing that [ < I, is equivalent to showing that C'(z, €) is
a non-decreasing function of z when x € (0,1). Let D(x, €) = {z+[e?—e(e2+4(1—x)1)"/?]/2},

then C(z,€) = {z+[2 — e(2 +4(1 —2)2)?]/2} /(1 + €2) = D(x,¢)/(1+ €2). It is clear that
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if D(x,¢€) is a non-decreasing function of z, then C(x,¢) is a non-decreasing function of x.

We examine the first derivative of D(z,€):

R R (3
Setting % = 0 yields
e (41:(;_—222)1/2 =1 (19)
(€2 4 4z — 42°)/? = €(1 — 22) (19b)
€ +4r — 42 = (1 — 27)? (19¢)
€ +dr — 42* = € — dae® + 4P (19d)
r(1+e—2(1+€))=0 (19e)

Solving equation (19e), we have = 0 or 1. However, if we plug x = {0,1} into equation

(18), only = = 0 yields a partial derivative equal 0. Note = = 1 has aDa(;’E) =1+¢€/Ve2#0.
Therefore D(x,€) is a monotone function on the interval (0,400). To prove that D(z,¢€) is
an increasing function, one can simply evaluate the derivative at, say, z = 1/2 and observe

that the partial derivative is positive. Thus C(x,€) is an increasing function of = on the

interval (0, +o00) and so Iy < 41 for all k =1,2,..., ¢ N.
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