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Abstract

This article introduces testforDEP, a portmanteau R package containing sev-
eral tests and visualization tools to examine independence between two vari-
ables. This new package combines classical tests including Pearson’s product
moment correlation coefficient method, Kendall’s τ rank correlation coefficient
method and Spearman’s ρ rank correlation coefficient method with modern
tests consisting of density-based empirical likelihood ratio test, Kallenberg data-
driven test, Maximal information coefficient test, Hoeffding’s independence test,
empirical likelihood based test, and continuous analysis of variance test. For two
variables the function testforDEP provides an interface to those tests and re-
turns test statistics, corresponding p values, and bootstrap confidence intervals.
The function AUK provides an interface for Kendall plots and computes the area
under the Kendall curve. In this paper, we present the testforDEP package
and perform a power analysis via Monte-Carlo simulations ultimately conclud-
ing that classical tests are superior for simple linear dependence structures while
the more modern tests are more powerful for non-linear and random-types of
dependence.

Keywords:testing for independence, empirical likelihood ratio test, Kallen-
berg data-driven rank test, maximal information coefficient, Kendall plot

1 Introduction

In this article, we present the testforDEP package, a package for testing de-
pendence between two random variables in R. This package addresses a need
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for implementing both classical and modern tests of independence, as well as
visualization in easy to implement functions. The function cor.test offered in
the base R package R Core Team (2013) gives classical tests for association/-
correlation between two samples using the Pearson product moment correla-
tion coefficient (Pearson, 1920), Kendall τ rank correlation coefficient (Kendall,
1938) and Spearman ρ rank correlation coefficient (Spearman, 1904). The func-
tion cor.test is helpful to test for independence between two variables when
the variables are linearly dependent or monotonically associated. However the
function cor.test is less powerful to detect general structures of dependence
between two random variables, including non-linear and/or random-effect de-
pendence structures. Many modern statistical methodologies have been pro-
posed to detect general structure of dependence. These methods include the
density-based empirical likelihood ratio test for independence (Vexler et al.,
2014), data-driven rank test for independence (Kallenberg and Ledwina, 1999),
maximal information coefficient (Reshef et al., 2011), empirical likelihood based
test (Einmahl and McKeague, 2003), and continuous analysis of variance test
(Wang et al., 2015). These methods are useful to detect complex structures
of dependence and until now there were no R packages available to implement
these modern tests. Hence, we propose the new package testforDEP comb-
ing both classical and modern tests. The package testforDEP also provides
visualization tools such as the Kendall plot and area under the Kendall curve
(Vexler et al., 2015). Moreover, we develop an exact test based on the maximal
information coefficient to detect dependence between two random variable and
we perform a power analysis for these different tests.

The remainder of the article is as follows. Section 2 details the various ap-
proaches used to test for independence including the classical tests, modern tests
and area under Kendall plot. Section 3 outlines the components of the package
testforDEP and how to use the package testforDEP to detect dependence.
Section 4 provides power analysis for the different tests and Section 5 gives the
package availability. Section 6 offers an example analysis based on real data.
Finally, Section 7 provides a brief summary and future directions.

2 Tests for independence

Independence and dependence are key concepts related to many statistical pro-
cedures. We will focus on tests of bivariate independence of two random vari-
ablesX and Y for n subjects with observations (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn),
respectively. We are interested in testing whether X and Y are independent.
If X and Y have cumulative distribution functions FX(x) and FY (y) and prob-
ability density functions fX(x) and fY (y) we say X and Y are independent if
and only if the joint random variable (X,Y ) has a joint cumulative distribu-
tion function F (x, y) = FX(x)FY (y) or equivalently, if the joint density exists,
f(x, y) = fX(x)fY (y) for all x, y ∈ R. We are interested in testing the null
hypothesis:

H0 : X and Y are independent, (1)
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which, in most cases, is equivalent to

H0 : F (x, y) = FX(x)FY (y) for all x, y ∈ R. (2)

In the following subsections we outline the classical and modern tests for inde-
pendence.

2.1 Pearson product moment correlation coefficient

The Pearson product-moment correlation coefficient γ is a measure of linear cor-
relation (or dependence) between two random variables (Pearson, 1920; Hauke
and Kossowski, 2011) defined as:

γ =
cov(X,Y )

σ
X
σ
Y

, (3)

where, cov(X,Y ) is the covariance of X and Y , σ
X

is the standard deviation of
X, σ

Y
is the standard deviation of Y . Note, by definition, γ ∈ [−1, 1].

An estimator for γ, γ̂ is,

γ̂ =

∑n
i=1 (Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

, (4)

where X̄ and Ȳ are the sample means of the observed values X1, X2, . . . , Xn

and Y1, Y2, . . . , Yn, respectively.
Since γ = 0 implies linear independence, testing the null hypothesis in (1)

is equivalent to testing:
H0 : γ = 0. (5)

We use the statistic Tγ defined as:

Tγ = γ̂

√
n− 2

1− γ̂2
, (6)

where Tγ asymptotically follows a t distribution with n− 2 degrees of freedom
under null hypothesis in (5). Accordingly, a size α rejection rule is:

|Tγ̂ | > t1−α/2, (7)

where tα/2, is the α/2 quantile for t distribution with n− 2 degree of freedom.
Note that package testforDEP returns Tγ̂ as test statistic instead of γ̂.

2.2 Kendall rank correlation coefficient

The Kendall rank correlation coefficient τ was proposed in Kendall (1938) as
a nonparametric measure of monotonic association between two variables. In
cases of no ties in the variables X and Y , statistic τ can be defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

1
2n(n− 1)

, (8)
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where two pairs of data points (Xi, Yi) and (Xj , Yj) are concordant if and only
if {Xi > Xj , Yi > Yj} or {Xi < Xj , Yi < Yj}. Note (Xi, Yi) and (Xj , Yj)
are discordant if and only if {Xi > Xj , Yi < Yj} or {Xi < Xj , Yi > Yj}.
The range for τ is [−1, 1]. If X and Y are independent, τ is expected to be
approximately 0. When ties are present, the formula for τ is more complicated,
see (?).

The test statistic Zτ is:

Zτ =
3τ
√
n(n− 1)√

2(2n+ 5)
(9)

where Zτ approximately follows a standard normal distribution under null hy-
pothesis. A level α rejection rule for the null hypothesis is as follows:

|Zτ | > z1−α/2 (10)

where zα/2 is α/2 quantile for a standard normal distribution.
Note that package testforDEP returns Zτ as test statistic instead of τ .

2.3 Spearman rank correlation coefficient

Spearman’s rank correlation coefficient ρ proposed by Spearman (1904) is a
nonparametric measure of statistical dependence between two variables. Spear-
man’s rank correlation measures the monotonic association between two vari-
ables (Spearman, 1904; Hauke and Kossowski, 2011). The statistic ρ is defined
as:

ρ = 1−
6
∑n
i=1 di

2

n(n2 − 1)
, di = Ri − Si, (11)

where Ri,Si are the ranks of Xi and Yi, respectively. When ρ > 0 it suggests a
monotonically increasing association in data while ρ ¡ 0 represents a monoton-
ically decreasing association. To conduct a test for statistical independence we
use the test statistic Tρ defined as:

Tρ = ρ

√
n− 2

1− ρ2
, (12)

which is distributed approximately as a Student’s t distribution with n − 2
degrees of freedom under the null hypothesis. Accordingly, a level α rejection
rule is:

|Tρ| > t1−α/2. (13)

Note that package testforDEP returns Tρ as test statistic instead of ρ.

2.4 Density-based empirical likelihood ratio test for inde-
pendence

A density-based empirical likelihood ratio test was proposed in Vexler et al.
(2014) as a nonparametric test of dependence of two variables. The likelihood
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ratio λ(x) is the ratio of supremums of two likelihood functions defined as:

λ(x) =
sup{L(θ|x) : θ ∈ Θ}
sup{L(θ|x) : θ ∈ Θ0}

, x = (x1, . . . , xn), (14)

where Θ is the unrestricted parameter space, Θ0 is a subset of the Θ under
the null hypothesis, θ denotes a member of the parameter space and x is the
vector of observed values (X1, X2, . . . , Xn) with L(θ|x) being the value of the
likelihood function at a given x.

Empirical likelihood (EL) was introduced as nonparametric alternatives to
parametric likelihood methods. A thorough introduction to empirical likelihood
methods can be found in Owen (2001). The derivation of the empirical likelihood
ratio test for independence can be found in Vexler, Tsai, and Hutson (2014).
The general form likelihood ratio test statistic defined in (14) can be adapted
for testing independence as

λ(x, y) =
sup{L(θ|x, y) : θ ∈ Θ}
sup{L(θ|x, y) : θ ∈ Θ0}

=

n∏
i=1

fXY (Xi, Yi)

fX(Xi)fY (Yi)

=

n∏
i=1

fXY (Xt(i), Y(i))

fX(Xt(i))fY (Y(i))

=

n∏
i=1

fY |X(Y(i) | Xt(i))

fY (Y(i))
,

(15)

where Y(1) ≤ Y(2), . . . ,≤ Y(n) are the order statistics of Y1, Y2, . . . Yn and Xt(i) is
the concomitant of the ith order statistic defined in David and Nagaraja (1970).
Since in general the joint and marginal density functions in (15) are unknown,
our focus is on the nonparametric approximation to the likelihood function by
applying the density-based empirical likelihood methodology. Following Vexler
et al. (2014), to test the null hypothesis in (1) we use the test statistic V Tn
defined as:

V Tn = max
0.5nβ2≤m≤γn

max
0.5nβ2≤r≤γn

n∏
i=1

n∆̃i(m, r)

2m
, (16)

where γn = min(n0.9, n/2), 0.75 < β2 < 0.9 and ∆̃i(m, r) is defined as,

∆̃i(m, r) ≡
F̂ (X(si+r)

,Y(i+m))−F̂ (X(si−r),Y(i+m))−F̂ (X(si+r)
,Y(i−m))+F̂ (X(si−r),Y(i−m))+n

−β1

F̂X(X(si+r)
)−F̂X(X(si−r))

, (17)

where F̂ is the empirical joint distribution of (X,Y ), F̂X is the empirical
marginal distribution of X and si is the integer number such that X(s) = Xt(i),
β1 ∈ (0, 0.5).
The statistic V Tn reaches its maximum with respect to m ≥ 0.5nβ2 and r ≥
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0.5nβ2 at m = 0.5nβ2 and r = 0.5nβ2 (Vexler et al., 2014). Thus, we simplify
(16) to obtain

V Tn =

n∏
i=1

n1−β2∆̃i

(
[0.5nβ2 ], [0.5nβ2 ]

)
, (18)

where the function [x] denotes the nearest integer to x.
Accordingly, a size α rejection rule of the test is:

log(V Tn) > Cα, (19)

where Cα is an α-level test threshold. It is established in Vexler et al. (2014)
that V Tn is distribution free under (1) and the critical values Cα can be es-
timated by Monte Carlo simulations from X1, . . . , Xn ∼ Uniform[0, 1] and
Y1, . . . , Yn ∼ Uniform[0, 1]. Note that package testforDEP returns log(V Tn)
as test statistic.

2.5 Kallenberg data-driven test for independence

Kallenberg and Ledwina (1999) propose two data-driven rank tests for indepen-
dence based on statistics TS2 and V . The TS2 statistic is derived from the
intermediate statistic Tk where:

Tk =

k∑
j=1

{
1√
n

n∑
i=1

bj

(
Ri − 1

2

n

)
bj

(
Si − 1

2

n

)}2

, (20)

where bj denotes the jth orthonormal Legendre polynomial. The selection of
the order k in Tk is done by a modified Schwarz’s rule given by

S2 = min{1 ≤ k ≤ d(n), Tk − k log n ≥ Tj − j log n, j = 1, . . . , d(n)}, (21)

where d(n) is a sequence of numbers tending to infinity as n → ∞. The data-
driven smooth test statistic for testing the null hypothesis in (1) is,

TS2 =

S2∑
j=1

{
1√
n

n∑
i=1

bj

(
Ri − 1

2

n

)
bj

(
Si − 1

2

n

)}2

. (22)

It was found in Kallenberg and Ledwina (1999) that there is almost no change
in the critical value of TS2 for d(n) > 2. By default, we choose d(n) = 4. The
decision rule to reject the null hypothesis in (2) is

TS2 > Cα, (23)

where Cα is an α-level test threshold.
In Kallenberg and Ledwina (1999) the TS2 test statistic in (22) was called

the “diagonal” test statistic. The other test statistic, V was called the “mixed”
statistic due to the fact that it involves “mixed” products. To derive the V
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statistic, we only consider the case d(n) = 2 and have sets of indexes {(1, 1)}, {(1, 1), (i, j)},
where (i, j) 6= (1, 1). Let Λ be one of these sets and define

TΛ =
∑

(r,s)∈Λ

V (r, s), (24)

where

V (r, s) =

{
1√
n

n∑
i=1

br

(
Ri − 1

2

n

)
bs

(
Si − 1

2

n

)}2

. (25)

Letting |Λ| denote the cardinality of Λ, we now search for a model, say Λ(max),
for which TΛ − |Λ| log n is maximized. Having obtained Λ(max), the mixed
data-driven test statistic is

V = TΛ(max) . (26)

It can be easily seen that the test statistic V can be rewritten (for d(n) = 2) in
the simple form,

V =

 V (1, 1) , if max
{
V (1, 2), V (2, 1), V (2, 2)

}
< log n

V (1, 1) + max
{
V (1, 2), V (2, 1), V (2, 2)

}
, otherwise.

A size α rejection rule for the mixed test is

V > Cα, (27)

where Cα is a size α critical value. We note that Kallenberg and Ledwina
(1999) develop their test under the assumption that the observed samples are
distributed following a joint distribution function that belongs to the exponential
family. Thus while still technically distribution-free, this assumption may limit
the power of their tests for certain alternatives.

2.6 Maximal Information Coefficient

The maximal information coefficient (MIC) proposed in Reshef et al. (2011)
is a measure of the strength of the linear and non-linear association between
two variables X and Y . The maximal information coefficient uses binning as a
means to apply mutual information on continuous random variables. Defining
D as a finite set of ordered pairs, we can partition the x-values of D into x bins
and the y-values of D into y bins, allowing empty bins. We call such partition
an x-by-y grid, denoted G. For a fixed D, different grids G results in different
distributions D|G. The MIC of a set D of two-variable data with sample size n
and grid size less than B(n) is defined as:

MIC(D) = max
xy<B(n)

{M(D)x,y}, (28)

where x and y are observed values of variables X and Y , ω(1) < B(n) ≤
o(n1−ε) for some 0 < ε < 1 (see Reshef et al. (2011) for more details). Note
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M(D)x,y is called the characteristic matrix of a set D of two-variable data x, y
and defined as:

M(D)x,y =
I∗(D, x, y)

log min{x, y}
, (29)

where I∗(D, x, y) is defined as:

I∗(D, x, y) = max I(D|G), (30)

for a finite set D ⊂ R2 and positive integers x, y. We denote I(D|G) as the
mutual information of D|G, the expected values of the point-wise mutual in-
formation (PMI) and define the mutual information of two discrete random
variables X and Y as:

I(D|G) =
∑
y∈Y

∑
x∈X

F̂ (x, y) log

(
F̂ (x, y)

F̂X(x)F̂Y (y)

)
. (31)

The point-wise mutual information (PMI) is log
(

F̂ (x,y)

F̂X(x)F̂Y (y)

)
. The statistic

PMI is 0 when X and Y are independent. The statistic MIC is computed using
the R package minerva (see Filosi et al. (2014)). To our knowledge there is no
hypothesis test based on MIC for detecting the general structure of dependence.
We use an approach similar to the one in Simon and Tibshirani (2014) to develop
an exact test based on the MIC statistic. A size α MIC rejection rule is,

MIC(D) > Cα (32)

where Cα is a size α critical value.
To evaluate our approach, we simulate 5000 Monte Carlo sets of indepen-

dent random variables X and Y of size n from a standard normal distribution,
exponential distribution and reverse of the standard normal distribution. The
Cα cutoffs are in Table 1. Regardless of the data distribution the cutoff values
for a given sample size are very similar indicating that an Monte Carlo approach
to determine the cutoff is reasonable for several different types of dependence.

PPPPPPPPSig level
n

10 35 75 100

N — E — RN N — E — RN N — E — RN N — E — RN
0.01 0.61—0.61—0.61 0.50—0.52—0.50 0.38—0.37—0.38 0.33—0.33—0.33
0.05 0.61—0.61—0.61 0.43—0.43—0.43 0.33—0.33—0.33 0.30—0.30—0.30
0.1 0.61—0.61—0.61 0.41—0.40—0.41 0.31—0.31—0.31 0.28—0.28—0.28
0.5 0.24—0.24—0.24 0.31—0.30—0.31 0.25—0.25—0.25 0.23—0.24—0.23
0.75 0.24—0.24—0.24 0.27—0.26—0.27 0.23—0.23—0.23 0.21—0.21—0.21
0.9 0.12—0.12—0.12 0.24—0.23—0.24 0.21—0.21—0.21 0.20—0.20—0.20
0.95 0.12—0.12—0.12 0.23—0.22—0.23 0.20—0.20—0.20 0.19—0.19—0.19
0.99 0.11—0.11—0.11 0.20—0.20—0.20 0.18—0.18—0.18 0.17—0.17—0.17

Table 1: Cutoff values from 5000 Monte Carlo simulations for a normal distri-
bution (N), exponential distribution (E), and reverse normal distribution (RN).
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2.7 Hoeffding’s test for independence

Hoeffding’s test for dependence was proposed in Hoeffding (1948) as a test for
two random variables with continuous distribution functions (see also Harrell Jr
and Dupont (2006)). Hoeffding’s D is a nonparametric measure of the distance
between the joint distribution F (x, y) and the product of marginal distributions
FX(x)FY (y). The coefficient D is:

D(x, y) = F (x, y)− FX(x)FY (y). (33)

We then define ∆ as:

∆ = ∆(F ) =

∫
D2(x, y)dF (x, y). (34)

We let Ω′ be the class of (X,Y )’s where the joint density function F (x, y) is
continuous and we let Ω′′ be the class of (X,Y )’s where the joint and marginal
probability density functions are continuous. It has been shown that if F (x, y)
belongs to Ω′′, ∆(F ) = 0 ⇐⇒ D(x, y) = 0. The random variables X and Y
are independent if and only if D(x, y) = 0.

It can be shown (see Harrell Jr and Dupont (2006)) that D is such that

− 1

60
≤ D ≤ 1

30
, (35)

where larger value of D suggest dependence. An estimator of D, D̂ is defined
as:

D̂(x, y) = F̂ (x, y)− F̂X(x)F̂Y (y). (36)

To implement the Hoeffding test we use D̂ as test statistic and the R package
Hmisc developed by Harrell Jr and Dupont (2006).

Note the test statistic D̂′ returned by Hmisc is 30 times the original D̂ in
Hoeffding (1948). That makes D̂′ range from −0.5 to 1 with a size α test given
by:

D̂′ > Cα, (37)

where Cα is a size α critical value.
The manuscript for Hoeffding’s test was published in 1948. Due to the

limiting computing tools, the author only provided cutoff tables for small sample
sizes. With advanced computing power and algorithms, we compute the Cα
cutoffs for n = 10, 20, 50, 100, 200, 500. The results are shown in Table 2.

2.8 Empirical Likelihood based test for independence

Another empirical likelihood based test for independence was proposed by Ein-
mahl and McKeague (2003). It is a nonparametric test for two variables. The
main approach is localizing the empirical likelihood with one or more ’time’
variables implicit in the given null hypothesis and construct an omnibus test
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PPPPPPPPSig level
n

10 20 50 100 200 500

0.01 0.2976 0.1145 0.0377 0.0191 0.0086 0.0037
0.05 0.1548 0.0589 0.0209 0.0098 0.0045 0.0020
0.1 0.0952 0.0378 0.0131 0.0061 0.0028 0.0013
0.2 0.0437 0.0184 0.0060 0.0028 0.0011 0.0006
0.8 -0.0635 -0.0232 -0.0078 -0.0037 -0.0018 -0.0007
0.9 -0.0794 -0.0294 -0.0097 -0.0045 -0.0021 -0.0008

Table 2: Hoeffding cutoff values for D̂′ based on 5000 Monte Carlo simulations.

statistic by integrating the log-likelihood ratio over those variables. We out-
line the localization approach in Einmahl and McKeague (2003) where we first
consider a null hypothesis,

H0 : FX = F0, (38)

where F0 is a fully specified distribution function then we define the localized
empirical likelihood ratio R(x) as:

R(x) =
sup{L(F̃X) : F̃X(x) = F0(x)}

sup{L(F̃X)}
, (39)

where F̃ is an arbitrary distribution function, L(F̃X) =
∏n
i=1(F̃X(Xi)−F̃X(Xi−)).

The supremum in the denominator is achieved when F̃ = F̂ , the empirical dis-
tribution function. The supremum in the numerator is attained by putting
mass F0/(nF̂ (x)) on each observation up to and including x and mass (1 −
F0(x))/(n(1 − F̂ (x))) on each observation beyond x (Einmahl and McKeague,
2003). This gives the log localized empirical likelihood ratio:

logR(x) = nF (x) log
F0(x)

F̂ (x)
+ n(1− F̂ (x)) log

1− F0(x)

1− F̂ (x)
. (40)

Note that 0 log(a/0) is defined to be 0.
For a test of independence the local likelihood ratio test statistic is:

R(x, y) =
sup{L(F̃ ) : F̃ (x, y) = F̃X(x)F̃Y (y)}

sup{L(F̃ )}
, (41)

for (x, y) ∈ R2, with L(F̃ ) =
∏n
i=1 P̃ ({Xi}), where P̃ is the probability measure
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corresponding to F̃ . Log local likelihood ratio test statistic is then:

logR(x, y) =nP̂ (A11) log
F̂X(x)F̂Y (y)

P̂ (A11)
+

nP̂ (A12) log
F̂X(x)(1− F̂Y (y))

P̂ (A12)
+

nP̂ (A21) log
(1− F̂X(x))F̂Y (y)

P̂ (A21)
+

nP̂ (A22) log
(1− F̂X(x))(1− F̂Y (y))

P̂ (A22)
,

(42)

where P̂ is the empirical measure of joint probability, and

A11 = (−∞, x]× (−∞, y],

A12 = (−∞, x]× (y,∞),

A21 = (x,∞)× (−∞, y],

A22 = (x,∞)× (y,∞).

(43)

The test statistic Tel is defined as:

Tel = −2

∫ ∞
−∞

∫ ∞
−∞

logR(x, y)dF̂X(x)F̂Y (y). (44)

Tel is clearly distribution-free. We reject H0 in (1) when

Tel > Cα, (45)

where Cα is a size α critical value.

2.9 Kendall Plot and Area Under Kendall Plot

The Kendall plot, also called K-plot, is a visualization of dependence in a bi-
variate random sample. It was proposed in Genest and Boies (2012). Similar to
a Chi-plot which detects association in random samples from continuous bivari-
ate distributions, the K-plot adapts the concept of a probability plot to detect
dependence. K-plot deals with rank orders of samples thus, like a Chi-plot, it is
invariant to monotone transformations of the samples. The horizontal axis in a
K-plot Wi:n is the expectation of the ith order statistic in a random sample of
size n from the distribution K0 of the Hi under the null hypothesis in (1). Wi:n

can be computed as:

Wi:n = n

(
n− 1

i− 1

)∫ 1

0

w{K0(w)}i−1 × {1−K0(w)}n−idK0(w), (46)

for all 1 ≤ i ≤ n. Note K0 is given as:

K0(w) = w − w log(w), 0 ≤ w ≤ 1. (47)
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The vertical axis is the sorted Hi where Hi is:

Hi =
1

n− 1

n∑
i=1

Ind(X ≤ Xi, Y ≤ Yi), (48)

where Ind is the indicator function. Note that Hi is similar to F̂ (x, y). Let
0 ≤ p ≤ 1, p ∈ R and note some properties of K-plot are:

1. When Y = X, all points fall on curve K−1(p),

2. When Y = −X, all points fall on a line with slope= 0,

3. When X and Y are independent, the graph is linear.

The area under the Kendall plot (AUK) is proposed in Vexler et al. (2015)
as an index to evaluate Kendall plots. It applies area-under-curve analysis and
computes the area under the Kendall plot as a measure of independence. Some
properties of AUK are listed below:

1. When Y = X, AUK = 0.75,

2. When Y = −X, AUK = 0,

3. When X and Y are independent, AUK = 0.

where (2) and (3) taken together shows that AUK = 0 does not imply indepen-
dence.

3 What is the package testforDEP

The R Package testforDEP includes the functions testforDEP() and AUK(),
one data frame LSAT, and implements the procedures described in Section 2.

3.1 testforDEP

The function testforDEP() is the interface that implements each of the fol-
lowing tests: Pearson test, Kendall test, Spearman test, density-based empiri-
cal likelihood ratio test (log(V Tn)), Kallenberg data-driven test (TS2, and V ),
maximal information coefficient test (MIC), Hoeffding’s test, and empirical like-
lihood based test (Tel). The function testforDEP() takes two vectors X, Y as
input and returns an S4 object of class testforDEP_result which contains:

1. test statistic,

2. p-value,

3. bootstrap confidence intervals.

Interface of testforDEP() is:

12



testforDEP(x, y, data, test = c( "PEARSON", "KENDALL", "SPEARMAN,

"VEXLER", "TS2", "V", "MIC", "HOEFFD", "EL", "CANOVA"),

p.opt = c("dist", "MC", "table"), num.MC = 10000,

BS.CI = 0, rm.na = FALSE, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. The input
data is an alternative that takes a data frame with two columns representing
X and Y . When x or y are not provided the parameter data is taken as in-
put. The parameter test specifies the hypothesis test to implement. Note
that "VEXLER" refers to log(V Tn) test, "HOEFFD" refers to Hoeffding’s test,
"EL" refers to Tel test. The parameter p.opt is the option for computing
p-values in which p-values can be computed from the (asymptotic) null dis-
tribution of the test statistic (applicable for Pearson, Kendall, and Spearman
only) or by an exact Monte Carlo (MC) method (applicable for all tests), or
by pre stored MC simulated tables derived by the exact method. By default,
p.opt = "MC". Parameter num.MC gives the Monte Carlo simulation number
and will only be taken when p.opt = "MC". When p.opt = "dist" or p.opt

= "table", num.MC will be ignored. To balance accuracy and computation time
num.MC must ∈ [100, 10000] with num.MC = 10000 as default. Parameter BS.CI
specifies α for an α bootstrap confidence intervals. The normal, percentile, and
pivotal bootstrap intervals are produced except when BS.CI = 0 then confi-
dence intervals will not be computed. Parameter rm.na is a flag for removing
rows with missing data. Parameter set.seed is a flag for setting seed.

3.2 AUK

The function AUK() is the interface for Kendall plots and AUK. It takes two
vectors X, Y and returns a list containing:

1. AUK,

2. Wi:n,

3. sorted Hi,

4. bootstrap confidence intervals.

The interface of AUK() is:

AUK(x, y, plot = FALSE, main = "Kendall plot", Auxiliary.line = TRUE,

BS.CI = 0, set.seed = FALSE)

where x and y are two equal-length numeric vectors of input data. The parame-
ter plot is a flag for drawing Kendall plot. Parameter main determines the title
of the plot. If plot = FALSE, main will be ignored. Parameter Auxiliary.lie
is a flag for auxiliary line. Parameter BS.CI specifies α for α bootstrap con-
fidence intervals, e.g. α = 0.95 will produce a 95 percent confidence inter-
val. When BS.CI = 0, confidence intervals will not be computed. Parameter
set.seed is a flag for setting seed.

13



3.3 LSAT

The data frame LSAT contains the data analysis example. See Section 6 for
details.

4 Power Analysis

We conduct a simulation study to evaluate the power for the tests in test-
forDEP package. We simulate data under various alternative hypotheses of
dependence. Simulations are divided into 3 groups: group 1: non-linear corre-
lation; group 2: linear correlation; and group 3: other bivariate distributions
including Pearson Type VII, Morgenstern, Plackett and Cauchy distribution.
Both group 1 and group 2 include random-effect models. Table 3 shows details
of the designs. For each design, test, and sample size, a simulation of 5000 MCs
is performed to estimate the power. Table 4 shows our results.

Alternative
Designs Model Description

Xi, i = 1...n Yi, i = 1...n

Group 1
Design 1.1 N(0, 1) 1+0.2*Xi + 0.8 ∗Xi

2 + εi
Design 1.2 N(0, 1) 0.5+0.1*Xi +Xi

2 + γi ∗Xi + εi
Design 1.3 N(0, 1) log(1 + |Xi|)

(non-linear)
Design 1.4 N(0, 1) log(1 + |Xi|) ∗ γi
Design 1.5 N(0, 1) 2+0.1*εi/Xi

Design 1.6 N(0, 1) 1/Xi

Design 1.7 N(0, 1) 1/X2
i

Group 2
Design 2.1 Lognormal(0, 1) 1+γi ∗Xi, γi ∼ N(0, 1)
Design 2.2 Lognormal(0, 1) 1+4 ∗ γi ∗Xi + 0.1 ∗Xi + εi, γi, εi ∼ N(0, 1)
Design 2.3 N(0, 1) 2+0.1*Xi + εi, εi ∼ N(0, 1)

(linear)

Design 2.4 U(0, 1) 2+0.5*Xi + εi, εi ∼ N(0, 1)
Design 2.5 U(0, 1) 2+0.5*Xi + εi + γi ∗Xi, εi ∼ N(0, 1), γi ∼ N(0, 22)
Design 2.6 U(0, 1) 2+Xi + εi, εi ∼ N(0, 1)
Design 2.7 U(0, 1) 2+Xi + εi + γi ∗Xi, εi ∼ N(0, 1), γi ∼ N(0, 22)

Group 3
Design 3.1 Morgenstern(α = 1) Johnson (1987),pp.180-190
Design 3.2 Plackett(ψ = 3.5) Johnson (1987) ,pp.191-197

(bivariate)
Design 3.3 Pearson Type VII Johnson (1987),pp.117-121
Design 3.4 The multivariate Cauchy distribution Johnson (1987),pp.44

Table 3: Distributions of X and Y in each design.

Tests Design 1.1 Design 1.2
Sample size (n) Sample size (n)

20 25 30 35 50 70 20 25 30 35 50 70
Pearson 0.25 0.29 0.29 0.3 0.33 0.36 0.24 0.28 0.28 0.29 0.28 0.3
Kendall 0.13 0.15 0.15 0.17 0.18 0.23 0.1 0.13 0.12 0.14 0.12 0.14
Spearman 0.13 0.13 0.14 0.15 0.17 0.20 0.10 0.10 0.10 0.12 0.10 0.12
log(V Tn) 0.35 0.47 0.57 0.68 0.84 0.96 0.35 0.46 0.56 0.67 0.84 0.96
TS2 0.13 0.16 0.19 0.23 0.35 0.56 0.16 0.21 0.25 0.32 0.51 0.74
V 0.6 0.74 0.84 0.91 0.98 1 0.54 0.66 0.77 0.85 0.97 0.99
MIC 0.25 0.34 0.39 0.42 0.64 0.78 0.23 0.29 0.34 0.35 0.53 0.65
Hoeffding 0.21 0.29 0.36 0.45 0.67 0.89 0.18 0.25 0.28 0.36 0.54 0.78
Tel 0.26 0.41 0.52 0.67 0.87 0.99 0.21 0.31 0.41 0.55 0.76 0.93
Tests Design 1.3 Design 1.4
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Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.19 0.19 0.19 0.19 0.18 0.19 0.19 0.19 0.2 0.19 0.19 0.21
Kendall 0.21 0.24 0.22 0.25 0.23 0.25 0.13 0.13 0.12 0.13 0.13 0.14
Spearman 0.14 0.14 0.13 0.15 0.13 0.14 0.10 0.10 0.10 0.10 0.10 0.10
log(V Tn) 1 1 1 1 1 1 0.32 0.41 0.54 0.66 0.86 0.97
TS2 0.18 0.19 0.21 0.21 0.26 0.41 0.41 0.56 0.69 0.79 0.94 0.99
V 1 1 1 1 1 1 0.42 0.55 0.65 0.75 0.92 0.99
MIC 1 1 1 1 1 1 0.09 0.09 0.11 0.11 0.12 0.15
Hoeffding 1 1 1 1 1 1 0.12 0.13 0.14 0.14 0.18 0.22
Tel 1 1 1 1 1 1 0.11 0.12 0.14 0.15 0.18 0.26
Tests Design 1.5 Design 1.6

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.0
Kendall 0 0 0 0 0 0 0.01 0 0.01 0 0 0
Spearman 0.01 0.01 0.01 0.01 0.01 0.01 0.74 0.77 0.90 0.96 1 1
log(V Tn) 0.14 0.12 0.24 0.38 0.76 0.93 1 1 1 1 1 1
TS2 0.42 0.66 0.82 0.91 0.99 1 0.89 0.96 0.96 0.99 1 1
V 0.4 0.61 0.78 0.89 0.99 1 1 1 1 1 1 1
MIC 0.11 0.13 0.13 0.14 0.18 0.29 1 1 1 1 1 1
Hoeffding 0.03 0.04 0.05 0.06 0.11 0.31 0.26 0.69 1 1 1 1
Tel 0.03 0.03 0.05 0.08 0.17 0.56 1 1 1 1 1 1
Tests Design 1.7 Design 2.1

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0 0 0 0 0 0 0.45 0.48 0.5 0.51 0.54 0.56
Kendall 0.21 0.24 0.22 0.25 0.23 0.25 0.09 0.1 0.1 0.11 0.1 0.1
Spearman 0.14 0.14 0.13 0.15 0.13 0.14 0.08 0.09 0.10 0.10 0.09 0.09
log(V Tn) 1 1 1 1 1 1 0.51 0.64 0.77 0.86 0.97 1
TS2 0.18 0.19 0.21 0.21 0.26 0.41 0.06 0.05 0.07 0.06 0.07 0.07
V 1 1 1 1 1 1 0.78 0.89 0.96 0.99 1 1
MIC 1 1 1 1 1 1 0.45 0.59 0.68 0.72 0.9 0.98
Hoeffding 1 1 1 1 1 1 0.3 0.46 0.6 0.73 0.94 1
Tel 1 1 1 1 1 1 0.33 0.55 0.73 0.88 0.99 1
Tests Design 2.2 Design 2.3

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.46 0.47 0.5 0.51 0.54 0.57 0.07 0.07 0.09 0.09 0.1 0.13
Kendall 0.09 0.1 0.1 0.11 0.1 0.1 0.07 0.07 0.07 0.08 0.09 0.12
Spearman 0.09 0.09 0.09 0.10 0.09 0.09 0.07 0.07 0.08 0.08 0.10 0.13
log(V Tn) 0.44 0.57 0.69 0.79 0.93 0.99 0.05 0.06 0.06 0.06 0.06 0.07
TS2 0.06 0.06 0.07 0.08 0.09 0.11 0.06 0.06 0.06 0.06 0.08 0.09
V 0.71 0.85 0.93 0.98 1 1 0.06 0.06 0.06 0.06 0.07 0.08
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MIC 0.39 0.52 0.59 0.64 0.85 0.95 0.05 0.06 0.06 0.07 0.06 0.06
Hoeffding 0.25 0.37 0.48 0.62 0.86 0.98 0.06 0.06 0.07 0.07 0.09 0.11
Tel 0.29 0.47 0.65 0.81 0.96 1 0.06 0.06 0.07 0.08 0.09 0.11
Tests Design 2.4 Design 2.5

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.09 0.1 0.12 0.13 0.17 0.22 0.08 0.09 0.08 0.09 0.09 0.1
Kendall 0.08 0.1 0.11 0.13 0.14 0.21 0.06 0.08 0.07 0.08 0.08 0.08
Spearman 0.09 0.11 0.12 0.13 0.16 0.21 0.07 0.08 0.07 0.08 0.08 0.09
log(V Tn) 0.06 0.07 0.08 0.09 0.09 0.11 0.17 0.21 0.28 0.35 0.49 0.69
TS2 0.07 0.07 0.08 0.09 0.1 0.14 0.05 0.05 0.05 0.06 0.06 0.06
V 0.07 0.06 0.07 0.08 0.1 0.12 0.25 0.35 0.47 0.57 0.8 0.94
MIC 0.06 0.06 0.07 0.07 0.08 0.07 0.17 0.22 0.23 0.26 0.4 0.51
Hoeffding 0.08 0.09 0.1 0.12 0.14 0.19 0.11 0.14 0.16 0.21 0.32 0.55
Tel 0.08 0.09 0.11 0.13 0.14 0.19 0.11 0.16 0.22 0.3 0.47 0.76
Tests Design 2.6 Design 2.7

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.22 0.27 0.34 0.38 0.51 0.66 0.1 0.12 0.12 0.13 0.14 0.19
Kendall 0.19 0.26 0.29 0.35 0.46 0.62 0.08 0.1 0.1 0.12 0.13 0.17
Spearman 0.21 0.26 0.31 0.36 0.47 0.63 0.09 0.11 0.11 0.12 0.13 0.17
log(V Tn) 0.11 0.15 0.17 0.22 0.24 0.35 0.18 0.23 0.29 0.38 0.52 0.73
TS2 0.11 0.15 0.18 0.22 0.33 0.49 0.05 0.06 0.07 0.07 0.09 0.1
V 0.12 0.15 0.17 0.2 0.3 0.42 0.26 0.36 0.48 0.58 0.8 0.94
MIC 0.09 0.12 0.13 0.15 0.16 0.21 0.17 0.23 0.25 0.27 0.42 0.53
Hoeffding 0.17 0.22 0.27 0.31 0.42 0.57 0.13 0.17 0.2 0.26 0.39 0.62
Tel 0.19 0.24 0.29 0.35 0.45 0.6 0.13 0.19 0.25 0.34 0.53 0.8
Tests Design 3.1 Design 3.2

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.3 0.38 0.46 0.52 0.69 0.83 0.42 0.52 0.61 0.68 0.82 0.93
Kendall 0.25 0.34 0.39 0.49 0.64 0.81 0.39 0.5 0.57 0.67 0.81 0.93
Spearman 0.28 0.37 0.43 0.50 0.66 0.82 0.40 0.50 0.58 0.66 0.81 0.93
log(V Tn) 0.15 0.21 0.24 0.3 0.37 0.5 0.24 0.35 0.4 0.47 0.59 0.75
TS2 0.13 0.19 0.24 0.32 0.48 0.7 0.24 0.32 0.41 0.5 0.7 0.86
V 0.14 0.19 0.23 0.28 0.44 0.6 0.25 0.32 0.39 0.47 0.65 0.81
MIC 0.13 0.17 0.19 0.22 0.27 0.33 0.17 0.24 0.28 0.33 0.38 0.48
Hoeffding 0.23 0.31 0.36 0.44 0.6 0.77 0.35 0.45 0.53 0.62 0.79 0.91
Tel 0.26 0.34 0.41 0.49 0.63 0.8 0.38 0.47 0.56 0.65 0.78 0.91
Tests Design 3.3 Design 3.4

Sample size (n) Sample size (n)
20 25 30 35 50 70 20 25 30 35 50 70

Pearson 0.74 0.76 0.78 0.81 0.84 0.87 0.59 0.62 0.64 0.68 0.7 0.76
Kendall 0.77 0.88 0.93 0.97 0.99 1 0.12 0.13 0.12 0.13 0.14 0.14
Spearman 0.69 0.81 0.87 0.92 0.98 1.00 0.10 0.10 0.10 0.10 0.11 0.11
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log(V Tn) 0.8 0.92 0.97 0.99 1 1 0.23 0.3 0.37 0.47 0.62 0.8
TS2 0.83 0.93 0.98 0.99 1 1 0.43 0.57 0.69 0.79 0.93 0.99
V 0.84 0.93 0.98 0.99 1 1 0.44 0.55 0.67 0.77 0.91 0.98
MIC 0.4 0.56 0.67 0.7 0.83 0.94 0.06 0.06 0.06 0.07 0.06 0.06
Hoeffding 0.78 0.89 0.95 0.98 1 1 0.1 0.11 0.11 0.11 0.14 0.16
Tel 0.72 0.83 0.91 0.95 0.99 1 0.12 0.13 0.14 0.16 0.18 0.25

Table 4: The estimated power for the tests in the package test-
forDEP based on 5000 Monte-Carlo simulations.

In group 1, in general, the Kallenberg tests (V and TS2 test) have the
largest power. As the designs in group 1 are nonlinear, the poor power for
the classical tests (Pearson, Spearman, and Kendall) is not surprising. As is
well-known, the Pearson product moment correlation coefficient, γ is a measure
of the strength of linear relationship between two random variables (Pearson,
1920). The Spearman rank correlation coefficient, ρ is a measure of monotonic
association between two random variables (Spearman, 1904; Hauke and Kos-
sowski, 2011). The Kendall rank correlation coefficient, τ measures dependence
based on monotonic functions (Wang et al., 2015). These classical tests are not
suitable for detecting non-monotonic dependence between two variables. The
Tel test, Hoeffding test, and MIC test have good performance in designs 1.1-1.3
but poor performance in designs 1.4-1.5. This indicates that those tests per-
form well for fixed coefficient of x but often fail to detect dependence for random
coefficients of x.

In group 2, we can divide the designs into two sub-groups one containing
random coefficients on x: designs 2.1, 2.2, 2.5, and 2.7 and those containing
fixed x coefficients: designs 2.3, 2.4 and 2.6. For designs with fixed x coefficients
the classical methods are more powerful then others. Note in designs 2.3, 2.4
that when the x coefficient increased from 0.1 to 0.5, the classical tests have
a larger increase in power than modern tests. For designs with random X
coefficients, the results are similar to that in group 1, non-linear designs, where
the Kallenberg V test outperforms the others.

Group 3 consists of different bivariate distributions as alternatives to inde-
pendence. In designs 3.1 and 3.2, the classical tests tend to have the highest
power. In designs 3.3 and 3.4, the Kallenberg tests V and TS2 dominate all
others.

Based on our simulations, we conclude the classical tests are the most pow-
erful in detecting linear or monotonic relationships while log(V Tn) test and
V test are more powerful when non-linearity or random effects are involved.
The Hoeffding’s test and Tel test have intermediate power under most of the
situations.
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5 Availability

The testforDEP package is available from the Comprehensive R Archive Net-
work at

https://cran.r-project.org/web/packages/testforDEP/index.html

and is also available for download at the author’s department webpage:
https://sphhp.buffalo.edu/content/dam/sphhp/biostatistics/Documents/

techreports/testforDEP_0.2.0.tar.gz

with a technical report available at
https://sphhp.buffalo.edu/content/dam/sphhp/biostatistics/Documents/

techreports/UB-Biostatistics-TR1701.pdf

6 Data Analysis Example

In this section we present a data analysis example to demonstrate the practical
use for testforDEP. The data we use is average law school admission test
(LSAT) and grade point average (GPA) from 82 law schools (details described
in Efron and Tibshirani (1994)). The aim is to assess the dependence between
LSAT and GPA using our package. Table 5 shows the data and a scatter plot
of GPA and LSAT is shown in Figure 1.

Figure 1 suggests a linear relationship between LSAT and GPA. To confirm
this, we further draw Kendall plot and compute AUK. Kendall plot is shown in
Figure 2. It shows a curve above the diagonal and AUK is 0.665, which is close
to 0.75. This is consistent to a potential positive correlation between LSAT and
GPA.

Now consider the dependence tests provided in package testforDEP. Table
6 shows test results: test statistics and p-values. Obviously, all tests, classical
and modern, suggest dependence between LSAT and GPA. We conclude that
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School LSAT GPA School LSAT GPA School LSAT GPA
1 622 3.23 28 632 3.29 56 641 3.28
2 542 2.83 29 587 3.16 57 512 3.01
3 579 3.24 30 581 3.17 58 631 3.21
4 653 3.12 31 605 3.13 59 597 3.32
5 606 3.09 32 704 3.36 60 621 3.24
6 576 3.39 33 477 2.57 61 617 3.03
7 620 3.10 34 591 3.02 62 637 3.33
8 615 3.40 35 578 3.03 63 572 3.08
9 553 2.97 36 572 2.88 64 610 3.13
10 607 2.91 37 615 3.37 65 562 3.01
11 558 3.11 38 606 3.20 66 635 3.30
12 596 3.24 39 603 3.23 67 614 3.15
13 635 3.30 40 535 2.98 68 546 2.82
14 581 3.22 41 595 3.11 69 598 3.20
15 661 3.43 42 575 2.92 70 666 3.44
16 547 2.91 43 573 2.85 71 570 3.01
17 599 3.23 44 644 3.38 72 570 2.92
18 646 3.47 45 545 2.76 73 605 3.45
19 622 3.15 46 645 3.27 74 565 3.15
20 611 3.33 47 651 3.36 75 686 3.50
21 546 2.99 48 562 3.19 76 608 3.16
22 614 3.19 49 609 3.17 77 595 3.19
23 628 3.03 50 555 3.00 78 590 3.15
24 575c 3.01 51 586 3.11 79 558 2.81
25 662 3.39 52 580 3.07 80 611 3.16
26 627 3.41 53 594 2.96 81 564 3.02
27 608 3.04 54 594 3.05 82 575 2.74

55 560 2.93

Table 5: LSAT data from Efron and Tibshirani (1994).
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> library(testforDEP)

> lsat = testforDEP::LSAT$LSAT

> gpa = testforDEP::LSAT$GPA

> plot(x = gpa, y = lsat, xlab = "GPA", ylab = "LSAT")

> abline(lm(lsat~gpa))

2.6 2.8 3.0 3.2 3.4

50
0

55
0

60
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70
0
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LS
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Figure 1: Scatter plot based on data in Table 5.
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> library(testforDEP)

> lsat = testforDEP::LSAT$LSAT

> gpa = testforDEP::LSAT$GPA

> result = testforDEP::AUK(lsat, gpa, plot = TRUE, set.seed = TRUE)

> result$AUK
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kendall plot

W1:n

H

x
xxxxx

xx
x
xxxx

xx
x
x
x
x
xx

x
xx

x
x
x
xx

x
x
xxxx

xxx
xxx

x
x
x
x

x
x
xx

xx
xx

xx x x x
x

x x

x x
x

x x
x

x x x
x x

x
x

x x
x

x
x

x
x

x

Figure 2: Kendall plot of LSAT and GPA.
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LSAT and GPA are dependent.

> library(testforDEP)

> library(xtable)

> lsat = testforDEP::LSAT$LSAT

> gpa = testforDEP::LSAT$GPA

> #test if there’s tie

> if(length(lsat) != length(unique(lsat)) || length(gpa) != length(unique(gpa)))

> print("tie detected in data!")

> #compute test statistics and p-values using methods in "testforDEP" package

> #Since tie is detected in data, Spearman test will not be taken.

> tests = c("PEARSON", "KENDALL", "VEXLER",

+ "TS2", "V", "MIC", "HOEFFD", "EL")

> testNames = list("Pearson", "Kendall", "$\\log(VT_n)$",

+ "$TS_2$", "$V$", "MIC", "Hoeffding",

+ "$T_{el}$")

> result = list()

> for(i in 1:length(tests))

+ result[[i]] = testforDEP(lsat, gpa, test = tests[i], p.opt = "MC", set.seed = T)

> #write results into table

> table = matrix(0, nrow = length(tests), ncol = 3)

> for(i in 1:length(tests)){

+ table[i,1] = testNames[[i]]

+ table[i,2] = round(result[[i]]@TS, digits = 3)

+ p.val = result[[i]]@p_value

+ table[i,3] = ifelse(p.val == 0, "< .0001", p.val)

+ }

> colnames(table) = c("test", "statistic", "p-value")

> xtab = xtable(table, caption = "Test results based on the LSAT data.",

+ label = "Table:Example")

> print(xtab, include.rownames = FALSE, sanitize.text.function=identity)

test statistic p-value
Pearson 10.459 <.0001
Kendall 7.464 <.0001
log(V Tn) 65.698 <.0001
TS2 80.762 <.0001
V 69.038 <.0001
MIC 0.534 <.0001
Hoeffding 0.222 <.0001
Tel 13.641 <.0001

Table 6: Test results based on the LSAT data.
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7 Conclusions

The package testforDEP provides a new test and a convenient way to detect
general structure of dependence. This new package is not only useful to analyze
monotonically associated data and complex structures of non-linear or random-
type independence, but also to visualize dependence. Moreover, a novel exact
method based on the MIC measurement have been proposed in the package test-
forDEP. Future work is necessary to further develop a formal testing structure
based on the MIC statistic. The Monte-Carlo simulation study shows the mod-
ern tests are more powerful to detect the non-linear structure while the classical
tests are more powerful to test the structure of linear dependence. We believe
that the package testforDEP will help investigators identify dependence using
a cadre of tests designed to detect dependency.
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