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Abstract

It is often of scientific interest to find a set of genes that may represent an independent functional
module or network, such as a functional gene expression module causing a biological response, a tran-
scription regulatory network, or a constellation of mutations jointly causing a disease. In this paper
we are specifically interested in identifying modules that control a particular outcome variable such as
a disease biomarker. We discuss the statistical properties that functional networks should possess and
introduce the concept of network consistency which should be satisfied by real functional networks of co-
operating genes, and directly use the concept in the pathway discovery method we present. Our method
gives superior performance for all but the simplest functional networks.
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1 Introduction and objectives

It is often of scientific interest to find a set of genes that may represent an independent functional biological
module or network, such as a functional gene expression module causing a biological response, a transcription
regulatory network, or a constellation of mutations jointly causing a disease. This is in keeping with the
modularity concept, where a module is a part of an organism that is integrated with respect to a certain kind
of process and relatively autonomous with respects to other parts of the organism. The modularity concept
has gained popularity more-or-less simultaneously in molecular biology and systems biology, developmental
biology and evolutionary biology, and cognitive psychology (Wagner, Pavlicev, and Cheverud, 2007). The
coordinated action of such sets of variables implies that the expressions or states of the module variables
will be correlated. In addition, since the variables we are interested in are functional, their expression will
correlate with the outcome variable y being studied. The identification of such modules can further the
understanding of complex cellular mechanisms. In this article we will use the terms module, network and
pathway interchangeably to refer to the same general concept. Although our discussion pertains to a variety
of network element types, for definiteness of discussion we usually refer to the variables as genes.

An additional motivation for modeling pathways is that the power to detect important genes may be
improved if the genes belong to the same module. In low signal-to-noise situations genes which are uniden-
tifiable when evaluated individually may be discovered in a search for functional modules. The genes in a
functional module may be identified by exploiting their mutual correlation and be seen as relevant in the
context of a pathway or module.

We present three relevant properties a functional module should possess. The first two are the association
of the module genes with each other, and the relationship of the module with the outcome variable. The
third property is functional consistency, which relates the first two properties to more accurately describe
real functional networks. We directly use this concept in the pathway discovery method we present. Previous
approaches to pathway discovery that we discuss in this paper employ the first two properties in a sequential
fashion, and do not address the third. The novel method of this paper introduces a method for identify-
ing functional modules where co-expression and association with outcome are considered simultaneously,
constrained by the consistency property.

We contrast our approach with two-step functional module-discovery approaches that incorporate infor-
mation about co-expression (modularity) in one step and introduce gene-outcome association (functionality)
information in a separate step. An example of a two-step method is the strategy of cluster analysis (modu-
larity) followed by evaluating the identified clusters for the average correlation of the cluster members with
the outcome variable (functionality). The functional information captured by the individual gene-outcome
associations is not incorporated in the search for clusters at the first step. Much applied genomic analysis
includes cluster analysis with subsequent study of the clusters. The basic approach can be implemented in
a variety of ways by varying the similarity metric and the clustering method used, and has been extended
and highly developed in Zhang and Horvath (2005) as part of a broad approach to network analysis they
term Weighted Network Analysis (WNA).

In related work with a different objective, supervised principal components (SPC), (Bair, Hastie, Paul,
and Tibshirani, 2006) finds components composed of genes which are predictive of outcome. In the first
step SPC selects a set genes highly associated with outcome. Then principal components are computed for
just those genes and the components are used for prediction. The number of selected genes is tuned using
cross-validation to minimize the estimated out-of-sample prediction error using the principal component of
the selected genes as the predictor. The components extracted by SPC are intended for prediction and not
module identification. However in the specific case that a single functional module influences the outcome,
the genes selected would include the module genes and the principal component would load on the module
genes which are mutually correlated, so it is natural to consider the use of SPC for functional module
discovery. In that case, SPC would be an example of a two-step method which considers association with
outcome in the first step and then co-expression in step two, the reverse order to the clustering approach.

Specifically in Section 2 we propose and justify a statistical model for functional gene networks. In
Section 3 we propose methods to estimate the model and partition the eigenvalues. In Section 4 we discuss
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bagging techniques to improve the model estimation. In Section 5 we demonstrate our method and compare
it with other methods via several simulations. In Section 6 we apply our methods to a simulated E. coli and
S. cerevisiae datasets and an actual breast cancer dataset. We conclude the manuscript with a discussion
and conclusion in Section 7.

2 Statistical model

2.1 Modularity

To represent modularity, we statistically represent gene co-expression by the correlation matrix of the gene
expressions, and assume that there are groups of genes that are correlated among themselves while being
uncorrelated with the other groups. Modularity implies a block structure for the appropriately ordered
correlation matrix Σ. Note ordering here refers to the genes being collected or grouped into their associated
pathways.

Let the vector x = (x1, x2, . . . , xN ) be gene expression variables which are measured independently on n
individuals and let the data matrix be the n×N matrix X, so each row is the gene expression measurements
for an individual (i.e. a gene expression array, xT ). The form for the correlation matrix Σ is given by,

Σ =


Σ11 0 0 · · · 0 0
0 Σ22 0 · · · 0 0
:
:

:
:

:
: · · · :

:

0 0 · · · Σm−1,m−1 0 0
0 0 · · · 0 Σmm 0
0 0 · · · 0 0 ∆

 , (1)

where Σjj is a nj × nj within pathway correlation matrix, ∆ is a d× d diagonal correlation matrix for a set
D of independent genes which do not form modules, and ∆ +

∑m
j=1 nj = N .

We assume that a within cluster correlation matrix Σjj arises from an independent module which can
represent a biological pathway. A common simple pathway model is the single input module (SIM). We will
use this model to depict common network properties and to construct simulation experiments.

2.1.1 Example: SIMs or Hub models

A SIM (Single Input Module) consists of a set genes that are controlled by a single transcription factor (Milo,
Shen-Orr, Itzkovitz, Kashtan, Chklovskii, and Alon, 2002). There is considerable experimental evidence that
SIMs occur frequently (Lee, Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson,
Simon et al., 2002, Milo et al., 2002). For example, consider a SIM represented by the linear model for gene
expression

xi = πiβx0 + εi, i = 1, . . . , t (2)

x0 = ε0 (3)

where β > 0, πi ∈ {−1, 1} and the εi, i = 0, 1, . . . , t are independent errors with mean 0 and variance
σ2
ε . In this framework the network consists of t + 1 genes, however, we often assume that the x0 gene is

latent or unobserved. The covariance of all pairs of genes in this system is nonzero. The covariation among
the t observed module genes is driven by the latent unobserved hub x0. The covariance of two observed
(non-hub) module genes xi and xj denoted cov(xi, xj) is πiπjβ

2σ2
ε , and the covariance of xi with the hub x0

is cov(xi, x0) = πiβσ
2
ε . The non-hub variances are σ2

ε(1 + β2) and the correlation between observed module

genes is cor(xi, xj) = rxi,xj
=

πiπjβ
2

1+β2 .
We model the functional aspect of the pathway by letting the hub x0 determine an outcome variable y

by the regression function
y = αx0 + δ, (4)
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Figure 1: The graph of a SIM. The consistency property is demonstrated by tracing paths between nodes.

where without loss of generality α > 0. Letting the variance of the error term δ in (4) be σ2
δ , Cov(y, xi) =

πiαβσ
2
ε for a non-hub gene xi, the covariance of y with the hub x0 is ασ2

ε , V ar(y) = α2V ar(x0) + σ2
δ =

α2σ2
ε + σ2

δ , and

cor(y, xi) =
α√

α2σ2
ε + σ2

δ

πiβσ
2
ε√

σ2
ε(1 + β2)

for a non-hub module gene xi.
A model SIM is depicted in Figure 1. The unfilled circle x0 indicates that it is unobserved, while the

blue nodes are observed variables. The hub x0 represents the latent “driver” of the pathway and the arrow
from x0 to y represents the influence of the module on y. In Figure 1, a negative sign on a link from x0
to xi indicates that a positive change in x0 which is associated with an increase in y suppresses xi, while a
positive change indicates that xi is promoted.

2.2 A statistical definition of pathway

Three natural properties of an independent functional pathway or module are:

1. Modularity : The variables in a specific pathway are correlated with each other and independent of the
variables in other modules. That is, we adopt the model (1) for the covariance matrix.

2. Functionality : Each pathway variable is marginally correlated with y.

3. Functional consistency : The pathway variables act in concert to either increase or decrease y. Given
the pattern of covariation of the pathway variables, each variable causes y to change in the same
direction - the pathway variables influence y in a consistent fashion.

Consistency requires a pathway to be a set of cooperating variables. For example suppose the expression
of a certain module gene promotes an increase in y while another gene in that module suppresses y. If the
module is activated to increase y the promoter expression must increase while the suppressor decreases. Thus
promoters and suppressors will be negatively correlated. The concept of consistency of functional effects is
formalized in the following definition.

Definition: The effect of two variables xi and xj on y is functionally consistent when
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i) if Cor(xi, xj) is positive, then Cor(xi, y) and Cor(xj , y) have the same sign, and

ii) if Cor(xi, xj) is negative, then Cor(xi, y) and Cor(xj , y) have opposite signs.

Tracing paths in Figure 1 shows that a SIM has the consistency property. Path tracing rules in Wright
(1934) imply that the correlation r between variables is calculated by multiplying the correlation assigned
to the links on the paths joining them. For example, in Figure 1, rx1,x2

= rx1,x0
rx0,x2

is negative. Likewise,
rx1,y = rx1,x0rx0,y is positive and rx2,y = rx2,x0rx0,y is negative so that consistency is satisfied. We can
verify that consistency holds throughout the SIM. The concept of functional consistency is related to the
notion of balance in a signed graph, which has been applied to the sociometric structure of groups in social
psychology (Harary et al., 1953). The definition leads directly to the following lemma,

Lemma 1. For any i 6= j in a pathway, the number of negative elements in the set {Cor(xi, xj), Cor(xi, y),
Cor(xj , y)} is even.

Proof. Assume Cor(xi, xj) is positive. Then consistent effect implies that either both Cor(xi, y) and
Cor(xj , y) are positive or both are negative so the number of negative signs is 0 or 2. Alternatively, if
Cor(xi, xj) is negative consistent effect implies that exactly one of Cor(xi, y) and Cor(xi, y) is negative so
the number of negative signs is 2.

Suppose that a potential pathway is being investigated for functionality. For example, after a cluster
analysis the potential causal effect of a cluster on y is a typical question. The following theorem leads to a
diagnostic measuring the conformity of that set of variables with the concept of consistent effect in Lemma
1,

Theorem 1. Let X+ be the set {xi : Cor(xi, y) > 0} and X− be the set {xi : Cor(xi, y) < 0}. Then
consistent effect implies that

Cor(xi, xj) > 0 when xi ∈ X+ and xj ∈ X+,

Cor(xi, xj) > 0 when xi ∈ X− and xj ∈ X−,

Cor(xi, xj) < 0 when xi ∈ X+ and xj ∈ X− or xi ∈ X− and xj ∈ X+.

Proof. The sign of Cor(xi, xj) is determined according to the Lemma.

Theorem 1 suggests a diagnostic to evaluate if a set of genes such as produced by a cluster analysis is
varying consistently with respect to its association with y. Based on the association with y form the sets
X+ and X− as in Theorem 1 and let X++ = {(i, j); i < j, xi ∈ X+, xj ∈ X+}, X−− = {(i, j); i < j, xi ∈
X−, xj ∈ X−}, X+− = {(i, j);xi ∈ X+, xj ∈ X−} and define the Consistency C to be

C =

∑
(i,j)∈X++ Cor(xi, xj) +

∑
(i,j)∈X−− Cor(xi, xj)−

∑
(i,j)∈X+− Cor(xi, xj)∑

i<j |Cov(xi, xj)|
, (5)

where C will be 1 when the x′s have perfectly consistent effects on y and will be -1 when consistency is
violated to the maximum degree.

The main result of this paper is a pathway identification method which explicitly uses consistency to
determine the set of genes satisfying our understanding of how a pathway should behave. To this end, we
define a matrix W which captures our three criteria for a pathway, including consistency of effect. Define
the cofunction matrix W as

W = diag(Cor(x, y))Σ diag(Cor(x, y)), (6)

where we add diag to denote that diag(Cor(x, y)) is a diagonal matrix with element i on the diagonal given
by Cor(xi, y). Note that elements of W are such that wij = Cor(xi, y)Cor(xj , y)Cor(xi, xj). When both
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xi and xj are associated with y, Cor(xi, y)Cor(xj , y) will be of large magnitude - if each of them is in some
functional pathway it will capture that. Likewise Cor(xi, xj) will have large magnitude if xi and xj are in
the same pathway. Then wij will be large when xi and xj are in the same functional pathway. To depict
this, note that W can be written as

W = Σ · (Cor(x, y)Cor(x, y)T ), (7)

where the operator · denotes elementwise multiplication. The left matrix in (7) contains the information on
the modular structure, while the right matrix in (7) is positive when the variables corresponding to that
element are both associated with y. Figure 2 graphically depicts the formation of W for a fictitious set of
simulated modules.

Clearly W captures Property 1 since zeroes in Σ force zeros in W . By Property 2, modules in Σ which
are not functional vanish from W . The third property implies that W is composed of positive elements,
resembling a similarity matrix. To see this, recall that wij is of the form Cor(xi, xj)Cor(xi, y)Cor(xj , y).
By the lemma the number of negative factors is even so in a consistent pathway wij is non-negative. Thus
to enforce consistency we transform negative elements of W to be zero.

By modularity W will inherit the block diagonal structure of Σ. In this article we assume that a single
module is governing the variable y in the experiment. To discover the blocks (modules) of W we will estimate
its eigenstructure.

2.3 Eigenanalysis

It is clear that if Wii is a block of W which when considered as a separate matrix has eigenvalue λi and
eigenvector vi, the augmented vector

(0, 0, 0, · · · , 0,vi, 0, · · · , 0)T (8)

with vi in the position corresponding to block i, is an eigenvector of W with eigenvalue λi and so “picks
out” the pathway when searching for the non-zero elements in the eigenvector.

Our model treats a module or pathway as a block of W with positive elements. A square block of
dimension m which is approximated by µE where E is the m×m matrix of 1’s (so the block is approximately
homogeneous) and µ > 0 has one eigenvalue equal to µm and the rest equal to 0. That is, µE1m

1√
m

=

µm1m
1√
m

, so the eigenvector corresponding to µm is 1m
1
m where 1m is the m-vector whose elements are

all 1. The remaining eigenvectors must be orthogonal to 1m and thus have eigenvalue 0 since they satisfy
Ex = 0x. A corresponding result for random matrices composed of independent elements with mean µ is
proven in Juhasz (1989) thus showing the above statement is approximately true in the random case.

The above considerations imply that the eigenvectors corresponding to the largest eigenvalues of W will
identify the blocks of W and thus the pathways. Since the eigenvalue is a function of block size, larger
modules will tend to have larger eigenvalues, as will modules with numerically larger elements in W (a
function of the covariance of the genes with each other and with outcome). Thus the eigenanalysis will
identify eigenvalues in decreasing order, so higher cardinality modules with stronger correlations and effect
sizes will be found first.

We modify W in order to minimize the effect of functional genes which are not in a pathway and which
operate independently of the other genes studied. Such a gene xi may be considered to be a block of size
1 with wij = 1 · cor(xi, y)2. The eigenvalue corresponding to this block is cor(xi, y)2 and the eigenvector
will have 1 in the ith position and zeros elsewhere. We do not want to select these elements so we alter W
to give them eigenvalue zero by using the modified matrix W0 = W − diag(W ), a common practice when
defining an association matrix. Note diag(W ) is a matrix with zeroes on the off diagonal and the diagonal
elements of W on its diagonal. The eigenvalue of a valid size m functional pathway will change only slightly
by a factor of m−1

m when using W0 compared to W .
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Cor(x) Correlation with y W

Figure 2: The formation of W = Σ · (Cor(x, y)Cor(x, y)T ) for a fictitious simulated module. The leftmost
matrix is Σ, the middle matrix is Cor(x, y)Cor(x, y)T , and the rightmost matrix is their element-wise product
W .
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3 Estimation and partitioning the pathway eigenvector

To implement our method we substitute sample estimates (Pearson correlation) for the correlations forming
W in (7). Theoretically the non-pathway elements of the first eigenvector of W0 will be zero, but of course
this does not occur with real data. The eigenvector will be a mixture of two components: the elements
corresponding to the pathway genes, and the remaining elements corresponding to non-pathway genes which
we assume to be of smaller magnitude. One approach to partitioning the vector is choosing a mixture analysis
method to partition the vector. Another approach would be to use a l1-regularization method to obtain a
sparse eigenvector and identify the pathway as the non-zero elements of the sparse vector. Future work will
focus on studying possible partitioning techniques for our method. In this paper, we apply a very simple
method to partition the eigenvector. We use k-means clustering on the first eigenvector to find two clusters
of the vector elements. The cluster with the larger-magnitude elements is then taken to be the module. This
simple method has worked well in practice, does not depend on distributional assumptions, and does not
require the specification of a tuning parameter.

4 Bagging

Bootstrap aggregation or “bagging” in Breiman (1996) is a simple and very general approach to improve
upon an unstable estimator for a given set of data. Bagged eigenvectors of W0 are obtained from an
eigen-decomposition based on re-sampling entire rows from the original data with replacement so that the
bootstrap sample is consistent with the original dimensions of the data matrix. The primary advantages
of bagged eigenvectors are smaller variance (large effective sample size) and higher accuracy as a point
estimate, at the cost of slower computation. In short, bagging is essentially a variance reduction method
(Breiman, 1996). Another interpretation of the bagged estimate is as an approximate Bayesian posterior
mean estimate (Hastie, Tibshirani, Friedman, Hastie, Friedman, and Tibshirani, 2009). It allows us to
construct a small-sample estimator of the first eigenvector for the theoretical W0.

Two major shortcomings of the eigen-decomposition based on bootstrap samples are: (1) reflection, which
is the arbitrary change in the sign of the eigenvectors; and (2) reordering where two or more eigenvalues have
very similar magnitude (Jackson, 1995). In the latter case, eigenvectors obtained from bootstrap samples
may come out altered in their order relative to that found from the original sample. Under either condition,
it may lead to the false acceptance of the null hypothesis that eigen-vector coefficients are not significantly
different from zero. In order to address these drawbacks, we propose the following algorithm. Note that we
focus on the rank-1 approximation to the modified matrix W0 and the corresponding first eigenvector of the
modified matrix W0 in order to identify one pathway.

1. Generate a bootstrap sample (X, y)∗b with replacement of samples from the original data and calculate
the matrix W ∗b = diag(Cor(x∗b, y∗b))Σ∗b diag(Cor(x∗b, y∗b)). Set the negative elements of W ∗b to 0
and then obtain the modified matrix W ∗b0 = W ∗b − diag(W ∗b). Repeat this process for each b =
0, 1, . . . , B independently (e.g. with B = 1000).

2. For each matrix W ∗b0 ,

(a) Calculate the correlation r∗bj between the first eigenvector v of the W0 matrix based on the original

data and the eigenvectors v∗bj of W ∗b0 based on the bootstrapped data, i.e., r∗bj = cor(v,v∗bj ),
j = 0, 1, . . . , N .

(b) Find ξ∗b = argmaxj |r∗bj |. This procedure is equivalent to performing orthogonal rotations and
correcting for reversals in the axis ordering (Milan and Whittaker, 1995).

(c) Inspect the sign of r∗bξ∗b . A negative correlation indicates a reflection and the bagged eigenvec-
tor should be converted by multiplying the elements by -1. The first eigenvector based on the
bootstrap sample is v∗bξ∗bsign(r∗bξ∗b).
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3. Aggregate the bootstrap estimates by computing the bootstrap mean

v̄ = (1/B)

B∑
b=1

v∗bξ∗bsign(r∗bξ∗b). (9)

4. Run k-means on v̄ assuming 2 clusters (k = 2).

5 Simulations

We simulated an instance of (1) with 5 modules of 20 genes each and a set of 300 independent genes in ∆.
The 5 modules are SIM’s, described by (2) and Figure 1. Only one of the modules is functional as per (4),
the other four are uncorrelated with the outcome variable y. We set the model parameters to produce a
specified signal-to-noise ratio (SNR) and intra-modular correlation rm. We defined SNR to be the ratio of
ασε to σδ, that is, the square root of the ratio of the variance in y accounted for by the hub to the variance
of the error component.

We compared our methods including clustering just the observed eigenvector (W.e) and clustering the
bagged eigenvector (W.be), SPC, and three cluster analysis based methods. For supervised principal compo-
nents we used the package superpc in R version 3.0.2 to calculate the first supervised principal component
(Bair and Tibshirani, 2012). The clustering methods were k-means clustering using the data matrix X
(K6), the partitioning around medoids algorithm (WGC6.r) using the absolute value of correlations of X
(Pam.cor) and partitioning around medoids (PAM) using the correlations ofX to the sixth power (WGC6.r6),
which tends to differentially diminish small correlation coefficients with small magnitude. Note WGC6.r and
WGC6.r6 are variants of Weighted Network Analysis (WNA) described in Horvath (2011). The clustering
methods were set to obtain six clusters, the true number of clusters. However, in practice identifying the
true number of clusters is difficult. The cluster analysis based methods computed the average significance for
predicting y from the genes in each cluster (the module significance) and the functional module was taken
to be the cluster with the highest module significance.

All methods are evaluated and compared in scenarios of coefficients with the same sign or random signs.
In the simple case of coefficients with the same sign, we let πi = 1 in (2) for all module genes, so that all
intramodular correlations were the same sign. For a more general network of coefficients with random signs,
we randomly selected each π from the set {−1, 1} so that a module could consist of a mix of promoters and
suppressors.

For SNRs of .3 and .5 we calculated the true positive rate (TPR) and the false discovery rate (FDR) for
each method, for a range of intramodule absolute correlation (Rm) levels from .1 to .7. TPR was calculated
as the proportion of the true module genes selected by the method. FDR is the proportion of selected genes
which actually are module genes. 200 Monte Carlo simulated samples were generated for each model for
sample sizes of 100 and 300 and the averages of TPR and FDR over the simulations were calculated.

Figures 3 through 6 were generated using coefficients with the same sign. Figures 3 through 4 show
results for case of constant coefficient sign and sample size of 100. In that setting, K6 outperformed all the
other methods. When both TPR and FDR are taken into account the proposed methods W.e and W.be
are preferred to all but K6. Note SPC performs the worst, which is not surprising since it is optimized
for prediction and was not intended for module discovery. With the larger SNR value of .5, FDRs of the
proposed methods and K6 start to stabilize around values below 0.05 at the intramodule absolute correlation
level of 0.4. The remaining methods have unacceptable FDR. The same pattern holds for sample size 300
(Figure 5 and Figure 6). At that sample size the proposed methods and K6 have FDRs below 0.05 when the
intramodule absolute correlation level is 0.3 or greater for SNR is .3 (Figure 5) and for SNR= .5 the FDR
is close to 0 when the intramodule absolute correlation level is 0.2 or greater (Figure 6).

When random signs are generated (Figures 7 through Figures 10) the proposed methods outperform the
remaining methods including K6. Although WGC6.r has higher TPR for Rm> .2 it has a very high FDR
and is not a competitor. K6 does very poorly in this scenario. We attribute the superiority of the proposed
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Figure 3: True positive rate and false discovery from simulation study with SNR of .3, a sample size of 100
and coefficients with the same sign. Rm is the magnitude of the correlation between module genes.
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Figure 4: True positive rate and false discovery from simulation study with SNR of .5, a sample size of 100
and coefficients with the same sign. W.e and W.be are our basic and bootstrap pathway discovery method.
K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively k-means
for 6 clusters, PAM for 6 clusters using absolute correlation, and PAM for 6 clusters using correlation to the
sixth power. SPC is Sparse Principal Components.
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Figure 5: True positive rate and false discovery from simulation study with the SNR of .3, a sample size of
300 and coefficients with the same sign.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.6

0
.7

0
.8

0
.9

1
.0

Rm

T
P

R

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.2

0
.4

0
.6

0
.8

Rm

F
D

R

●

●W.e W.be K6 WGC6.r WGC6.r6 spc

Figure 6: True positive rate and false discovery from simulation study with the SNR of .5, a sample size of 300
and coefficients with the same sign. W.e and W.be are our basic and bootstrap pathway discovery method.
K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively k-means
for 6 clusters, PAM for 6 clusters using absolute correlation, and PAM for 6 clusters using correlation to the
sixth power. SPC is Sparse Principal Components.
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Figure 7: True positive rate and false discovery from simulation study with the SNR of .3, a sample size of 100
and coefficients with random signs. W.e and W.be are our basic and bootstrap pathway discovery method.
K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively k-means
for 6 clusters, PAM for 6 clusters using absolute correlation, and PAM for 6 clusters using correlation to the
sixth power. SPC is Sparse Principal Components.
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Figure 8: True positive rate and false discovery from simulation study with the SNR of .5, a sample size of 100
and coefficients with random signs. W.e and W.be are our basic and bootstrap pathway discovery method.
K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively k-means
for 6 clusters, PAM for 6 clusters using absolute correlation, and PAM for 6 clusters using correlation to the
sixth power. SPC is Sparse Principal Components.
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Figure 9: True positive rate and false discovery from simulation study with the SNR of .3, a sample size of 300
and coefficients with random signs. W.e and W.be are our basic and bootstrap pathway discovery method.
K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively k-means
for 6 clusters, PAM for 6 clusters using absolute correlation, and PAM for 6 clusters using correlation to the
sixth power. SPC is Sparse Principal Components.
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Figure 10: True positive rate and false discovery from simulation study with the SNR of .5, a sample size
of 300 and coefficients with random signs. W.e and W.be are our basic and bootstrap pathway discovery
method. K6, WGC6.r, and WGC6.r6 are variants of Weighted Network Analysis (WNA), using respectively
k-means for 6 clusters, Pam for 6 clusters using absolute correlation, and Pam for 6 clusters using correlation
to the sixth power. SPC is Sparse Principal Components.
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Figure 11: Distribution of proportion of dominant signs from modules found by k-means clustering.

Methods Rm=0.1 Rm=0.2 Rm=0.3 Rm=0.4 Rm=0.5 Rm=0.6 Rm=0.7
K6 0.2339 0.3564 0.6479 0.8011 0.8602 0.8796 0.9064

WGC6.r 0.0978 0.1698 0.2613 0.3444 0.4121 0.4708 0.5206
WGC6.r6 0.0981 0.1580 0.2356 0.3085 0.3740 0.4381 0.4843

spc 0.2818 0.3291 0.3725 0.4068 0.4200 0.4464 0.4555
W.e 0.3096 0.4191 0.5585 0.6630 0.7081 0.7286 0.7370

W.be 0.3412 0.4213 0.5659 0.6795 0.7207 0.7349 0.7418

Table 1: Average consistency of modules detected.

methods under varying directions of gene-gene association to the use of consistency in defining groups of
genes. To investigate this, Table 1 shows the average functional consistency (5) over 100 simulations using
the parameters of Figure 7, that is, SNR= .3, a sample size of 100 and coefficients with random signs. We
see that the proposed methods find more consistent modules except for the case of k-means which is most
consistent. This seems surprising since k-means performed poorly in this situation (Figure 7). Apparently,
k-means clustering tends to produce clusters which tend to have either all positive or all negative gene-gene
correlation. This is shown by plotting the distribution of the proportion of gene pairs with associations
which are the dominant sign (positive or negative) for clusters picked up by k-means over 200 simulations
with Rm= 0.3, SNR = 0.3, and random sign (Figure 11). We see that most of the genes detected have
correlations of the same sign. Thus k-means will omit genes with differing correlation and can only find
subsets of the functional module, which results in the poor TPR shown in Figure 7.

To summarize, the proposed methods perform relatively well for all conditions and are clearly superior
in the case of random signs, which represents a realistic biological network composed of both promoters and
suppressors.
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Measures Methods SNR = 0.2 SNR = 0.3 SNR = 0.4 SNR = 0.5 SNR = 0.6
TPR K-means 0.5092 0.5190 0.5290 0.5340 0.5423

WGC 0.7998 0.8026 0.8041 0.8044 0.8046
WGC.r6 0.8055 0.8104 0.8118 0.8120 0.8118
SPC 0.4086 0.4836 0.5341 0.5568 0.5517
W.e 0.6222 0.6214 0.6219 0.6222 0.6223
W.be 0.6149 0.6204 0.6218 0.6221 0.6223

FDR K-means 0.8920 0.8894 0.8875 0.8869 0.8866
WGC 0.8579 0.8574 0.8572 0.8572 0.8571
WGC.r6 0.8585 0.8576 0.8573 0.8572 0.8572
SPC 0.7841 0.7161 0.6629 0.6359 0.6131
W.e 0.0787 0.0199 0.0041 0.0020 0.0000
W.be 0.0593 0.0179 0.0031 0.0020 0.0000

Table 2: E. coli example

6 Examples

In this section we explore several examples. In the first example, we apply our methods to synthetic (simu-
lated) datasets designed to simulate regulatory networks specific to specific organisms (e.g. S. Cerevisiae and
E. coli). In the second example, we apply our methods to a human breast cancer gene expression microar-
ray dataset. In this way, we “connect the dots” between the data in Section 5 involving purely theoretical
modules, to data simulating naturally occurring modules within an organism (e.g. yeast), to data where it
is unknown what functional modules may exist (breast cancer).

The modular network models we have simulated certainly do not match the complexity of real microarray
data. However, with real data the true underlying model is unknown so it is impossible to know which genes
selected are true positives or misclassified irrelevant genes. To satisfy the criteria of realism and known
properties, we generated datasets using SynTReN (Van den Bulcke, Van Leemput, Naudts, van Remortel,
Ma, Verschoren, De Moor, and Marchal, 2006) or Synthetic Transcriptional Regulatory Networks, a gen-
erator of synthetic gene expression data. This approach allows a quantitative assessment of the accuracy
of the methods applied. The SynTReN generator generates a network topology by selecting subnetworks
from the well characterized E. coli or S. cerevisiae regulatory networks. Then transition functions and their
parameters are assigned to the edges in the network. Eventually, mRNA expression levels for the genes
in the network are obtained by simulating equations based on Michaelis-Menten and Hill kinetics under
different conditions (Chou, 1976). After the addition of noise, microarray gene expression measurements are
produced.

We produced two synthetic expression datasets, one based on the E.coli network topology and one for
S.cerevisiae. In each dataset there were 30 functional network genes and 300 background genes. The func-
tional network was perturbed though an exogenous gene x0. The 300 background genes have an underlying
network structure, but are not perturbed and so propagate only error. This is a more realistic model for in-
active genes than in our simulations. We used the cluster addition option of SynTReN and set all parameters
to their default values.

To introduce functionality we simulated y according to (4). We defined SNR to be the ratio of ασε to σδ.
For SNRs ranging from 0.2 to 0.6, we calculated the average TPR and FDR for the same pathway detection
methods as section 5 over 800 Monte Carlo simulations with a sample size of 400. Tables 2 and 3 show
the results for the E. coli and S. cerevisiae organism, respectively. All of the methods except the proposed
methods W.e and W.be have unacceptable FDR. Only WGC and WGC.6 have higher TPR but their FDR is
over 80%. The proposed methods alone have FDRs in a range that allows them to be useful in practice. The
results mirror the simulation in Section 5 with random signs, which suggests that the random sign model
more accurately reflects real biological networks.
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Measures Methods SNR = 0.2 SNR = 0.3 SNR = 0.4 SNR = 0.5 SNR = 0.6
TPR K-means 0.4799 0.4875 0.4881 0.4885 0.4946

WGC 0.7886 0.7941 0.7930 0.7929 0.7914
WGC.r6 0.7889 0.7942 0.7934 0.7929 0.7929
SPC 0.3895 0.4585 0.4548 0.4465 0.4448
W.e 0.6239 0.6100 0.6071 0.6067 0.6067
W.be 0.6069 0.6066 0.6067 0.6067 0.6067

FDR K-means 0.8836 0.8824 0.8819 0.8804 0.8804
WGC 0.8601 0.8590 0.8592 0.8593 0.8595
WGC.r6 0.8606 0.8596 0.8597 0.8597 0.8597
SPC 0.8045 0.6990 0.6023 0.5314 0.4977
W.e 0.0793 0.0218 0.0040 0.0000 0.0000
W.be 0.0254 0.0035 0.0000 0.0000 0.0000

Table 3: S. cerevisiae example.

We also explore the ability to implement our techniques on a real dataset. We examine the “Desmedt”
dataset - a breast cancer microarray dataset described in Desmedt, Piette, Loi, Wang, Lallemand, Haibe-
Kains, Viale, Delorenzi, Zhang, d’Assignies et al. (2007) and explored in Miecznikowski, Wang, Liu, Suche-
ston, and Gold (2010). In this dataset we have 198 tumor samples from breast cancer patients assayed on
the Affymetrix U133A microarrays. The dataset was pre-processed using the RMA algorithm in the “affy”
package within the Bioconductor suite of R packages (Gautier, Cope, Bolstad, and Irizarry, 2004, Gentleman,
Carey, Bates, and others, 2004). There are 22,283 probes/genes in the dataset and for each patient we have
censored survival times measured in days. Using the method described in Klein, Gerster, Andersen, Tarima,
and Perme (2008) and the R package (Maja Pohar Perme and Gerster, 2012) we compute pseudo-values from
the censored survival time. In short, these pseudo values are the survival probabilities for each individual at
the pre-specified time point (in our case, the median survival time). These pseudo-values act as the outcome
variable y while the microarray gene expression data is X. Applying the bootstrapped version of our method
to this data with 200 bootstrap replications in the bagging step yields a functional pathway consisting of
approximately 1200 genes.

The heatmap for the top 30 genes (out of ∼ 1200) is shown in Figure 12. The top genes were according
to the size (in absolute value) of their eigenvalue. As expected, it appears that each gene is functionally
correlated with each other (either positively or negatively) as well as with the outcome.

7 Discussion and Conclusion

Our pathway discovery method is easily implemented, only requiring routine calculations, eigenanalysis,
and k-means clustering with 2 clusters. The multiplication as shown in (6) can be memory intensive and
computationally intensive for large matrices. However, note the multiplication in (6) involves three matrices
where the left most and right most are diagonal matrices. The diagonal matrix on the left multiplies each row
in the middle matrix by its corresponding diagonal element and the diagonal matrix on the right multiplies
each column in the middle matrix by the corresponding diagonal element. This operation (and thus the
matrix multiplication) can be quickly and efficiently implemented in R by using the sweep command. Also
note, the eigenanalysis in R can be simply implemented using the Csardi and Nepusz (2006) package which
is an interface to the ARPACK library for calculating eigenvectors. Note, in implementing our approach
to assess eigenvalue reflection (Step 2(a) of Section 4), we propose calculating N eigenvectors in order to
determine the eigenvector with the largest correlation (in absolute value) with the first eigenvector from the
original data. For large N (such as in the “Desmedt” example) it can be time consuming to compute the
N eigenvectors for each bootstrap replication, however, we note the largest correlation in this data often
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Figure 12: Breast Cancer Data: Heatmap of the top 30 genes (according to absolute eigenvalue) in the first
functional pathway. The top row is the pseudo survival times while the other rows refer to the genes. For
purposes of the color mapping, the data is row normalized and the gene rows and patient sample columns
are reordered based on a dendogram using the Euclidean distance metric.
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came from the first or second eigenvector. Hence, for speed in computation, for large N we propose only
computing the first several eigenvectors rather than all N for Step 2(a).

Additionally we note the consistency diagnostic (5) is easily calculated and can be used to evaluate a
candidate pathway determined by any discovery method. Although our code for analyzing the example data
is available (see Additional Materials) for convenience, a formal R package implementing the method and
future extensions is under development.

As noted in Section 2, W as shown in (7) can be thought of as two matrices multiplied together (element
wise), the left matrix containing information on the modular structure of the genes and the right matrix
containing information on the functional or relationship status of the genes with y. The multiplication of
these matrices essentially combines the modularity property with the functional property. This is similar in
spirit to one of the criteria proposed in Bair et al. (2006). In Section 6.6 of Bair et al. (2006), the authors
propose examining the leading (largest) eigenvector of

Q(y, α) = (1− α)XXT + αyyT . (10)

From studying (10) it also combines the modularity effect (XXT ) and the functional effect (yyT ). Note that
Q in (10) is n× n which is a different dimension than W and that choosing α can be a challenge for a given
dataset. It remains future work to compare our approach with the approach using (10).

Our simulations were for the high dimensional case where the sample size is less than the number of
variables. The consistency of principal components of a covariance matrix has been established for high
dimensionality when there are a few major eigenvalues (Hall, Marron, and Neeman, 2005, Ahn, Marron,
Muller, and Chi, 2007). Future work will compare the statistical consistency of eigenvectors of W under
similar conditions.

The methods described in this paper only determine which genes participate in a network. This is an
easier task than determining the detailed graphical structure which entails as many parameters as there
are pairs of variables. We have show that the less ambitious pathway variable identification methods can
provide much information at relatively small sample sizes and low SNRs. Once the relevant genes are
identified biological hypotheses may be suggested and more detailed network descriptions can be successful
on the reduced set of variables (Edwards, 2000, Edwards, De Abreu, and Labouriau, 2010, Friedman, Hastie,
and Tibshirani, 2008, Spirtes and Glymour, 1991).

Although we used correlation to represent the effect of a gene on y our method is easily adapted to more
general measures of effect than x, y correlation. Likewise, other measures of association between genes with
corresponding estimators can be substituted. The only requirement is that the measures be directional, i.e.
distinguish positive and negative effects.

This paper has treated the case of a single functional pathway. Future work is directed toward extension
to the case where multiple pathways are operating simultaneously, and identifying the null case where no
functional module is present.

Additional materials

An R program for this study is available at

18



References

Ahn, J., J. Marron, K. M. Muller, and Y.-Y. Chi (2007): “The high-dimension, low-sample-size geometric
representation holds under mild conditions,” Biometrika, 94, 760–766.

Bair, E., T. Hastie, D. Paul, and R. Tibshirani (2006): “Prediction by supervised principal components,”
Journal of the American Statistical Association, 101.

Bair, E. and R. Tibshirani (2012): superpc: Supervised principal components, URL http://CRAN.

R-project.org/package=superpc, r package version 1.09.

Breiman, L. (1996): “Bagging predictors,” Machine learning, 24, 123–140.

Chou, T.-C. (1976): “Derivation and properties of michaelis-menten type and hill type equations for reference
ligands,” Journal of theoretical biology, 59, 253–276.

Csardi, G. and T. Nepusz (2006): “The igraph software package for complex network research,” InterJournal,
Complex Systems, 1695, URL http://igraph.org.

Desmedt, C., F. Piette, S. Loi, Y. Wang, F. Lallemand, B. Haibe-Kains, G. Viale, M. Delorenzi, Y. Zhang,
M. S. d’Assignies, et al. (2007): “Strong time dependence of the 76-gene prognostic signature for node-
negative breast cancer patients in the transbig multicenter independent validation series,” Clinical cancer
research, 13, 3207–3214.

Edwards, D. (2000): Introduction to graphical modelling, Springer.

Edwards, D., G. C. De Abreu, and R. Labouriau (2010): “Selecting high-dimensional mixed graphical models
using minimal aic or bic forests,” BMC bioinformatics, 11, 18.

Friedman, J., T. Hastie, and R. Tibshirani (2008): “Sparse inverse covariance estimation with the graphical
lasso,” Biostatistics, 9, 432–441.

Gautier, L., L. Cope, B. M. Bolstad, and R. A. Irizarry (2004): “affy—analysis of affymetrix genechip data
at the probe level,” Bioinformatics, 20, 307–315.

Gentleman, R. C., V. J. Carey, D. M. Bates, and others (2004): “Bioconductor: Open software development
for computational biology and bioinformatics,” Genome Biology, 5, R80, URL http://genomebiology.

com/2004/5/10/R80.

Hall, P., J. Marron, and A. Neeman (2005): “Geometric representation of high dimension, low sample size
data,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 427–444.

Harary, F. et al. (1953): “On the notion of balance of a signed graph.” The Michigan Mathematical Journal,
2, 143–146.

Hastie, T., R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani (2009): The elements of
statistical learning, volume 2, Springer.

Horvath, S. (2011): Weighted Network Analysis: Applications in Genomics and Systems Biology, Springer
Science & Business Media.

Jackson, D. A. (1995): “Bootstrapped principal components analysis- reply to mehlman et al.” Ecology, 76,
644–645.

Juhasz, F. (1989): “On the theoretical backgrounds of cluster analysis based on the eigenvalue problem of
the association matrix,” Statistics: A Journal of Theoretical and Applied Statistics, 20, 573–581.

19



Klein, J. P., M. Gerster, P. K. Andersen, S. Tarima, and M. P. Perme (2008): “Sas and r functions to
compute pseudo-values for censored data regression,” Computer methods and programs in biomedicine,
89, 289–300.

Lee, T. I., N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T.
Harbison, C. M. Thompson, I. Simon, et al. (2002): “Transcriptional regulatory networks in saccharomyces
cerevisiae,” Science, 298, 799–804.

Maja Pohar Perme and M. Gerster (2012): pseudo: Pseudo - observations, URL http://CRAN.R-project.

org/package=pseudo, r package version 1.1.

Miecznikowski, J. C., D. Wang, S. Liu, L. Sucheston, and D. Gold (2010): “Comparative survival analysis of
breast cancer microarray studies identifies important prognostic genetic pathways,” BMC cancer, 10, 573.

Milan, L. and J. Whittaker (1995): “Application of the parametric bootstrap to models that incorporate a
singular value decomposition,” Applied Statistics, 31–49.

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon (2002): “Network motifs: simple
building blocks of complex networks,” Science, 298, 824–827.

Spirtes, P. and C. Glymour (1991): “An algorithm for fast recovery of sparse causal graphs,” Social Science
Computer Review, 9, 62–72.

Van den Bulcke, T., K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren, B. De Moor, and
K. Marchal (2006): “Syntren: a generator of synthetic gene expression data for design and analysis of
structure learning algorithms,” BMC bioinformatics, 7, 43.

Wagner, G. P., M. Pavlicev, and J. M. Cheverud (2007): “The road to modularity,” Nature Reviews Genetics,
8, 921–931.

Wright, S. (1934): “The method of path coefficients,” The Annals of Mathematical Statistics, 5, 161–215.

Zhang, B. and S. Horvath (2005): “A general framework for weighted gene co-expression network analysis,”
Statistical applications in genetics and molecular biology, 4.

20


