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Abstract

When a latent class structure is present, parametric t-tests conducted on the

observed continuous variable data can be anti-conservative. This problem is exac-

erbated by: A) test multiplicity across large numbers of manifest assays, each with

a plausible latent structure, and B) increased accuracy of the manifest assays to

discriminate underlying latent structures. This result is relevant in many modern

experimental settings where an underlying latent structure is either known to be

true (e.g., methylation and array CGH) or plausible (e.g., down/up-regulated gene

networks). In such settings, the discrepancy between the actual null distribution

and the commonly assumed null t-distribution can lead to a breakdown in the type

I error control and gross overstatements of statistical significance.
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1 Introduction

We consider the analysis, with a parametric two-sample t-test, of data of the type pre-

sented in Figure 1. Namely, we consider the two sample comparison of groups with small

sample size (e.g. n ≈ 4). Small samples sizes of n = 3, 4, 5, or 6 per group are common in

pilot studies involving cell lines, mouse or rat lines, and/or high throughput biotechnolo-

gies such as microarrays and next generation sequencing platforms. We further restrict

our interest to cases in which it is plausible to assume that the observed assay values are

manifest observations governed by an underlying latent state.

We suppose that the observed assay values are gathered with the hopes of testing the

following biological hypotheses:

H0 : No between group difference in the latent biological condition (1.1)

HA : A between group difference exists in the latent biological condition

where, for example, the latent biological condition could be methylation status, copy num-

ber state, or gene expression state (e.g., up- versus down-regulated).

In the case of a methylation study, the manifest assay values could be the β or M

values from high density arrays (Bock, 2012) and the latent structure would be the actual

methylation state of the targeted genomic region for each sample. Figure 1(a) depicts

level 3 (i.e., β) assay values for probe cg24881834 as assayed for The Cancer Genome

Atlas ( i.e., http://cancer genome.nih.gov/ ) using 27k methylation arrays. Data for

eight Gliobalstoma multiforme samples are included with four assigned to Group A (i.e.,

TCGA-06-2565 TCGA-06-2566, TCGA-27-1836, and TCGA-32-1982), and the balance

assigned to Group B (i.e., TCGA-02-2483, TCGA-27-1835, TCGA-27-2523, and TCGA-

27-2524). It is reasonable to assume that β values greater than 0.75 indicate that the

assay region is methylated and β values less than 0.025 indicate that the assay region in

un-methylated. The underlying latent structure of methylation data of this type is well
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Figure 1: An illustrative example from The Cancer Genome Atlas (TCGA). Data for eight samples was segregated into

two groups: Group A (i.e., TCGA-06-2565 TCGA-06-2566, TCGA-27-1836, and TCGA-32-1982), and Group B (i.e.,

TCGA-02-2483, TCGA-27-1835, TCGA-27-2523, and TCGA-27-2524). Plotted points correspond to assay values (y-

coordinate) and are segregated according to group membership (x-coordinate). (a) Level 3 methylation values for probe

cg24881834 as assayed using 27k methylation arrays. (b) Level 2 array comparative genomic hybridization values for probe

A 16 P17612086 as assayed using Agilent Human Genome CGH Microarray 244A arrays. (c) Level 3 expression values for

ME1 as assayed using Agilent 244K Custom Gene Expression G4502A-07 arrays.

accepted and has been modeled with a mixture of beta distributions (Teschendorff et al.,

2013; Laurila et al., 2011). The assignment of the eight samples to groups was arbitrary

and probe cg24881834 was selected due to the observed distribution of β values, as well

as the availability of matched expression array and array CGH assay values which also

suggest a latent structure.

In the case of a copy number study, the manifest assay values could be the − log2

Tumor/Control values as quantified by micro-arrays (Snijders et al., 2001) and the la-

tent structure would be the underlying change in copy number status as the targeted

genomic region for each sample. Figure 1(b) depicts level 2 array comparative genomic

hybridization (aCGH) values (i.e., normalized signals for copy number alterations) for

probe A 16 P17612086 as assayed using Agilent Human Genome CGH Microarray 244A

arrays. The values for the subjects in Group A suggest that they all have normal copy

number. The values for the subjects in Group B, save perhaps the sample with the

highest value, suggest a copy number loss.

In the case of a gene expression study, the manifest variable could be the expression
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values as quantified by micro-array (Schena et al., 1995) or RNA-seq technologies (Chu

and Corey, 2012) and the underlying latent structure could be whether or not the ex-

pression levels of the gene of interest are down-regulated or not. Figure 1(c) depicts level

3 normalized expression values for ME1 as assayed using Agilent 244K Custom Gene

Expression G4502A-07 arrays. The data suggests that ME1 is down-regulated in Group

B compared to Group A. The expression values may be controlled by the combination of

the underlying methylation and aCGH states for cg24881834 and A 16 P17612086, re-

spectively, as both have genomic locations which suggest functional relationships to ME1.

Namely, ME1 expression in group B could be suppressed due to either copy number loss,

methylation events, or both, within the targeted region.

1.1 A Simple Two Sample Two Latent State Model

We consider the analysis of data generated under a two sample two latent state model.

Specifically, we consider a set of assay values measured upon samples from two popula-

tions. We define

Wij ∼ Bernoulli(πi), i = 1, 2 ; j = 1, 2, 3, n (1.2)

where Wij is the latent state of the jth observation from the ith sample population, and

πi is the population proportion of the second latent state in the ith sample population.

We define the manifest variable (i.e., the observed assay values) to be conditionally

distributed as:

Xij|Wij = wij ∼ Normal(τ1(1− wij) + τ2wij, (σ
2
1(1− wij) + σ2

2wij)) (1.3)

where τ1 and τ2 denote the populations means for the first and second latent states,

respectively. Similarly, σ1 and σ2 denote the population standard deviations. For ease of

exposition, we consider the manifest variable data to have been standardized such that

τ1 = 0, τ2 = τ , and σ2
1 = σ2

2 = 1. For the balance of this manuscript, we specify a simple
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two sample two latent state model to be:

Xij|Wij = wij ∼ Normal(τwij, 1) ; Wij ∼ Bernoulli(πi) (1.4)

for i = 1, 2 and j = 1, 2, 3, n. Under this model, τ represents the difference in population

means between latent states, measured in unit standard deviations. The model presented

in equation (1.4) constitutes a simple two sample Gaussian mixture model of a general

type described in (McLachlan and Peel, 2000).

1.2 Surrogate Hypothesis Tests

The biological hypotheses mentioned above can be tested via the formal test of the

following hypotheses:

H0 : No difference in manifest assay means

HA : Difference in manifest assay means .

These hypotheses can be tested using an equal variance parametric t-test statistic (Gos-

set, 1908; Fisher, 1925):

T =

√
n(X̄1 − X̄2)√
S2

1 + S2
2

(1.5)

where X̄i = 1
n

∑n
j=1Xij and S2

i = 1
n−1

∑n
j=1(Xij − X̄i)

2. The parametric t-test of the set

of assay values tests the hypotheses:

H0 : E[X̄1] = π1τ = π2τ = E[X̄2]

HA : E[X̄1] = π1τ 6= π2τ = E[X̄2]
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which is clearly equivalent to:

H0 : π1 = π2 (1.6)

HA : π1 6= π2 .

Another possibility would be to test the latent state frequencies, and hence the test of

hypotheses in (1.6), more directly. In such a case, the latent state counts must be

estimated (e.g., with a cut-off rule), with the possibility of committing classifications

errors. While there are numerous test statistics that could be utilized in this case, we

consider the popular Fisher’s Exact Test (Fisher, 1934). The Fisher’s Exact Test is

included briefly in our subsequent analyses in order to contrast the performance of a test

that acknowledges the presence of an underlying structure compared to the parametric

t-test, which does not. This comparison of approaches is of secondary importance to the

primary focus of this manuscript, which is to prove the inadequacy of the parametric

t-distribution as a null distribution under certain experimental conditions.

Both the parametric t-test and Fisher’s Exact Test appear to test equivalent hy-

potheses, only with different data (i.e., continuous manifest variable observations and

estimated categorical latent state counts) and with different null distributions (i.e., the

t-distribution and the hyper-geometric distribution). An argument for the preferential

use of the t-test can be made based upon the conventional wisdom that dichotomiz-

ing continuous data reduces power. Additionally, the parametric t-test, being a con-

tinuous measure, appears to have the advantage of finer resolution of evidence against

then null distribution when compared to the discrete valued Fisher’s Exact Test. As

a practical matter, in some cases, such as when a Bonferroni corrected testing level is

employed, the smallest attainable Fisher’s Exact Test p-value might exceed the proposed

per-comparison test level making rejection of the null hypothesis impossible. By way

of contrast, the parametric t-test can deliver arbitrarily small p-values, even for small
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sample sizes.

In this manuscript, we make the argument that utilizing the parametric t-test to an-

alyze continuous manifest data governed by a latent structure can lead to an inflation

of power with a loss of type I error control. We demonstrate that the parametric t-test

does not follow a t-distribution under a latent state null model for which latent state

frequencies are set equal. While it is true that the biological null hypothesis of ”no dif-

ference in assayed biological condition” might map to the null hypothesis of ”no differ-

ence in manifest assay means”, the parametric t-test quantification of that evidence can

be wildly inaccurate when a t-distribution is used to model the null distribution. If a

latent structure is plausible, then we advocate the use of testing methods which either

explicitly (e.g., Fisher’s Exact Test) or implicitly (e.g., permutation/exact t-test) account

for it.

In Section 2, we provide a simple motivating example data-set. We demonstrate that

the p-values obtained via the parametric t-test and Fisher’s Exact Test can differ to a

large degree. Additionally, we provide conditions where the parametric t-test p-values

are anti-conservative with a corresponding loss of type I error control. In Section 3, we

derive distributional properties of the sample means and variances under a simple one

and two sample two latent state models. In Section 4, we provide simulation results that

demonstrate that the t-distribution can be an inadequate null distribution when a latent

structure is present. We illustrate how our simulated empirical null distribution differs

from a t-distribution and demonstrate how those results are a consistent with theoretical

results presented in Section 3. In Section 5, we conclude the manuscript with a discussion

of our findings.

2 A Motivating Example Data-set

We consider an example data-set simulated under the simple two sample two latent state

model given by equation 1.4 and with n = 4, π1 = π2 = 1
2
, and τ = 5. We label
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the two sample populations ”Group A” and ”Group B”, corresponding to i = 1 and

i = 2, respectively. We consider the rare outcome: w11 = w12 = w13 = w14 = 0 and

w21 = w22 = w23 = w24 = 0, which occurs with a probability (1 − 1
2
)4(1

2
)4 = 0.00390625

and a corresponding odds of 255:1. Conditioned on those particular latent states, the

deviations from the group means (i.e., Xij−wijτ), were simulated from a standard normal

distribution and then rounded to two decimal places (for convenience of exposition).

Group A was simulated to have deviations of {0.59, 0.71,−0.11,−0.45} and Group B was

simulated to have deviations of {0.61,−1.82, 0.63,−0.28}. The corresponding two sample

data is given as: x11 = 0.59, x12 = 0.71, x13 = −0.11, x14 = −0.45, x21 = 0.61, x22 =

3.18, x23 = 5.63, x24 = 4.72. Plotted points in Figure 2(a) denote the observed assay

values (y-coordinate) and sample group memberships (x-coordinate, labeled ”Group A”

and ”Group B”) for our motivating example data-set.

We are interested in the extent to which the observed data can be considered as

evidence against the null hypothesis of equal latent population proportions across Groups

A and B. To that end, an equal variance parametric two-sided t-test of the null hypothesis

of equal Group A and Group B means, provides a test statistic of -7.195116 and a

t6-distribution p-value of 0.0003647. The t6-distribution derived odds against the null

hypothesis (quantified as 1−(p−value)
p−value

) is approximately 2741:1.

Suppose that the horizontal dashed line depicted in Figure 2(b) constitutes a well

accepted boundary for estimating a sample’s latent state status given its observed assay

value. In such a case, the observed data could be recast in the form of a two by two table:

with the four observations for Group A classified as ”state 1” and the four observations

for Group B classified as ”state 2”. When applied to the 2 by 2 table data depicted in

Figure 2(b), the Fisher’s Exact Test provides a p-value of 0.029 and an odds against the

null hypothesis of 34:1. The ratio of the estimated odds against the null hypothesis for

the t-test compared to the Fisher’s Exact Test is given by: 2741
34

= 80.62. Which is to

say, the parametric t-test quantifies the odds against the null hypothesis to be 80 times

greater than the Fisher’s Exact Test quantification.
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Figure 2: Motivating Example Data-set. (a) Plotted points correspond to assay values (y-coordinate) and are segregated

according to group membership (x-coordinate). (b) The horizontal dashed line demarcates a well accepted boundary for

the estimation of the latent state conditioned on the observed assay values. Applying the proposed cut-off rule yields an

estimated count of 4 latent state 1 observations for Group A and 4 latent state 2 observations for Group B; counts which

correspond to the true conditions under which the data was simulated. (c) The assay values in (a) measured with greater

accuracy, i.e., deviations multiplied by a factor of 0.25. (d) The log10 odds ratio for the odds against the null based upon

the parametric t-test to the odds based upon the Fisher’s exact test of the true latent states as function of the accuracy of

the assays. Simulated deviations were multiplied by σ and then added to their respective means of 0 and τ = 5, for latent

groups 1 and 2, respectively. The dashed line corresponds to the result in (a) where τ/σ = 5/1 = 1 and a log10 odds ratio

of log10 ((2741 : 1)/(34 : 1)) = log10 80.59 = 1.9 The dotted line corresponds to the result in (b) where τ/σ = 5/0.25 = 20

and a log10 odds ratio of log10

(
(1.25× 107 : 1)/(34 : 1)

)
= log10 3.68× 105 = 5.6.

If the experimental data in Figure 2(a) is measured with greater accuracy, the dif-

ferences in the t-test and Fisher’s Exact Test p-values can become more profound. For

example, suppose that the simulated deviations were generated from a N(0, 0.252) dis-

tribution rather than a standard normal. Multiplying the observed deviations by 0.25

and adding them to their respective population means yields the data depicted in Fig-

ure 2(c). The Fisher’s exact test for this data provides identical results as for Figure 2(b).
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However, the parametric t-test provides a p-value of 8.00 × 10−08 and an odds against

the null hypothesis of 12,507,415:1. The ratio of the estimated odds against the null

hypothesis for the t-test compared to the Fisher’s Exact Test for the data depicted in

Figure 2(c) is 12,507,415
34

= 367865.1. Which is to say, the parametric t-test quantifies

the odds against the null hypothesis to be greater than 367 thousand times the Fisher’s

Exact Test quantification.

As the manifest variable becomes a more accurate discriminant of the latent states,

the t-test results do not converge to the Fisher’s Exact Test result. Figure 2(d) provides

a plot of the log10 odds ratio for the odds against the null based upon the paramet-

ric t-test to the odds based upon the Fisher’s exact test of the true latent states. The

log10 odds ratio is plotted as a function of the accuracy of the assays and clearly in-

creases with improved accuracy, becoming much larger than 0. The figure was generated

as follows: simulated deviations were multiplied by σ and then added to their respec-

tive means of 0 and τ = 5, for latent states 1 and 2, respectively. The dashed line

in Figure 2(d) corresponds to the result in Figure 2(a) where τ/σ = 5/1 = 1 and a

log10 odds ratio of log10 ((2741 : 1)/(34 : 1)) = log10 80.59 = 1.9 The dotted line corre-

sponds to the result in Figure 2(b) where τ/σ = 5/0.25 = 20 and a log10 odds ratio of

log10 ((1.25× 107 : 1)/(34 : 1)) = log10 3.68× 105 = 5.6.

If the parametric t-test is used on the pilot data in Figure 2(c) then subsequent

verification/validation studies may yield grossly deflated results (as compared to the t-

test quantification). For example, suppose that the simulated data in Figure 2(c) was

actual experimental data and that the investigators that generated it were sufficiently

encouraged by the results to perform a gold standard assay on the samples. Further

suppose that the gold standard assay definitively classified (i.e., eliminating the possibility

of mis-classifications errors) the observations into their true latent State categories (i.e.,

the gold standard assay concluded all 4 observations in Group A were in latent State 1

and all 4 observations in Group B were in latent State 2). With that new gold standard

information in hand, the Fisher’s Exact Test (or any other table based testing approach)
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would clearly be more appropriate than the t-test applied to the original manifest variable

data. After all, who would choose to test the variable manifest assay data when the

definitive latent state data is in hand? Note that the gold standard results that we

assume are the most favorable possible towards supporting the decision to reject the null

hypothesis. Yet under that most favorable development, the investigators would see the

strength of their experimental evidence diminish from 12.5 million to 1 (i.e., based upon

the t-test of original data) down to 34 to 1 (i.e., based upon the Fisher’s Exact Test of

Gold Standard Verification of sample latent states).

It should be noted that permutation t-test p-values were in close agreement with the

Fisher’s Exact Test p-values, and also estimated odds against the null hypothesis as 34:1

for both example data-sets (i.e., data depicted in Figures 2(a) and (c)). The permutation

of group labels with respect to the manifest variable outcomes will also permute those

labels with respect to the underlying latent structure. Hence, the permutation t-test

null distribution should provide an adequate approximation to the true null distribution

(assuming, of course, that exchangeablity conditions are truly satisfied).

2.1 Error Control Can Be Lost

In later sections we prove that the equal variance two sample parametric t-statistic is

not distributed according to a t-distribution under our assumed null model conditions

(i.e., when πh1 = πh2 = π, with π > 0 and τ > 0). In this section, we prove that using

the t-distribution as a null distribution can lead to loss of even conservative Bonferronni

family-wise-error-rate (FWER) control.

We extend our simple two sample two latent state model to model a collection of H

different assays that are measured across n samples from each of two sample population

groups. We model the observed manifest assay values as:

Xhij|Whij = whij ∼ Normal(τwhij, 1) ; Whij ∼ Bernoulli(π) (2.7)
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for h = 1, . . . , H ; i = 1, 2 ; j = 1, 2, 3, n and where π and τ are as defined previously.

Note that this model is a true null model as π is identical for both sample groups. In

real settings, the π and τ values would likely vary across the assays, and would be better

parameterized as πh and τh. For purposes of identifying the boundaries for which error

control is lost, we simplify the model and assume that τ and π do not vary across the

assays. The boundaries we provide are symmetric about π = 1
2

and we demonstrate that

error control is lost with increasing τ . Hence, the results we provide can be extended to

the case where π and τ values vary across the assays. For example, if error control is

lost for a set of values H∗, n∗, π∗, and τ ∗ then it can be said that error control would be

lost for a collection of H∗ tests with equal sample size n∗ as long as all τh ≥ τ ∗ and all

|πh − 1
2
| ≤ |π∗ − 1

2
|.

Theorem 2.1 Consider the simple two sample two latent state model given by equa-

tion 2.7 and the set h = 1, . . . , H of one-sided tests of hypotheses: Hh0 : µh1 ≥ µh2 versus

Hh1 : µh1 < µh2, where µh1 = πh1τ and µh2 = πh2τ with τ > 0. Let the corresponding

members of the set of equal variance parametric t-test statistics be given by:

Th =

√
n(X̄h1 − X̄h2)√
S2
h1 + S2

h2

(2.8)

for h = 1, . . . , H, and where X̄hi = 1
n

∑n
j=1Xhij and S2

hi = 1
n−1

∑n
j=1(Xhij − X̄hi)

2.

Assume a global null condition of πh1 = πh2 = π for all h = 1, . . . , H. For a given sample

size n, latent state 2 population proportion π, and a specified family-wise error rate α,

there exists combinations of H and τ such that the family-wise-error-rate (FWER) is not

controlled using the standard Bonferroni Bounds applied to the collection of H one-sided

equal variance parametric t-tests given in equation 2.8.

Proof Let Wh denote the vector of latent states, [Wh11,Wh12, . . . ,Wh1n,Wh21,Wh22, . . . ,Wh2n]T ,

for the hth set of assays. Let Wh = w0/n denote shorthand notation for the outcome

that all of the observations for sample group 1 had underlying latent state 1 and all of

the observations for sample group 2 had underlying latent state 2, i.e., Wh = [Wh11 =

12



0,Wh12 = 0, . . . ,Wh1n = 0,Wh21 = 1,Wh22 = 1, . . . ,Wh2n = 1]T . Under the specified

model and a global null condition of πh1 = πh2 = π for all h = 1, . . . , H,

P (Wh = w0/n) = (1− π)nπn .

The probability that at least one Wh = w0/n for h = 1, . . . , H, is equal to:

P (at least one Wh = w0/n) = 1− (1− (1− π)nπn)H .

Conditioned on the latent state Wh = w0/n, Th in (2.8) is distributed as a non-central t-

distribution with 2n−2 degrees of freedom and non-centrality parameter equal to −τ
√

2.

The probability of observing a Th statistic less than a specified cut-off, tcut, is

P (Th ≤ tcut) = FTν=2n−2,ncp=−τ
√
2
(tcut)

where FTν=2n−2,ncp=−τ
√
2

is the cumulative distribution function of a non-central t-distribution

with 2n−2 degrees of freedom and non-centrality parameter ncp = −τ
√

2. We note that

P (at least one Th < tcut|π, τ)

≥ P (Th < tcut|π, τ,Wh = w0/n)P (at least one Wh = w0/n)

= FT2n−2,−τ
√
2
(tcut)

(
1− (1− (1− π)nπn)H

)
Suppose that tcut is selected according to a Bonferroni bound for FWER control:

FT2n−2(tcut) ≤
α

H

and, hence,

tcut ≤ QTν=2n−2

( α
H

)
.

where QTν=2n−2 is the quantile function of a t-distribution with 2n−2 degrees of freedom.
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FWER control is lost when

P (at least one Th < tcut|π, τ) > α

FT2n−2,−τ
√
2
(tcut)

(
1− (1− (1− π)nπn)H

)
> α

FT2n−2,−τ
√
2

(
QT2n−2

( α
H

)) (
1− (1− (1− π)nπn)H

)
> α

which leads to

FT2n−2,−τ
√

2

(
QT2n−2

( α
H

))
>

α

(1− (1− (1− π)nπn)H)
. (2.9)

If we select

H >
log(1− α)

log(1− (π(1− π))n)
(2.10)

then

1 >
α

(1− (1− (1− π)nπn)H)
.

We note that, conditioned on n, α, and H, the left side of the inequality in equation 2.9

is a strictly increasing function in τ . Hence, for any H satisfying equation 2.10, a τ can

be selected such that

1 > FT2n−2,−τ
√

2

(
QT2n−2

( α
H

))
>

α

(1− (1− (1− π)nπn)H)
.

Corollary 2.2 Consider the simple two sample two latent state model given by equa-

tion 2.7 and the set, h = 1, . . . , H of two-sided test of hypotheses: Hh0 : µh1 = µh2

versus Hh1 : µh1 6= µh2, where µh1 = πh1τ and µh2 = πh2τ with τ > 0. Under the

conditions specified in Theorem 2.1, for a given sample size n, latent state 2 population

proportion π, and a specified family-wise error rate α, there exists combinations of H

and τ such that the family-wise-error-rate (FWER) is not controlled using the standard

Bonferroni Bounds applied to the collection of H equal variance parametric t-tests given

14



in equation 2.8

Proof Similar to the proof of Theorem 2.1 except that FWER control is lost when

FT2n−2,−τ
√
2

(
QT2n−2

( α

2H

))
>

α/2

(1− (1− (1− π)nπn)H)
(2.11)

2.1.1 Example Conditions

The results of Theorem 2.1 can be applied to the conditions relevant to the motivating

example data-set. Specifically, consider data generated under the simple two sample two

latent state null model with n = 4, H = 1, 000, π1 = π2 = 1
2

and τ = 5. Under such

a model, the probability that at least one of the H assay sets will have the latent state

Wh = w0/4 is 1 − (1 − (1
2
)8)1000 = 0.98. If the tests are conducted with a Bonferroni

FWER of 0.05, the probability that an assay with latent state Wh = w0/4 will yield

an observed test statistic less than Qt6

(
0.05
1000

)
= −9.0823, is Ft6,−5

√
2
(−9.0823) = 0.2866.

Hence, the probability of committing a type I error is at least:

P (at least one th < tcut) = Ft6,−5
√
2

(
Qt6

(
0.05

1000

))(
1− (1− (1− 1

2
)4 1

2

4

)1000

)
= 0.2866× 0.9800

= 0.2809

Which is to say, that for a set of H = 1000 tests generated under model conditions

τ = 5 and π1 = π2 = 1
2
, the probability of at least one t-test statistic falling within the

.05 family-wise level Bonferroni rejection region is greater than or equal to 0.2809; a clear

loss of FWER control.

2.1.2 Estimated Bounds for the Loss of Error Control

If it is possible to lose error control when the parametric t-distribution is used as a null

in the presence of a latent structure, then under what conditions might such a problem
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Figure 3: Estimated bounds for which error control is lost under the two-sided testing conditions of Corollary 2.2. For a

given combination of n,H, and π, the curves provide an upper-bound for the lowest value of τ for which a breakdown of

Bonferroni FWER control will occur. Although the bounds are conservative, they demonstrate that the loss of error control

can occur under reasonable conditions with respect to sample size, effect size, and underlying latent structure proportions.

occur? Figure 3 provides estimates of the bounds for which error control might be lost

under the two-sided testing conditions of Corollary 2.2. For α = 0.05 and combinations

of n = 3, 4, 5, 6, H = 2, 5, 10, 50, 100, 250, curves are provided for the condition:

FT2n−2,−τ
√
2

(
QT2n−2

( α

2H

))
=

α/2

(1− (1− (1− π)nπn)H)
.
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Hence, for a given combination of n,H, and π, the curves provide an upper-bound for

the lowest value of τ for which a breakdown of Bonferroni FWER control will occur.

The estimates of the upper bounds are increasingly conservative as H increases. Hence,

inversions of their expected orderings can occur, as in Figure 3(a). Although the bounds

are conservative, they demonstrate that the loss of error control can occur under reason-

able conditions with respect to sample size, effect size, and underlying latent structure

proportions.

3 Distributional Properties of X̄ and S2

3.1 Under A Simple One Sample Two Latent State Model

Before considering the two sample t-test, we first derive the distributional properties of

the sample mean, X̄ =
∑n

j=1Xj, and sample variance, S2
X =

∑n
j=1(Xj − X̄)2, in a single

sample setting. Consider n observations, X1, . . . , Xn a made on the manifest variables

governed by a simple one sample, two latent state model:

Xj|Wj = wj ∼ Normal(τwj, 1) ; Wj ∼ Bernoulli(π) (3.12)

for j = 1, 2, 3, n .

Theorem 3.1 (One Sample Case) Let W· =
∑n

j=1Wj . Under the conditions of

equation 3.12 and conditioned on W· = w·, the distribution of the sample mean is:

X̄|W· = w· ∼ N

(
w·τ

n
,

1

n

)
(3.13)

Corollary 3.2 (Two Sample Case) Consider the simple two sample two latent state

model given by equation 1.4 for H = 1 (i.e., suspend the h subscript. Let W denote the

vector of latent states, [W11,W12, . . . ,W1n,W21,W22, . . . ,W2n]T . Let W = wp/q denote

shorthand notation for the outcome that p of the n observations for sample group 1 have
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underlying latent state 1 and q of the n observations for sample group 2 had underlying

latent state 2. Let X̄i = 1
n

∑n
j=1 Xij, for i = 1, 2. Conditioned on W = wp/q, the

distribution of the difference in sample means is:

X̄1 − X̄2|W· = wp/q ∼ N(
(p− q)τ

n
,

1

n
) (3.14)

Theorem 3.3 (One Sample Case) Under the conditions of equation 3.12, the distri-

bution of the sample mean X̄ has expectation and variance:

E[X̄] = πτ

V ar[X̄] =
1

n
(1 + τ 2π(1− π))

Proof

E[X̄] = EW[E[X̄|W]] =
1

n
EW[

∑
j

Wjτ ]

=
1

n
nπτ = πτ

V ar[X̄] = EW[V ar[X̄|W]] + V arW[E[X̄|W]]

= EW[
1

n
] + V arW[

1

n
τ
∑
j

Wj]

=
1

n
+
τ 2

n
π(1− π)

Corollary 3.4 (Two Sample Case) Under the two sample conditions of corollary 3.2,
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the distribution of the difference in sample means has expectation and variance:

E[X̄1 − X̄2] = 0

V ar[X̄1 − X̄2] =
2

n
(1 + τ 2π(1− π))

Theorem 3.5 (One Sample Case) Under the conditions of equation 3.12, and For

n = 4, the distribution of S2
X conditional on W· = w· is as follows:

(n− 1)S2
X |W· = 0 ∼ χ2

ν=3

(n− 1)S2
X |W· = 1 ∼ χ2

ν=3,ncp= 3
4
τ2

(n− 1)S2
X |W· = 2 ∼ χ2

ν=3,ncp=τ2

(n− 1)S2
X |W· = 3 ∼ χ2

ν=3,ncp= 3
4
τ2

(n− 1)S2
X |W· = 4 ∼ χ2

ν=3

Proof The proof for W· = 0 or W· = 4 is just the classic non-mixture result.

For W· ∈ {1, 2, 3}, we assume, w.l.o.g., that the Xj are ordered such that the first

n − w· correspond to observations made with latent state 1 and the remaining Xj are

made with respect to latent state 2. Let X̄k and S2
X,k denote the sample mean and

variance of the first k ordered observations. We make use of this property (Casella and

Berger, 2001):

(k − 1)S2
X,k = (k − 2)S2

X,k−1 +

(
k − 1

k

)
(Xk − X̄k−1)2

where

S2
X,2 =

1

2
(X2 −X1)2 .
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For W· = 1:

(4− 1)S2
X,4 = (4− 2)S2

X,4−1 +

(
4− 1

4

)
(X4 − X̄3)2

where S2
X,3 ∼ χ2

2, X̄3 ∼ N(0, 1
3
), and X4 ∼ (N(τ, 1)). Which implies that:

(
3

4

)1/2

(X4 − X̄3) ∼ N

((
3

4

)1/2

τ,

(
3

4

)(
1

3
+ 1

))

Hence,

(4− 1)S2
X,4 ∼ χ2

ν=2 + χ2
ν=1,ncp= 3

4
τ2
∼ χ2

ν=3,ncp= 3
4
τ2

By a symmetry argument the above result also holds for W· = 3

For W· = 2:

(3− 1)S2
X,3 = (3− 2)S2

X,2 +

(
3− 1

3

)
(X3 − X̄2)2

where S2
X,2 ∼ χ2

1, X̄2 ∼ N(0, 1
2
), and X3 ∼ (N(τ, 1)). Which implies that:

(
2

3

)1/2

(X3 − X̄2) ∼ N

((
2

3

)1/2

τ,

(
2

3

)(
1

2
+ 1

))

Hence,

(3− 1)S2
X,3 ∼ χ2

ν=1 + χ2
ν=1,ncp= 2

3
τ2
∼ χ2

ν=2,ncp= 2
3
τ2

and

(4− 1)S2
X,4 = (4− 2)S2

X,4−1 +

(
4− 1

4

)
(X4 − X̄3)2

where S2
X,3 ∼ χ2

ν=2,ncp= 2
3
τ2

, X̄3 ∼ N(1
3
τ, 1

3
), and X4 ∼ (N(τ, 1)). Hence,

(
3

4

)1/2

(X4 − X̄3) ∼ N

((
3

4

)1/2
2

3
τ,

(
3

4

)(
1

3
+ 1

))
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and

(4− 1)S2
X,4 ∼ χ2

ν=2,ncp= 2
3
τ2

+ χ2
ν=1,ncp= 1

3
τ2
∼ χ2

ν=3,ncp=τ2

Theorem 3.6 (One Sample Case) Assume the conditions of equation 3.12 and n = 4.

The distribution of (4 − 1)S2
X is a mixture of χ2 distributions, some central and some

non-central.

(4− 1)S2
4 ∼ (B(0, 4, π) +B(4, 4, π))χ2

ν=3 + (B(1, 4, π) +B(3, 4, π))χ2
ν=3,ncp= 3

4
τ2

+B(2, 4, π)χ2
ν=3,ncp=τ2

where B(x, n, π) is the pmf of the Binomial distribution with x successes in n trials

with a success probability of π.

Proof application of previous theorem results.

Theorem 3.7 (One Sample Case) Assume the conditions of equation 3.12 with π ∈

(0, 1) and τ > 0. Under said conditions, the distributions of X̄−πτ and S2
X are dependent

provided π 6= 1/2. When π = 1/2, Cov(X̄, S2) = 0.

Proof Let Yj = Xj − πτ and note that µY = E(Ȳ ) = 0, S2
Y = S2

X and Cov(Ȳ , S2
Y ) =

Cov(X̄, S2
X). Using the result (Mukhopadhyaya and Son, 2011) that

Cov(Ȳ , S2
Y ) = n−1µ3 (3.15)
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where µ3 is the third central moment, we find:

E[(Y − µY )3] = E[Y 3] = EW
[
E
[
Y 3|W

]]
= EW

[
µ3
Y |W + 3µY |W

]
since Y |W ∼ N((W − π)τ, 1)

= EW
[
(W − π)3τ 3 + 3(W − π)τ

]
= (π − 3π2 + 2π3)τ 3 since W ∼ Binomial(1, π)

= π(1− 3π + 2π2)τ 3 .

If π = 1/2, then E[Y 3] = 0 and Cov(X̄, S2) = 0. If π 6= 1/2, then Cov(X̄, S2) 6= 0, and

X̄ and S2 are linearly dependent.

Comment: Although Cov(X̄, S2) = 0 when π = 1/2, a non-linear dependency exists

between X̄ and S2. In the two sample case, Cov(X̄1 − X̄2, S
2
1 + S2

2) = Cov(X̄1, S
2
1) −

Cov(X̄2, S
2
2) = 0. Simulation results in Section 4 will show that X̄1− X̄2 and S2

1 +S2
2 are

dependent in a non-linear fashion. One sample simulation results (not shown) display a

similar relationship.

4 Simulation Results

The results of a simulation study are presented in Figure 4. For each value of τ ∈

{0, 1, 2, 5, 10}, 1,000,000 replicate data-sets were simulated under model (1.4) with n = 4

in and π1 = π2 = 1
2
). For each of the 5,000,000 replicate data sets, the equal variance

t-test statistic was calculated. Figure 4(a) displays the quantile plots of the observed

equal variance t-test statistics versus the quantiles of a t6. Note the excellent agreement

between -4 and 4 and the clear anti-conservative breakdown for more extreme quantiles.

By Theorem 3.4, E[X̄1−X̄2] = 0 and V ar[X̄1−X̄2] = 1
2
(1+ 1

4
τ 2). Figure 4(b) contains

the quantile plot for X̄1 − X̄2 versus the quantiles of a N(0, 1
2
(1 + 1

4
τ 2)). The observed

agreement in the quantile plot suggests that normality is not an unreasonable assumption

for the distribution of X̄1 − X̄2. Therefore, the discrepancy between the observed and

22



Figure 4: Simulation Results. For each value of τ ∈ {0, 1, 2, 5, 10}, 1,000,000 replicate data-sets were simulated under the

simple two sample two latent state model with π = 2 and n = 4. The the equal variance t-test statistic, and its components

were calculated for each data set. (a) QQ-plot of the observed t-tests versus a t6 distribution. Note the anti-conservative

breakdown for extreme quantiles. (b) QQ-plot demonstrates reasonable agreement between the observed distributions of

X̄1 − X̄2 and N(0, 1
2

(1 + 1
4
τ2)) distributions. (c) QQ-plot of (2n − 2)σ̂2/σ2 versus a χ2

6, where σ̂2 denotes the pooled

sample variance estimator and σ2 = 1
2

(1+ 1
4
τ2). As τ increases, the observed quantiles fall markedly below their theoretical

counterparts. (d)-(g) kernel smoothed estimated density plots of the observed X̄1 − X̄2 versus σ̂2 for τ ∈ {0, 1, 2, 5, 10}.
As τ increases, the (non-linear) dependence of X̄1 − X̄2 and σ̂2 becomes increasingly obvious.

theoretical quantiles for the t-test statistics does not appear to be caused by a violation

of that assumption.

Figure 4(c) contains the quantile plot for (2n− 2)σ̂2/σ2 versus the quantiles of a chi-
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square with 6 df, where σ̂2 denotes the pooled sample variance estimator. As τ increases,

the observed quantiles fall markedly below their theoretical counterparts. For this plot,

σ2 = 1
2
(1 + 1

4
τ 2), the true theoretical variance. The lack of agreement between observed

and theoretical quantiles is an expected consequence of the extension of Theorem 3.5

results for the two sample case. In the presence of the latent structure, the scaled

variance estimator is not simply distributed as a chi-square random variable. Rather, it

is a mixture of non-central and central chi-square distributions.

Figure 4(d)-(g) provide kernel smoothed density plots of the observed X̄1− X̄2 versus

σ̂2 for τ ∈ {0, 1, 2, 5, 10}. The derivation of the t-distribution relies upon an assumption

of independence of the difference in sample mean and the pooled variance estimator. As

τ increases, the dependence of X̄1−X̄2 and σ̂2 becomes increasingly obvious. This makes

intuitive sense in the latent model setting. Knowledge of the mean provides knowledge

of the latent states, especially for larger τ . With respect to the sample variance (i.e.,

the pooled estimator), latent state combinations with group observations in both states

will be estimated to be more variable than those with observations in only one of the

two possible states. Since the data was simulated with π = 1
2
, the distributions are

symmetric about X̄1− X̄2 = 0 and, as predicted by Theorem 3.7, the (linear) covariance

is zero although a clear non-linear dependency exists.

Figure 5 illustrates the results of the simulation study conditioned on the underlying

latent state. The underlying states are nomenclated as pq where p ∈ {0, 1, 2, 3, 4} and

denotes the number of observations in the first group with underlying latent state 2, and

q ∈ {0, 1, 2, 3, 4} and denotes the number of observations in the second group with un-

derlying latent state 2. For example, the label 04 denotes the condition of our motivating

example, provided in Figure 2.

Figure 5(a) contains the the kernel density estimated densities of the observed t-

statistics for τ = 10 and conditioned on latent state. Conditioned on the extreme latent
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Figure 5: Latent State Annotated Simulation Results. The simulation results corresponding to τ = 10 from Figure 4 are

annotated with values pq where p and q denote the number of latent state 2 observations in the first and second sample

groups, respectively. (a) Kernel density estimates for the observed t-statistics. Latent states 04 and 40 contribute enough

mass to the tail regions of the true t-statistic null distribution to render the t6 distribution an unsuitable approximation.

(b) Kernel density estimates for the − log10 p-values of the two-sided equal variance t-statistics conditioned on latent state.

(c) Kernel smoothed density plots of the observed X̄A − X̄B versus σ̂2 for τ = 10. The latent state labels are centered

at the coordinates corresponding to the expected mean differences and variance estimates as predicted by the theorems

provided in Section 3.

states, Wh = w0/4, and Wh = w4/0, we have the conditional T-distributions:

T |Wh = w0/4 ∼ t− dist(df = 6, ncp = −10
√

(2))

T |Wh = w4/0 ∼ t− dist(df = 6, ncp = 10
√

(2))

As expected, the densities in Figure 5(a) corresponding to latent states 04 and 40 con-

tain notable mass located away from the origin. As per the logic of Theorem 2.1 and

Corollary 2.2, latent states 04 and 40 will, under certain combinations of π, τ , and n, con-
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tribute enough mass to the tail regions of the true t-statistic null distribution to render

the t-distribution an unsuitable approximation.

Figure 5(b) contains the kernel density estimated densities of the − log10 p-values of

the two-sided equal variance t-statistics conditioned on latent state. As expected, the

− log10 p-values corresponding to latent states 04 and 40 contain notable mass for large

values, a result that is consistent with the motivating example presented in Section 2.

Figure 5(c) contains the kernel smoothed estimated density plots of the observed

X̄A − X̄B versus σ̂2 for τ = 10. The latent state labels are centered at the coordinates

corresponding to the expected mean differences and variance estimates as predicted by

the theorems provided in Section 3. This figure explains the ”paw print” nature of

Figure 4(d)-(g), where different ”paw pads” correspond to the collection of bivariate

distributions of (X̄A − X̄B, σ̂2) which differ according to latent state.

5 Discussion

The parametric t-test can be grossly anti-conservative when it is applied to a manifest

variable that is governed by an underlying latent state. Unbalanced latent state assign-

ments (e.g., Wh = w0/4) contribute mass to the tails of the true t-test null distribution

and can render the the t-distribution an inadequate approximation. In terms of our

simple two sample two latent state models, the likelihood of unbalanced states to occur

is governed by π and the mass that they contribute to the tail of the distribution is

governed by τ . Values of π close to 1
2

and larger values of τ constitute the least favorable

conditions for the t-distribution approximation to the actual null distribution.

By our standardized parameterization, the increased precision of the manifest assays

to discriminate underlying latent structures corresponds to larger τ values. Hence, as

technologies improve and assays are measured with greater accuracy, the problems dis-

cussed in this manuscript will become increasingly relevant. In the motivating example

data-set, an effective four fold increase in τ (equivalent to a reduction in σ in equation 1.3
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from 1 to 1
4
) changes the odds against the null hypothesis from 2741:1 to 12.5×106:1.

Those estimated odds are in stark disagreement with the 34:1 odds derived from the

Fisher’s Exact Test of the true latent state counts. Figure 2(d) demonstrates how in-

creased accuracy can dramatically inflate the odds ratio of the t-distribution based odds

versus the Fisher’s Exact Test odds, where the Fisher’s Exact Test odds are computed

assuming perfect knowledge of the latent states.

Test multiplicity across a large number of manifest assays, each with plausible latent

structure, can also compound the problem. Theorem 2.1 and Corollary 2.2 demon-

strate that combinations of n,H, τ , and π exist such that even conservative Bonferroni

family-wise error control is lost. Figure 3 provides estimated bounds for the parameter

combinations for which error control is lost. For smaller n loss of error control can occur

for plausible parameter combinations, e.g., τ is not required to be implausibly large. If

Bonferroni control can be lost, it is reasonable to expect that other methods of error

control will also fail. For example, the p-values from the t-distribution null will be non-

uniform and anti-conservative and this will adversely effect FDR control methods such

as that of Benjamini and Hochberg (Benjamini and Hochberg, 1995). Mixture model

based methods for the empirical control of the false discovery rate Efron (Efron, 2010)

and of the generalized family wise eeror rate (Miecznikowski and Gaile, 2014), will also

be adversely effected as the tail heaviness (compared to the t-distribution) of the true

null distribution is confounded with true departures from the null distribution of test

statistics.

An underlying latent structure can have a profound effect on the distribution of the

variance estimator. Theorems 3.5 and 3.6 state that S2 is distributed according to mix-

ture of central and non-central chi-square distributions. Theorem 3.7 and Figures 4(d)-(g)

and 5(c) demonstrate that the sample variance estimators (in both the one and two sam-

ple cases) are not independent of the sample means. For π 6= 1
2
, a linear component to

the dependence exists, and for π = 1
2

it does not (although a non-linear dependence does

exist).
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Although not included here, similar results were also observed for the unequal variance

t-test. The equal variance t-test was used for ease of exposition.

In some, if not most, cases, the plausibility of the existence of a latent structure

can only be evaluated by developing a proper understanding of the underlying biological

processes at play. Inspection of the data itself may not be sufficiently informative. For

example, the assay data observed for both sample groups in Figure 2(a) are normally

distributed and generated under equal variances. There is nothing in the observed data

to suggest that the normal distribution of the assay values are actually conditioned on

unobserved realizations of Bernoulli distributed latent variables. By all appearances, the

data could very well have been generated under a classic mean shift alternative model.

If a data analyst can not dismiss the plausibility of a latent structure existing in the

context of a small two sample comparison of continuous assay values, then an alternative

test to the parametric t-test should be considered. For example, cut-off rules could be

employed and Fisher’s Exact Tests could be utilized. The tests could even be conducted

across a range of plausible cut-off values and the p-values could be adjusted using a minP

approach (Westfall and Young, 1993). A permutation t-test provides another reasonable

alternative. As we mentioned above, the permutation of group labels with respect to the

manifest variable outcomes will also permute those labels with respect to the underlying

latent structure. Hence, the permutation null distribution should provide an adequate

approximation to the true null distribution. Although these alternative approaches may

not provide the incredibly small p-values that many researchers desire, they protect

against the very real possibility of reporting p-values that are misleading.

As our motivating example has demonstrated, parametric t-test p-values can provide

stunning evidence against the null hypothesis and yet completely fail in subsequent val-

idation studies. We speculate that this phenomenon may have contributed to unexpect-

edly high validation failure rates for putative biomarkers identified in early microarray

experiments (where sample sizes were small and latent structures plausible). It could

also contribute to higher than expected validation failure rates in the context of pilot
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animal or cell line studies.
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