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SUMMARY10

Posterior expectation is a well-accepted method for data analysis via Bayesian inference based

on parametric likelihoods. In this paper we propose utilizing empirical likelihood (EL) method-

ology to develop novel nonparametric posterior expectation. The parametric Bayesian methodol-

ogy contains the empirical Bayes approach for the purpose of using the observed data to estimate

parameters, or even functional forms, of prior distributions. We adapt this approach to nonpara-15

metric posterior estimation based on EL’s, defining double empirical posterior estimators. The

proposed methodology yields a nonparametric analog of the well-known James-Stein estimation

that has been well addressed in the literature dealing with multivariate-normal observations. Cal-

culation of the parametric posterior expectation is often intractable due to the complex integral

forms. The classical Bayesian literature carries out relevant approximations to the expectation.20

We also establish accurate asymptotic approximations to the proposed EL posterior expectations.

These approximations are shown to be similar to those related to parametric Bayesian point es-

timators. We show that in many cases the proposed estimators are more efficient than the classic

nonparametric procedures, even when non-informative priors are utilized. When forms of the

nonparametric posterior estimators use informative priors the proposed nonparametric estima-25

tion generally outperforms the relevant maximum likelihood estimation. Extensive Monte Carlo

evaluations confirm the efficiency of the proposed methodology, especially when the underlying

data distribution is skewed. We apply the proposed method to analyze thiobarbituric acid reac-

tion substances data from a case-control myocardial infarction study, thus showing the excellent

applicability of the developed technique.30

Some key words: Empirical Bayes methods; Empirical likelihood; James-Stein estimator; Nonparametric estimation;
Posterior expectation.

1. INTRODUCTION

Bayesian posterior expectation is a powerful approach used by researchers to characterize an

important dimension of posterior and predictive distributions (e.g., Tierney et al. 1989). The pos-

terior expectation serves as a Bayesian analogue for the commonly used frequentist techniques

of point estimation (e.g., Carlin & Louis 2000). The posterior expectation efficiently incorpo-

rates information from prior distributions and likelihood functions based on the observed data.

The traditional Bayesian based methodology assumes a parametric form for the likelihood based



on data. It may be desirable in the Bayesian framework to develop a nonparametric approach 40

relative to the traditional likelihood construction. In this case we should require that the posterior

distribution, based on a nonparametric likelihood, should obey the laws of probability in a con-

text that corresponds to statements derived from Bayes’ rule (for details, see Monahan & Boos

1992).

Lazar (2003) showed that the empirical likelihood (EL) technique (e.g., Owen 2001) can pro- 45

vide a proper likelihood that can serve as the basis for robust and accurate Bayesian inference.

The key idea is to substitute the parametric likelihood (PL) with the EL in the Bayesian likeli-

hood construction relative to the component of the likelihood used to model the observed data.

This approach can provide a robust nonparametric data-driven alternative to the more classical

Bayesian procedures. 50

In this paper we apply the general theoretical framework of Lazar (2003) to propose and ex-

amine a distribution free approach for obtaining the posterior expectation. This approach relaxes

the need to assume a parametric form for the underlying data distribution and provides posterior

estimators incorporating information from prior distributions and observed data. The proposed

method is shown to produce nonparametric estimators that are generally more efficient, in the 55

context of corresponding variances comparisons, than the classic nonparametric procedures.

The statistical literature displays that in the general case parametric-based posterior expecta-

tions are difficult to calculate analytically (e.g., Newton & Raftery 1994, DiCiccio et al. 1997,

Sweeting 1995, Lieberman 1994, Polson 1991, Tierney & Kadane 1986, Kass & Vaidyanathan

1992). In some elementary cases, e.g. the exponential family of data distributions given a set of 60

conjugate priors, the integrals used in the posterior expectation calculations might be evaluable

analytically. However, this is typically not the case. In general, the relevant integrals of interest

are intractable and therefore need to be evaluated using numerical methods (e.g., DiCiccio et al.

1997, Tierney et al. 1989, Erkanli 1994, Miyata 2004). In the case involving integrals of posterior

distributions that incorporate EL functions the integrands have no analytical forms and must be 65

computed using numerical methods at each value of the functions’ arguments. (Regarding the

EL functional forms, see, e.g., Owen 2001, Lazar & Mykland 1998, Vexler et al. 2009, Vexler

et al. 2012, Yu et al. 2011). This increases the complexity of calculations related to the proposed

estimators, especially when the nonparametric procedures are based on relatively large samples.

Tierney & Kadane (1986) developed an easily computable asymptotic approximation for the 70

parametric posterior expectation using the Laplace method. Another key piece of the research

developed in this note is the derivation of asymptotic approximations to the proposed nonpara-

metric posterior expectations. We demonstrate the asymptotic propositions are very accurate and

have a direct analogy to those of parametric posterior-based procedures.

In this paper we show that the corresponding variances of the proposed estimation procedures 75

incorporating non-informative priors are generally smaller than those of traditional nonparamet-

ric estimators, especially when the underlying data distributions are skewed, e.g., when the data

follows a log-normal distribution. When informative priors are incorporated into the EL-based

form of the posterior likelihood the proposed distributions-free estimators generally have vari-

ances smaller than those of their classic MLE counterparts. 80

In various Bayesian scenarios, prior functions are known up to a given set of parameters.

The empirical Bayes method uses the observed data to estimate the prior parameters, e.g., by

maximizing the marginal distributions, and then proceeds as though the prior were known (e.g.,

Carlin & Louis 2000). In this paper, we propose to use EL’s as substitutes for PL’s in the empir-

ical Bayesian posterior procedure. The distribution-free estimators obtained via this manner are 85

denoted as double empirical Bayesian point estimators.



In the case of multivariate normally distributed data Stein (1956) proved that when the di-

mension of the observed vectors is greater than or equal to three, the MLE’s are inadmissible

estimators of the corresponding parameters. James & Stein (1961) provided another estimator

that yields the frequentist risk (MSE) no larger than that of the MLE’s. Efron & Morris (1972)90

showed that the James-Stein estimator belongs to a class of parametric empirical Bayes (PEB)

point estimators in the Gaussian/Gaussian model. In this context, we infer and illustrate in this

note that the proposed double empirical Bayesian point estimators can lead to nonparametric ver-

sions of the James-Stein estimators when normal priors with unknown parameters are utilized.

This paper is organized as follows: In Section 2 we define and evaluate the nonparametric95

posterior expectations of simple functionals. In Section 3 we extend the results of Section 2

to evaluate the nonparametric posterior expectations of general functionals. The nonparametric

version of the James-Stein estimator is proposed in Section 4. In Section 5 we carry out a Monte

Carlo (MC) study to demonstrate the relative efficiency of the proposed methods. In Section 6 we

apply the proposed estimators to a real data study of myocardial infarction death. In Section 6 we100

demonstrate the applicability of the proposed nonparametric estimation procedure. We conclude

with remarks in Section 7. Proofs corresponding to the theoretical results presented in this paper

are outlined in the Appendix.

2. NONPARAMETRIC POSTERIOR EXPECTATIONS OF SIMPLE FUNCTIONALS

Let X1, . . . , Xn be independent identically distributed observations from a distribution func-105

tion F (x | θ), where θ is the parameter to be evaluated. For convenience of exposition and with-

out loss of generality we assume the parameter θ is one-dimensional. The Bayesian point esti-

mator of θ can be defined as the posterior expectation

θ̂ =

∫
θ
∏n

i=1 f(Xi | θ)π(θ)dθ∫ ∏n
i=1 f(Xi | θ)π(θ)dθ , (1)

where f is the density function of Xi, i = 1, . . . , n and π(θ) is the prior distribution. The esti-

mator at (1) utilizes the PL,
∏n

i=1 f(Xi | θ), provided that the form of f is known.110

Lazar (2003) showed that the EL technique can provide proper non-parametric likelihoods that

can serve as the basis for Bayesian inference, supplying robustness to relative to the choice of

prior. In this paper we propose using the relevant EL function instead of the PL at (1) in order to

obtain the nonparametric posterior expectation. We start with an example of this approach with

the straightforward case of the mean. The analysis presented here is relatively clear and has the115

basic ingredients for more general cases.

Following the EL literature (e.g., Owen 1988, Lazar & Mykland 1998, Vexler et al. 2009, Yu

et al. 2011) we define the simple EL function with respect to the mean of X1, . . . , Xn as

EL1(θ) = max
0<p1,··· ,pn<1

{
n∏

i=1

pi :

n∑
i=1

pi = 1,

n∑
i=1

piXi = θ}.

Thus the nonparametric posterior expectation has the form of

θ̂ =

∫ X(n)

X(1)
θelogEL1(θ)π(θ)dθ∫ X(n)

X(1)
elogEL1(θ)π(θ)dθ

=

∫ X(n)

X(1)
θelogELR1(θ)π(θ)dθ∫ X(n)

X(1)
elogELR1(θ)π(θ)dθ

, (2)

where X(1), . . . , X(n) are the order statistics based on the sample X1, . . . , Xn, ELR1(θ) =120

EL1(θ)n
n is the EL ratio (e.g., Vexler et al. 2009).



The posterior expectation based on using the PL approach is well addressed in the statistical

literature (e.g., DasGupta 2008, Evans & Swartz 1995, Johnson 1970, Tierney & Kadane 1986,

Yee et al. 2002). In some elementary cases, e.g. the exponential family of data distributions with

conjugate priors, the integrals used in the posterior expectation may be evaluated analytically 125

(e.g., Consonni & Veronese 1992). In general, the integrals used for calculating the posterior

mean are intractable and need to be evaluated numerically (e.g., Newton & Raftery 1994, DiCi-

ccio et al. 1997, Sweeting 1995, Lieberman 1994, Polson 1991, Tierney & Kadane 1986, Kass

& Vaidyanathan 1992). A useful and accurate approximation for analyzing integrals necessary

for Bayesian calculations can be achieved by assuming the posterior density is unimodal or at 130

least dominated by a single mode, such that it is highly peaked about its maximum, which is the

posterior mode. In this instance we can expand the log-PL, log
∏

f(Xi | θ), as a quadratic about

the MLE of θ. Then, exponentiating it yields approximations to the integrands at (1) that have

the normal density-type forms. This method is based on the Laplace method (e.g., Bleistein &

Handelsman 2010, Tierney & Kadane 1986). 135

In our application, the integrands at (2) involve the EL function that has no analytical form and

henceforth must be computed using numerical methods at each value of the function’s argument

(e.g., Owen 2001). This analytical shortcoming increases the complexity of calculations related

to the proposed estimator.

In this article we show that nonparametric marginal distributions based on the EL approach 140

behave similarly to those based on parametric likelihoods, i.e., EL1(θ) is highly peaked about

its maximum value. That is, we can approximate integrals of the forms of
∫
θEL1(θ)π(θ)dθ and∫

EL1(θ)π(θ)dθ in a similar manner to the approximations related to the parametric posterior

expectations. Towards this end we introduce the following lemma that can be considered as a

non-asymptotic alternative to Lemma 1 presented in Qin & Lawless (1994). 145

LEMMA 1. Define θM to be a root of the equation n−1
∑n

i=1G(Xi, θM ) = 0, where
∂G(Xi, θ)/∂θ < 0 (or ∂G(Xi, θ)/∂θ > 0), for all i = 1, . . . , n. Then the argument θM is a
global maximum of the function

W (θ) = max{
n∏

i=1

pi : 0 < pi < 1,

n∑
i=1

pi = 1,

n∑
i=1

piG(Xi, θ) = 0}

that increases and decreases monotonically for θ < θM and θ > θM , respectively.

For example, when G(u, θ) = u− θ we obtain θM = X̄ = n−1
∑n

i=1Xi and the function 150

W (θ) = EL1(θ). Now, we can obtain the following results that are analogues to the asymptotic

propositions that are well addressed in the parametric literatures (e.g., DasGupta 2008, Carlin &

Louis 2000).

PROPOSITION 1. Assume E | X1 |4< ∞,
∫ | θ | π(θ)dθ < ∞ and π(θ) is twice continuously

differentiable in a neighborhood of X̄ = n−1
∑n

i=1Xi, then the proposed estimator (2) satisfies 155

θ̂ =

∫
θ exp

[
−n(X̄−θ)2

2σ2
n

]
π(θ)dθ∫

exp
[
−n(X̄−θ)2

2σ2
n

]
π(θ)dθ

+
M3

n

σ2
n n

+ gn,

where σ2
n = n−1

∑n
i=1(Xi − X̄)2, M3

n = n−1
∑n

i=1(Xi − X̄)3, gn = Op(n
−3/2+ε) for all ε >

0 as n → ∞.

COROLLARY 1. Let π(θ) = (2πσ2
π)

−1/2 exp[−(θ − μπ)
2/2σ2

π], where μπ and σ2
π are known

hyperparameters, and the conditions of Proposition 1 hold. Then the posterior expectation at (2)



can be approximated as160

θ̂ = θ̃ +
M3

n

σ2
nn

+Op(n
−3/2+ε),

θ̃ =
(μπσ

2
n + X̄σ2

πn)

(nσ2
π + σ2

n)
=

(σ2
π)

−1μπ

(σ2
π)

−1 + n(σ2
n)

−1
+

n(σ2
n)

−1X̄

(σ2
π)

−1 + n(σ2
n)

−1
.

The estimator θ̃ is equivalent to the form of the parametric posterior expectation derived under

the Normal/Normal model (e.g., Carlin & Louis 2000). The integral mentioned in Proposition 1

can be sometimes obtained analytically depending upon the form of π(θ). However, following165

the process of the asymptotic evaluation of the parametric posterior expectations we can easily

show the following:

COROLLARY 2. Under the conditions of Proposition 1, let π(θ) be a prior function with |
d3 log(π(θ))/dθ3 |< ∞, for all θ. Then we have the following result:

θ̂ =
nX̄ + σ2

n{log π(X̄)}′ − σ2
n{log π(X̄)}′′X̄

n− σ2
n{log π(X̄)}′′ +

M3
n

σ2
nn

+Op(n
−3/2+ε), ε > 0, as n → ∞.

Now, we consider the normal prior, π(θ), when μπ and σ2
π are unknown. Following the empir-170

ical Bayes concepts (e.g., Carlin & Louis 2000) the unknown hyperparameters can be estimated

by, e.g., maximizing the respective marginal distributions. This method can be applied to the

nonparametric posterior expectation yielding double empirical posterior estimation. In this case,

we define

θ̂E =

∫
θ exp{logEL1(θ)} exp{−(θ − μ̂π)

2/2σ̂2
π}dθ∫

exp{logEL1(θ)} exp{−(θ − μ̂π)2/2σ̂2
π}dθ

, (3)

where (μ̂π, σ̂
2
π) = argmax

μ,σ
[(2πσ2)−1/2

∫∞
−∞ exp{logEL1(θ)} exp{−(θ − μ)2/2σ2}]. The175

next result implies a simple asymptotic form of θ̂E .

COROLLARY 3. Assume E | X1 |4< ∞, then the posterior expectation θ̂E satisfies

θ̂E =
μ̂πσ

2 + X̄σ̂2
πn

nσ̂2
π + σ2

+
M3

n

σ2
nn

+Op(n
−3/2+ε)

=
(σ̂2

π)
−1μπ

(σ̂2
π)

−1 + n(σ̂2
n)

−1
+

n(σ̂2
n)

−1X̄

(σ̂2
π)

−1 + n(σ̂2
n)

−1
+

M3
n

σ2
n n

+Op(n
−3/2+ε),

where μ̂π = X̄ , σ̂2
π −max{0, σ2

n − σ2} → 0, σ2 = V ar(X1), ε > 0 as n → ∞.180

The proof of Corollary 3 is technical and follows directly from the proof scheme of Proposition

1. Thus the proof is omitted.

Remark 1. Note that, according to the Central Limit Theorem it follows that
√
n(X̄ − θ) ∼

N(0, σ2), as n → ∞. Then under the conditions of Proposition 1 the nonparametric poste-

rior expectations θ̂ and θ̂E have the following asymptotic distributions, respectively, given as185 √
n[{θ̂ −M3

n(σ
2
nn)

−1}(σ2
n + σ2

πn)(σ
2
πn)

−1 − μπσ
2
n(σ

2
πn)

−1 − θ] ∼ N(0, σ2) and
√
n[{θ̂E −

M3
n(σ

2
nn)

−1}(σ2
n + σ̂2

πn)(σ̂
2
πn)

−1 − μπσ
2
n(σ̂

2
πn)

−1 − θ] ∼ N(0, σ2).



To extend the above results to more general situations, we assume that D(θ) defines a function

of θ and denote the nonparametric posterior expectation of D(θ) to be

D̂ =

∫
D(θ)eEL1(θ)π(θ)dθ{

∫
eEL1(θ)π(θ)dθ}−1.

PROPOSITION 2. Under the conditions that D(θ) > 0,
∫ | D(θ) | π(θ)dθ < ∞, 190

| {logD(θ)}′′′ |< ∞, and | {log π(θ)}′′′ |< ∞, for all θ, it can be shown that the non-
parametric posterior expectation of D(θ), satisfies, for all ε > 0,

D̂ =

∫
D(θ)e−(

∑
Xi−nθ)2/2nσ2

nπ(θ)dθ

{∫
e−(

∑
Xi−nθ)2/2nσ2

nπ(θ)dθ

}−1

+
D′(X̄)M3

n

σ2
nn

+Op(n
−3/2+ε),

where σ2
n = n−1

∑n
i=1(Xi − X̄)2, M3

n = n−1
∑n

i=1(Xi − X̄)3 as n → ∞. 195

The proof of this proposition is similar to that of Proposition 1.

Now, in a similar manner to Tierney et al. (1989) under the assumptions stated above we

apply the proof strategies utilized for Proposition 1 and Corollary 2 to show that the posterior

expectation of D(θ) can be approximated by

D̂ = D(X̄)

(
n− σ2

n{log π(X̄)}′′
n− σ2

n{logD(X̄)}′′ − σ2
n{log π(X̄)}′′

)1/2

200

× exp

(
[nX̄ + σ2

n{logD(X̄)}′ − σ2
n{logD(X̄)}′′X̄ + σ2

n{log π(X̄)}′ − σ2
n{log π(X̄)}′′X̄]2

× [n− σ2
n{logD(X̄)}′′ − σ2

n{log π(X̄)}′′]−2

−
[
nX̄ + σ2

n{log π(X̄)}′ − σ2
n{log π(X̄)}′′X̄

n− σ2
n{log π(X̄)}′′

]2
− {logD(X̄)}′X̄ +

{logD(X̄)}′′X̄2

2

)

+
D′(X̄)M3

n

σ2
nn

+Op(n
−3/2+ε).

3. NONPARAMETRIC POSTERIOR EXPECTATIONS OF GENERAL FUNCTIONALS 205

In order to consider the more general case and extend the results found in Section 2, we begin

with the definition of the EL function presented in the form of

EL2(θ) = max{
n∏

i=1

pi : 0 < pi < 1,

n∑
i=1

pi = 1,

n∑
i=1

piG(Xi, θ) = 0},

where we assume for simplicity that ∂G(u, θ)/∂θ > 0 or ∂G(u, θ)/∂θ < 0, for all u, and E |
G(X1, θ) |4< ∞. In this framework the posterior expectation takes the form

θ̂ =

∫ X(n)

X(1)
θelogEL2(θ)π(θ)dθ∫ X(n)

X(1)
elogEL2(θ)π(θ)dθ

=

∫ X(n)

X(1)
θelogELR2(θ)π(θ)dθ∫ X(n)

X(1)
elogELR2(θ)π(θ)dθ

, ELR2(θ) = nnEL2(θ). (4)



According to Lemma 1, EL2(θ) increases and decreases monotonically for θ < θM and θ >210

θM , respectively, where θM is a root of n−n
∑n

i=1G(Xi, θM ) = 0. Then, utilizing the same

technique used in the proof of Proposition 1, we can derive the following result:

PROPOSITION 3. If
∫ | θ | π(θ)dθ < ∞ and π(θ) is twice continuously differentiable in a

neighborhood of θM , then the estimator defined at (4) has the asymptotic form given by

θ̂ =

∫
θ exp

[−{∑n
i=1G(Xi, θ)}2/2nσ2

Gn

]
π(θ)dθ∫

exp
[−{∑n

i=1G(Xi, θ)}2/2nσ2
Gn

]
π(θ)dθ

+
M3

Gn

σ2
Gnn

+ gn,

where σ2
Gn = n−1

∑n
i=1G(Xi, θ)

2, M3
n = n−1

∑n
i=1G(Xi, θ)

3, gn = Op(n
−3/2+ε).215

Moreover, if π(θ) is a prior distribution function with | {log π(θ)}′′′ |< ∞, and |
∂2G(Xi, θ)/∂θ

2 |< ∞, for all θ, we have that

θ̂ = [{
n∑

i=1

∂G(Xi, θM )/∂θM}2 − {log π(θM )}′′
n∑

i=1

G(Xi, θM )2]−1

[
θM{

n∑
i=1

∂G(Xi, θM )

∂θM
}2

+ {log π(θM )}′
n∑

i=1

G(Xi, θM )2 −
n∑

i=1

G(Xi, θM )

n∑
i=1

∂G(Xi, θM )

∂θM

− {log π(θM )}′′
n∑

i=1

G(Xi, θM )2θM

]
+

M3
Gn

σ2
Gnn

+Op(n
−3/2+ε), for all ε > 0, as n → ∞.220

The proof of this proposition is similar to that of Proposition 1 and Corollary 2.

Remark 2. The nonparametric posterior expectation of D(θ) defined earlier and given in the

more general form as

D̂ =

∫ X(n)

X(1)
D(θ)elogEL2(θ)π(θ)dθ∫ X(n)

X(1)
elogEL2(θ)π(θ)dθ

can be analyzed in a similar manner to that used in Propositions 2 and 3.

Generally, we can define the EL function as225

EL3(θ1, . . . , θK) = max{
n∏

i=1

pi : 0 < pi < 1,

n∑
i=1

pi = 1,

n∑
i=1

piGk(Xi, θk) = 0, k = 1, . . . ,K}

to propose the estimation

D̂G =

∫ · · · ∫
K−times

D(θ1, . . . , θK)elogELR3(θ1,...,θK)π(θ1, . . . , θK)dθ1 · · · dθK∫ · · · ∫
K−times

elogELR3(θ1,...,θK)π(θ1, . . . , θK)dθ1 · · · dθK
, ELR3 = nnEL3.

Sections 2 and 3 provide the basic ingredients in order to analyze this complex estimator.

For example, without loss of generality and for ease of presentation, we consider K = 2,

Gk(Xi, θk) = Xk
i − θk, k = 1, 2 and

D̂G =

∫ X(n)

X(1)

∫ X2
(n)

X2
(1)

D(θ1, θ2)e
logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2

∫ X(n)

X(1)

∫ X2
(n)

X2
(1)

elogELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2

.



If we assume that
∫ ∫ | D(θ1, θ2) | π(θ1, θ2)dθ1dθ2 < ∞ exists, D and π are twice continuously 230

differentiable in neighborhoods of (X̄, X̄2), then the following proposition yields the relevant

asymptotic result:

PROPOSITION 4. Assume E | X1 |4< ∞, then the asymptotic approximation to the proposed
posterior expectation of D(θ1, θ2) is given by

D̂G =

∫ ∫
D(θ1, θ2) exp

{
− 0.5n(θ1 − X̄)2

σ2
n − (σXX2n)

2/σ2
X2n

− 0.5n(θ2 − X̄2)2

σ2
X2n

− (σXX2n)
2/σ2

n

235

+
n(θ1 − X̄)(θ2 − X̄2)

σ2
X2n

σ2
n/σXX2n − σXX2n

}
π(θ1, θ2)dθ1dθ2

×
[∫ ∫

exp

{
− 0.5n(θ1 − X̄)2

σ2
n − (σXX2n)

2/σ2
X2n

− 0.5n(θ2 − X̄2)2

σ2
X2n

− (σXX2n)
2/σ2

n

+
n(θ1 − X̄)(θ2 − X̄2)

σ2
X2n

σ2
n/σXX2n − σXX2n

}
π(θ1, θ2)dθ1dθ2

]−1

+
Jn
n

+Op(n
−3/2+ε), Jn = Op(1),

for all ε > 0, as n → ∞, where X̄2 = n−1
∑n

i=1X
2
i , σ2

X2n = n−1
∑n

i=1(X
2
i − X̄2)2, 240

σXX2n = n−1
∑n

i=1(Xi − X̄)(X2
i − X̄2) and the term Jn has a complicated form depicted in

the equation (A15) of the Appendix.

4. NONPARAMETRIC ANALOG OF JAMES-STEIN ESTIMATION

Let us begin by outlining the classic James-Stein estimation process assuming the observations

X1, . . . , Xn, are independent and identically distributed as multivariate normal with correspond- 245

ing mean vector θ = (θ1, . . . , θK) and covariance matrix Σ, i.e., Xi = (Xi1, . . . , XiK)T ∼
N((θ1, . . . , θK)T ,Σ), i = 1, . . . , n. In this case, Stein (1956) proved that for K ≥ 3, the MLE

of θ is inadmissible, i.e., there exists another estimator with frequentist risk (MSE) that is less

than or equal to that of the MLE. Through the analysis of the quadratic loss function one such

dominating estimator was derived by James & Stein (1961). Efron & Morris (1972) showed that 250

the James-Stein estimator belongs to a class of the PEB point estimators related to the Gaus-

sian/Gaussian model.

In Section 2, we showed that when K = 1 and the prior function is a normal density function

the proposed nonparametric posterior expectation is asymptotically equivalent to the parametric

posterior expectation derived under assumptions of the Gaussian/Gaussian model. In this sec- 255

tion, we assume X1, . . . , Xn are independent random vectors, Xi = (Xi1, . . . , XiK)T , with an

unknown distribution, and E | Xij |4< ∞, j = 1, . . . ,K, i = 1, . . . , n. Under these set of as-

sumptions we propose a nonparametric estimate of the mean (θ1, . . . , θK)T using the double

empirical posterior estimation, in the form of

θ̂Ej =

∫
θ exp{logEL4j(θ)} exp(−θ2/2σ̃2

π)dθ∫
exp{logEL4j(θ)} exp(−θ2/2σ̃2

π)dθ
(5)



with260

σ̃2
π = argmax

σ2

K∑
j=1

log[(2πσ2)−1/2

∫
exp{logEL4j(θ)} exp{−(θ2/2σ2}dθ],

where EL4j(θj) = max{∏n
i=1 pij : 0 < pij < 1,

∑n
i=1 pij = 1,

∑n
i=1 pijXij = θj}, j = 1,

. . . ,K. In the following proposition we will show the proposed distribution free estimation is

asymptotically equivalent to the parametric version of the James-Stein estimator.

PROPOSITION 5. For all ε > 0 and as n → ∞ the double empirical posterior estimator (5)

has the following asymptotic form:265

θ̂Ej = (1− K − 2∑K
r=1 X̄

2
.r

)X̄.j +
1

n

K∑
r=1

∑n
i=1(Xir − X̄.r)

3∑n
i=1(Xir − X̄.r)2

+Op(n
−3/2+ε), (6)

where X̄.j = n−1
∑n

i=1Xij , j = 1, . . . ,K.

The proof of Proposition 5 is technical and follows directly from the steps used to prove Propo-

sitions 1 and 4, respectively. Thus the proof is omitted.

5. MONTE CARLO RESULTS

We begin with MC comparisons between the proposed nonparametric posterior expectation270

(2), its asymptotic forms stated in Proposition 1 and Corollary 1, the classical nonparametric es-

timator X̄ and the corresponding MLE’s of θ = EX1. Towards this end 15,000 MC samples of

size n = 10, 20, 30, 50 and 75 were generated from both a N(1, 1) and LogNorm(0, 1) distri-

bution. We focus on normal and lognormal distributed data, since one can show the EL approach

is in general very efficient in analyzing normally distributed observations, whereas applications275

of EL methods can be inaccurate when skewed data are utilized (e.g., see Vexler et al. 2009, Yu

et al. 2010). Note that the MLE of θ = EX1 given data from a lognormal distribution has the

form θ̂ = exp(X̄ + σ2
n/2), whereas X̄ is the MLE when data follow a normal distribution. Let

μ = E(X1) be equal to 1 or exp(1/2) when normal or lognormal samples are used, respectively.

We considered the following prior distributions to be utilized for the Bayesian estimator (2):280

N(0, 1), N(μ− 1, σ2
π), N(μ, σ2

π), N(μ+ 1, σ2
π), {N(−μ, σ2

π) +N(μ, σ2
π)}/2, U(0, μ+ 0.5),

U(μ− 0.5, μ+ 0.5), U(μ− 0.25, μ+ 0.25), where σπ = 0.5, 0.1, 0.05 represents different sce-

narios depicting our “relative confidence” with respect to our prior information pertaining to

the unknown parameter. Note that, to examine posterior distributions based on EL functions,

Lazar (2003) used priors of N(μ, 1/n)-type forms for Monte Carlo evaluations, where n de-285

notes the corresponding sample size. In the interest of economy of space the Monte Carlo eval-

uations obtained using the prior distributions N(μ, 0.052), N(μ− 1, 0.12), N(μ− 1, 0.052),
N(μ+ 1, σ2

π), {N(−μ, 0.052) +N(μ, 0.052)}/2 and U(μ− 0.5, μ+ 0.5) are not presented in

this paper. The results of these experiments confirmed conclusions that are shown in this section.

The MC estimates of the means and variances of the estimators X̄ and the MLEs are pre-290

sented in Table 1. Table 2 provides the MC estimated mean and variance values for the proposed

estimator (2) and the relevant asymptotic form from Proposition 1, (θ̂ P1) and Corollary 1,

(θ̂ C1). Regarding the selected prior distributions, we remark that the N(0, 1) and N(0, 0.52)
distributions are supposed to contain ”no correct information” about the true values of θ (i.e.,

this distribution functions are not centered around the true values of the parameter); the pri-295

ors N(μ, 0.52) and N(μ, 0.12) are centered near the true values of the parameter,displaying



”correct information” about locations of the true values of the parameter with the relatively

large and small variances respectively; the prior distributions {N(−1, 0.52) +N(1, 0.52)}/2
and {N(−1, 0.12) +N(1, 0.12)}/2 can reflect information that the target parameter can be 1
unit +/− within the standard deviations 0.5 and 0.1, respectively. Table 2 shows that when the 300

data are normally distributed and the N(0, 1)-prior distribution is used then the variances of θ̂
are comparable to those of X̄ , the MLE of EX1 in these scenarios of experiments. The vari-

ances of the asymptotic forms θ̂ P1 and θ̂ C1 are very close to those of θ̂, from (2) even for

the moderately small sample size setting at n = 20. When using the prior N(1, 0.52), the pro-

posed estimator θ̂ from (2) performs significantly better than X̄ . When n = 10, the variance of 305

θ̂ is 42% smaller than that of X̄ . As n increases, the variance of θ̂ becomes close to that of X̄ .

The above conclusions are magnified when the prior N(1, 0.12) is utilized. When using the im-

proper prior, N(0, 0.52), the variance of θ̂ is about 27% greater than that of X̄ for samples of

size n = 10. However, when n is large, the variances of θ̂ are comparable to those of X̄ . When

the prior distribution {N(−1, 0.52) +N(1, 0.52)}/2 is utilized, the variance of θ̂ is about 35% 310

smaller than that of X̄ for samples of size n = 10. As the sample size increases the variance of

θ̂ is comparable to that of X̄ . These conclusions, relative to the gains in efficiency, are strongly

observed when {N(−1, 0.12) +N(1, 0.12)}/2 is utilized as the prior distribution. When a non-

informative uniform prior distribution is used, e.g., U(0, 1.5), the variance of θ̂ is about 38%

smaller than that of X̄ for samples of size n = 10. When n increases, the variance of θ̂ becomes 315

close to that of X̄ . When an uniform prior centered near the true parameter value is used, e.g.,

U(0.75, 1.25), the variance of θ̂ is about 94% smaller than that of X̄ for samples of size n = 10.

In the case where data have the assumed lognormal distribution and the proposed estimator is

based on the prior distribution, N(0, 1), we have that the variance of θ̂ is about 61% less than that

of X̄ and about 71% less than that of the MLE based on samples of size n = 10. When using the 320

prior N(exp(1/2), 0.52), the proposed estimator θ̂ performs much better than X̄ and the MLE,

e.g., when n = 10, the variance of θ̂ is about 76% smaller than that of X̄ and about 82% less

than that of the MLE. As n increases, the variances of θ̂ become close to those of X̄ and the

MLE. The asymptotic forms θ̂ P1 and θ̂ C1, perform similarly to θ̂ even when n = 20. These

results are significantly shown when the prior distribution N(μ, 0.12) is used. When using an 325

improper prior distribution, e.g., N(μ− 1, 0.52), the performance of the proposed estimator is

still better than that of X̄ and the MLE, e.g., when n = 10, the variance of θ̂ is about 53% smaller

than that of X̄ and about 65% smaller than that of the MLE. When n is large, the variances of

θ̂ are comparable to those of X̄ and the MLE. In addition, the estimators θ̂ P1 and θ̂ C1 are

still very close to the proposed estimator θ̂ from (2). When we have information that the target 330

parameter can be μ or −μ, e.g., {N(−μ, 0.52) +N(μ, 0.52)}/2, the variance of θ̂ is about 76%
smaller than that of X̄ and about 82% less than that of the MLE, for samples of size n = 10. As

n increases, the variances of θ̂ become comparable to those of X̄ and the MLE. These results

are highlighted when {N(−μ, 0.12) +N(μ, 0.52)}/2 is utilized as the prior distribution. When

a non-informative uniform prior is used, e.g., U(0, μ+ 0.5), the variance of θ̂ is about 74% 335

smaller than that of X̄ and about 80% less than that of the MLE, for samples of size n = 10.

When n is large, the variances of θ̂ are close to those of X̄ and the MLE. When an uniform prior

centered near the true parameter value is used, e.g., U(μ− 0.25, μ+ 0.25), the variance of θ̂ is

about 99% smaller than that of X̄ and the MLE for samples of size n = 10. One can also note

that the use of the normal prior distributions with mean 0 to estimate the parameter θ = 1 (or 340

θ = exp(0.5)) leads to negative biases of the estimations. These biases are relatively small and

vanished when the sample size increases.

-TABLE 1, 2-



From the MC study based on data sampled from a lognormal distribution we observe that the

proposed estimator outperforms X̄ and the MLE even when using priors that are supposed to

contain ”no information” about the true values of θ. The efficiency of the proposed estimator345

is clearly demonstrated in the case of skewed data. It has been discussed in the literature that

the traditional estimation of the mean of a lognormal distribution is inaccurate due to the non-

quadratic and asymmetric shape of the likelihood profile (e.g., Wu et al. 2003). In this case the

proposed approach can serve as valid alternatives to the traditional techniques.

The performance of the asymptotic forms θ̂ P1 and θ̂ C1 are observed to be similar to that of350

θ̂ from (2) across a wide range of scenarios. Note that in additional MC evaluations, which were

omitted from this paper, we consistently observed that the estimators θ̂ P1 and θ̂ C1 provided

accurate and efficient approximations to θ̂. We also numerically evaluated the double empirical

Bayesian estimator θ̂E given at equation (3) and the corresponding asymptotic form from Corol-

lary 3. We concluded that these proposed estimators are comparable to X̄ , the MLE, when data355

are normally distributed, e.g., when n = 20, the variances of X̄ and θ̂E were 0.0499 and 0.0505,

respectively. However, when data were generated from a lognormal distribution the proposed es-

timator demonstrated an improvement efficiency as compared with the classical nonparametric

estimator X̄ . For example, when n = 75, the variance of θ̂E was 7% smaller than that of X̄ .

Monte Carlo evaluations of the nonparametric James-Stein estimator. In this part of the360

experimental study, we carried out MC evaluations of the nonparametric James-Stein estimator

θ̂Ej and compared it to the classical nonparametric estimator X̄.j in terms of relative bias and

efficiency. For simplicity and without loss of generality we assumed the dimension K = 3 for the

underlying multivariate distributions used within this MC study. The independent samples were

generated from either a MVN{(1, 1, 1)T , I} or a MV LogNorm{(0, 0, 0)T , I}, where we used365

the covariance structure

I =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

In addition, correlated samples were generated from either MVN{(1, 1, 1)T ,Σ} or a

MV LogNorm{(0, 0, 0)T ,Σ}, with covariance structure given as

Σ =

⎛
⎝ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠ .

The sample sizes n were 10, 20, 30, 50, 75, respectively. We compared our estimator

(θ̂E1, θ̂E2, θ̂E3) given at (6) with the classical nonparametric estimator X̄ = (X̄.1, X̄.2, X̄.3).370

The MC variance estimates for the respective estimators are defined as V (θ̂Ej) =
∑T

i=1(θ̂Eij −
θij)

2/T and V (X̄j) =
∑T

i=1(X̄ij − θij)
2/T , respectively, where j = 1, 2, 3 and T = 15000 is

the number of the MC replications. The MC means and variances of the estimators are pre-

sented in Tables 3-6. In the cases where samples were generated from a MVN{(1, 1, 1)T , I}
distribution the proposed James-Stein estimator was more efficient than X̄ (the MLE in375

these cases) for small sample sizes, e.g. when n = 10 the variances of (θ̂E1, θ̂E2, θ̂E3) were

(0.062, 0.065, 0.064), respectively, while the variances of X̄ were (0.096, 0.100, 0.099). As

the sample size increased, the variance of the nonparametric James-Stein estimators were ob-

served to be close to those of each component of X̄ . In the case where samples were generated

from MV LogNorm{(0, 0, 0)T , I} the James-Stein estimator had a smaller component-wise380

variance as compared to the corresponding estimators for each element of X̄ . For example,

when the sample size was set to n = 10, the variance of each element of (θ̂E1, θ̂E2, θ̂E3) was



(0.398, 0.531, 0.395), while the variance of each element of X̄ was (0.476, 0.591, 0.485). In the

case where correlated data was generated, we observed similar results in that the performance

of (θ̂E1, θ̂E2, θ̂E3) was better than that of X̄ in the sense of the relative efficiency. We conclude 385

that for fixed sample sizes, ranging from small to large, the nonparametric James-Stein estimator

consistently outperforms the classical nonparametric estimator, X̄ , in the multivariate setting.

6. APPLICATION

Thiobarbituric acid reaction substances (TBARS) is a common biomarker used in the study of

oxidative stress (e.g., Schisterman et al. 2001). Many epidemiological studies have been carried 390

forth for the purpose of examining the association between TBARS and myocardial infarction

(MI) disease. The difficulty in analyzing TBARS is that values of this biomarker have been il-

lustrated to have a non-normal distribution. In this section, we demonstrate the utility of the

proposed nonparametric Bayesian approach by applying it to data from a population-based case-

control study. The sample of 300 MI cases and 300 healthy controls was derived from randomly 395

selected set of residents of Erie and Niagara counties, 35 to 79 years of age. The data was col-

lected from two sources. First, a sample of residents between the ages of 35 and 65 years was ran-

domly selected using the New York State Department of Motor Vehicles drivers’ license rolls. A

second sample of elderly residents between the ages of 65 to 79 years old was randomly selected

from the Health Care Financing Administration database. In terms of constricting the proposed 400

posterior expectations we utilized information from an earlier study by Schisterman et al. (2001),

which had a similar design. They reported that the mean and standard deviation of TBARS was

1.84 and 0.80 for the case group, 1.44 and 0.48 for the control group, respectively. Therefore, we

can reasonably consider N(1.84, 0.802) and N(1.44, 0.482) as possible prior distributions for

TBARS for the case and control groups, respectively. For the purpose of illustration we also con- 405

sidered prior distribution functions such as N(1.84, 0.12) and N(1.44, 0.12), N(1.84, (1/300)2)
and N(1.44, (1/300)2), N(1, 1) and N(1, 1) for the case and the control groups, respectively.

We evaluated the mean and confidence intervals (CIs) for each group using the nonparametric

Bayesian estimator θ̂ defined at (2). We also examine the double empirical Bayesian estimator

θ̂E defined at (3), as well as the classical nonparametric moment estimator X̄ based on the data. 410

The results are shown in Table 7.

Note that across a variety of prior distributions, ranging from less informative to

more informative, the proposed 95% CI’s for TBARS, based on θ̂ and θ̂E , respectively,

do not overlap between the cases and controls. By contrast, the 95% CI’s correspond-

ing to the classical nonparametric moment estimator, X̄ , do not provide this conclusion. 415

(These CI’s based on X̄ were calculated using the Central Limit Theorem approximation.)

-Table 7-

Bootstrap-Type Simulation Study. In addition to the above data example we conducted a

bootstrap-type study for the purpose of examining the behavior of the estimators θ̂, θ̂E and X̄
in terms of relative efficiency using TBARS MI case data as the underlying theoretical pseudo- 420

population. For this study we set the number of bootstrap resamples to be B = 5000. For each

bootstrap resample the dataset was divided into a sample set, of size n = 50 and n = 70, re-

spectively, and a pseudo-population set at size n = 300− 50 = 250 and n = 300− 70 = 230,

respectively. For each resample we calculated θ̂i, θ̂Ei, X̄i and the pseudo-population mean us-

ing the relatively large samples. Define the obtained estimator based on the large samples as 425

μ̃i, i = 1, . . . , B. (The subscript i of θ̂i, θ̂Ei, X̄i and μ̃i indicates corresponding estimator’s val-

ues obtained at ith bootstrap repetition.) Our measures of variance used to examine the rela-

tive efficiency between θ̂, θ̂E and X̄ take the forms
∑B

i=1(θ̂i − μ̃i)
2/B,

∑B
i=1(θ̂Ei − μ̃i)

2/B,



∑B
i=1(X̄i − μ̃i)

2/B, respectively. In this simulation study, we used the prior distribution func-

tions N(1, 1), N(1.1, 0.12), N(1.3, 0.12), N(1.4, 0.12), and N(1.84, 0.12) for construction of430

the estimator θ̂ defined at (2). The results of this study are show in Tables 8 and 9. When we

use the N(1, 1) prior supposed to contain ”no correct information” about the true values of θ,

the proposed estimator θ̂ provides the bootstrap type variances comparable to those of X̄ , e.g.,

when n = 50, the variance of X̄ is 0.00359, while the variance of θ̂ is 0.00351. When the priors

were chosen to center around the bootstrap mean given as μ =
∑B

i=1 μ̃i/B then the bootstrap-435

type variances of θ̂ are smaller than those of X̄ , e.g., in the case with the prior N(1.4, 0.12),

the bootstrap-type variance of θ̂ is about 52% smaller than that of X̄ when n = 70. The dou-

ble empirical Bayesian estimator θ̂E provides similar bootstrap-type variances to those of X̄ .

-Table 8,9-

7. DISCUSSION440

In this paper, we proposed and examined a novel approach for developing the nonparametric

Bayesian posterior expectation fashion by incorporating the EL methodology into the posterior

likelihood construction. The asymptotic approximations to the new distribution-free posterior

expectations were developed and shown to be quite accurate, even in the finite sample setting

at n = 20. The asymptotic forms are similar to those derived in the well-known parametric445

Bayesian and Frequentist statistical literature. In the case when the prior distribution function

depends on unknown hyper-parameters we proposed a nonparametric version of the empiri-

cal Bayesian method. This yielded double empirical Bayesian estimators. The extensive MC

study showed that when prior distributions contained ”no information” about the true values of

the estimated parameter are assumed and the underlying distribution is skewed the proposed450

distribution-free posterior mean estimator outperforms the classical nonparametric estimator X̄
in terms of relative efficiency. When the data are normally distributed the proposed estimator

is comparable to the MLE. When proper priors are used and the data is generated from either

a normal or lognormal distribution the proposed estimator provides significantly smaller vari-

ances as compared to the classical estimator X̄ and the MLE. This in turn yields much narrower455

confidence intervals.

In the multivariate setting, with prior functions defined to be normal distributions with un-

known hyper-parameters, the double empirical Bayesian estimation yields a nonparametric ver-

sion of the well-known James-Stein estimator. The MC study in the multivariate setting con-

firmed that the proposed nonparametric James-Stein estimator has smaller variances than the460

classical nonparametric estimator X̄ for data generated from MVN and MV LogNorm dis-

tributions. The data example demonstrated the applicability of the proposed methodology in a

real-world setting.
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APPENDIX

Proof of Lemma 1
It is clear that the argument θM , a root of n−1

∑n
i=1 G(Xi, θM ) = 0, maximizes the function W (θ),

since in this case W (θM ) = n−n with pi = n−1, i = 1, . . . , n, that maximize
∏n

i=1 pi given the sole 470

constraint
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , n.

Using the Lagrange method, one can represent W (θ) as

W (θ) =
n∏

i=1

pi, 0 < pi =
1

n+ λG(Xi, θ)
< 1, i = 1, . . . , n,

where the Lagrange multiplier λ is a root of the equation
∑

G(Xi, θ){n+ λG(Xi, θ)}−1 = 0 (e.g., Owen

2001). This then yields the following expression

d log{W (θ)}
dθ

= −λ

n∑
i=1

∂G(Xi, θ)/∂θ

n+ λG(Xi, θ)
−

n∑
i=1

G(Xi, θ)

n+ λG(Xi, θ)

∂λ

∂θ
(A1) 475

= −λ

n∑
i=1

∂G(Xi, θ)/∂θ

n+ λG(Xi, θ)
,

where without loss of generality we assume ∂G(Xi, θ)/∂θ > 0, i = 1, . . . , n.

Now define the function L(λ) =
∑n

i=1 G(Xi, θ){n+ λG(Xi, θ)}−1. Since dL(λ)/dλ < 0 the func-

tion L(λ) decreases with respect to λ and has just one root relative to solving L(λ) = 0. Consider the

scenario with θ > θM . In this case when λ0 = 0 we can conclude that 480

L(λ0) =

n∑
i=1

G(Xi, θ)(n)
−1 ≥

n∑
i=1

G(Xi, θM )(n)−1 = 0,

since G(Xi, θ) increases with respect to θ (∂G(Xi, θ)/∂θ > 0).

The function L(λ) decreases. This implies that the root of L(λ) = 0 should be located on the right

side from λ0 = 0 and then this root is positive. For a graphical representation of this case see Figure 1(a)

below. Thus, by virtue of (A1), we prove that the function W (θ) decreases, when θ > θM .

Taking the same approach, one can show that the root of L(λ) = 0 should be 485

to the left of λ0 = 0, when θ < θM . For a graphical representation of this case

see Figure 1(b). This result combined with (A1) completes the proof of Lemma 1.

-Figure 1-

Proof of Proposition 1
To prove the proposition, we first show that 490

∫ X(n)

X(1)

θυelogELR1(θ)π(θ)dθ ∼=
∫ X̄+ϕnn

−1/2

X̄−ϕnn−1/2

θυelogELR1(θ)π(θ)dθ, υ = 0, 1,

where a positive sequence ϕnn
−1/2 → ∞, ϕn → ∞, as n → ∞. This approximation allows us to analyze

the numerator (υ = 1) and the denominator (υ = 0) defined at (2). Let us rewrite the function EL1(θ) in

the form of logEL1(θ) =
∑n

i=1 log pi, where pi can be defined by maximizing the Lagrangian

Λ =

n∑
i=1

log pi + λ1(1−
n∑

i=1

pi) + λ2(θ −
n∑

i=1

piXi),

where λ1 and λ2 are Lagrange multipliers. Thus one can show that pi = {n+ λ(Xi − θ)}−1, where λ is

a root of the equation
∑n

i=1(Xi − θ)/{n+ λ(Xi − θ)} = 0. 495



Now define the function

L(λ) =
n∑

i=1

(Xi − θ)/{n+ λ(Xi − θ)}. (A2)

According to Lemma 1, when θ < X̄ then the function logELR1(θ) is strictly increasing and when

θ > X̄ then the function logELR1(θ) is strictly decreasing. This implies that the function logELR1(θ)
is maximized at the point θ = X̄ . Now, denote a = X̄ − ϕnn

−1/2 and b = X̄ + ϕnn
−1/2, where ϕn =

n1/6−β and β ∈ (0, 1/6). Then it follows that500 ∫ X(n)

X(1)

elogELR1(θ)π(θ)dθ =

∫ a

X(1)

elogELR1(θ)π(θ)dθ +

∫ b

a

elogELR1(θ)π(θ)dθ

+

∫ X(n)

b

elogELR1(θ)π(θ)dθ.

By virtue of the above considerations we can bound the remainder term∫ a

X(1)

elogELR1(θ)π(θ)dθ ≤ elogELR1(a)

∫ X(n)

X(1)

π(θ)dθ ≤ elogELR1(a).

In order to arrive at an expression for the value of logELR1(a), taking into account the definition of

ELR1 in (2), we evaluate (A2) at θ = a such that505

L(λ) =
n∑

i=1

(Xi − X̄ + ϕnn
−1/2)

n+ λ(Xi − X̄ + ϕnn−1/2)
(A3)

=
1

n

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)[{1 + λn−1(Xi − X̄ + ϕnn

−1/2)} − λn−1(Xi − X̄ + ϕnn
−1/2)]

1 + λn−1(Xi − X̄ + ϕnn−1/2)

=
1

n
{

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)− λn−1

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)2

1 + λn−1(Xi − X̄ + ϕnn−1/2)
}.

Defining λc = n2/3τ−1
n , where τn = nγ , 0 < γ < β < 1/6, and substituting it into (A3) yields

√
nL(λc) = ϕn −√

n
n2/3−1

τn

1

n

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)2

1 + n−1/3τ−1
n (Xi − X̄ + ϕnn−1/2)

,

Since (Xi − X̄)/(n1/3τn) = Op(1) (e.g., Owen 1988), we have510

√
nL(λc) = ϕn − n1/6

τn

1

n

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)2

1 +Op(1)
.

Now, it follows that
√
nL(λc) → −∞, as n → ∞. In a similar manner,

√
nL(−λc) → ∞, as n →

∞. Thus, the solution, λ0, of equation
√
nL(λ0) = 0 belongs to the interval (−λc, λc), i.e. λ0 =

Op(n
2/3τ−1

n ).
Let us now derive the approximate value corresponding to λ0 as n → ∞. Since L(λ0) = 0,

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)

1

1 + λ0n−1(Xi − X̄ + ϕnn−1/2)
= 0. (A4)

Applying a Taylor series expansion to (A4) we then obtain515

n∑
i=1

(Xi − X̄ + ϕnn
−1/2){1− λ0n

−1(Xi − X̄ + ϕnn
−1/2) +

λ2
0n
−2(Xi − X̄ + ϕnn

−1/2)2

(1 + ωi)2
} = 0,

(A5)



where 0 < ωi < λ0n
−1(Xi − X̄ + ϕnn

−1/2). Since λ0 = Op(n
2/3τ−1

n ), we can re-express (A5) as

n∑
i=1

(Xi − X̄ +
ϕn

n1/2
)− λ

n

n∑
i=1

(Xi − X̄ +
ϕn

n1/2
)2 +

O(n1/3)

τ2n

1

n

n∑
i=1

(Xi − X̄ +
ϕn

n1/2
)3 = 0. (A6)

Then it follows that the approximate solution based on solving (A6) is given by

λ0 =
ϕnn

1/2

n−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2
+

O(n1/3)

τ2n
. (A7)

Applying a Taylor series expansion to logELR1(θ) by (2) with θ = a yields the following expression

logELR1(a) = −
n∑

i=1

log{1 + λ0

n
(Xi − X̄ + ϕnn

−1/2)}

= −
n∑

i=1

λ0

n
(Xi − X̄ + ϕnn

−1/2) +
1

2

n∑
i=1

λ2
0

n2
(Xi − X̄ + ϕnn

−1/2)2 520

− 1

3

n∑
i=1

λ3
0

n3

(Xi − X̄ + ϕnn
−1/2)3

(1 + ω∗i )3
,

where 0 < ω∗i < λ0n
−1(Xi − X̄ + ϕnn

−1/2). By virtue of (A7) and the fact that λ0 = O(n2/3/τn) we

then have

logELR1(a) = −λ

n
ϕnn

1/2 +
1

2

n∑
i=1

λ2

n2
(Xi − X̄ + ϕnn

−1/2)2 −O(n−3γ)

= − ϕ2
nn

nn−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2
− O(n4/3)

τ2nn
2

ϕnn
1/2

525

+
1

2

[
ϕ2
nn

{n−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2}2 + 2
O(n4/3)

τ2nn

ϕ2
nn

1/2

n−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2

+
O(n8/3)

τ4nn
2

]
1

n2

n∑
i=1

(Xi − X̄ + ϕnn
−1/2)2 −O(n−3γ)

= −1

2

ϕ2
n

n−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2
−O(n4/3−2−2γ+1/6−β+1/2)

+O(n4/3−1−2γ+1/6−β+1/2−1) +O(n8/3−2−4γ−1)−O(n−3γ)

= −1

2

ϕ2
n

n−1
∑n

i=1(Xi − X̄ + ϕnn−1/2)2
−O(n−3γ) → ∞ 530

as n → ∞, where ϕ2
n = n1/3−2β → ∞ and 0 < γ < β < 1/6. Thus, we arrive at the result that∫ a

X(1)
exp{logELR1(θ)}π(θ)dθ ≤ exp{logELR1(a)} = O{exp(−wn1/3−2β)} → 0 as n → ∞,

where w is a positive constant. It follows similarly that
∫X(n)

b
exp{logELR1(θ)π(θ)dθ} ≤

exp{logELR1(b)} = O{exp(−w1n
1/3−2β)} → 0 as well as

∫ a

X(1)
θelogELR1(θ)π(θ)dθ ≤

O(e−w2n
1/3−2β

) → 0,
∫X(n)

b
θelogELR1(θ)π(θ)dθ ≤ O(e−w3n

1/3−2β

) → 0, where w1, w2, w3 are 535

positive constants and n → ∞.

Now we consider the main term
∫ b

a
θelogELR1(θ)π(θ)dθ of the marginal distribution defined at (2).

This integral consists of logELR1(θ) that, by virtue of the Taylor theorem and (A1), is

logELR1(θ) = logELR1(X̄) + (θ − X̄)λ(X̄) +
1

2
(θ − X̄)2

(
dλ(u)

du

∣∣∣
u=X̄

)
(A8)



+
1

6
(θ − X̄)3

(
d2λ(u)

du2

∣∣∣
u=X̄

)
+

1

24
(θ − X̄)4

(
d3λ(u)

du3

∣∣∣
u=θ+�(X̄−θ)

)
, 
 ∈ (0, 1).540

Since the function λ(u) is defined by
∑

(Xi − u)/{n+ λ(u)(Xi − u)}, one can show that

dλ(θ)

dθ
= − n

∑n
i=1 p

2
i∑n

i=1(Xi − θ)2p2i
,

d2λ(θ)

dθ2
=

2(dλ(θ)/dθ)2
∑n

i=1(Xi − θ)3p3i + 4n(dλ(θ)/dθ)
∑n

i=1(Xi − θ)p3i − 2nλ(θ)
∑n

i=1 p
3
i∑n

i=1(Xi − θ)2p2i
,

d3λ(θ)

dθ3
=

{
n∑

i=1

(Xi − θ)2p2i

}−1[
6
dλ(θ)

dθ

d2λ(θ)

dθ2

n∑
i=1

(Xi − θ)3p3i + 6n
d2λ(θ)

dθ2

n∑
i=1

(Xi − θ)p3i

− 6

(
dλ(θ)

dθ

)3 n∑
i=1

(Xi − θ)4p4i − 18n

(
dλ(θ)

dθ

)2 n∑
i=1

(Xi − θ)2p4i + 12n

(
dλ(θ)

dθ

) n∑
i=1

p3i545

−
{
18n2

(
dλ(θ)

dθ

)
+ 6n(λ(θ))2

} n∑
i=1

p4i

]
,

where pi = {n+ λ(θ)(Xi − θ)}−1. Noting that, the argument X̄ maximizes the function logELR1(θ),
logELR1(X̄) = 0 and λ(X̄) = 0, we have

dλ(θ)

dθ

∣∣∣
θ=X̄

= − n

n−1
∑n

i=1(Xi − X̄)2
= − n

σ2
n

,
d2λ(θ)

dθ2

∣∣∣
θ=X̄

=
2n
∑n

i=1(Xi − X̄)3/n{
n−1

∑n
i=1(Xi − X̄)2

}3 =
2nM3

n

(σ2
n)

3

as well as d3λ(θ)/dθ3 = O(n), for θ ∈ (a, b), since, in this case, using the same techniques applied to the

previous proofs and utilizing results found in Owen (1988) and Lazar & Mykland (1998) one can derive550

the following expressions:

λ =

∑n
i=1(Xi − X̄)

n−1
∑n

i=1(Xi − X̄)2
+

O(n1/3)

τ2n
= O(n2/3−β),

λ(θ)

n
(Xi − θ) = O(1),

pi =
1

n

{
1 +

λ(θ)

n
(Xi − θ)

}−1

= O(n−1),

when | X̄ − θ |≤ ϕnn
−1/2 = n−1/3−β , 0 < β < 1/6. The above asymptotic results, (A8) and a Taylor

expansion imply555 ∫ b

a

elogELR1(θ)π(θ)dθ =

∫ b

a

exp

{
− n

2σ2
n

(θ − X̄)2 +
nM3

n

3(σ2
n)

3
(θ − X̄)3 +O(n)(θ − X̄)4

}
π(θ)dθ

=

∫
exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ +

nM3
n

3(σ2
n)

3

∫
(θ − X̄)3 exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ

+O(n)

∫ b

a

(θ − X̄)4 exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ. (A9)

It follows similarly that∫ b

a

(θ − X̄)elogELR1(θ)π(θ)dθ =

∫
(θ − X̄) exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ560

+
nM3

n

3(σ2
n)

3

∫
(θ − X̄)4 exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ

+O(n)

∫ b

a

(θ − X̄)5 exp

{
− n

2σ2
n

(θ − X̄)2
}
π(θ)dθ. (A10)



By virtue of the definition (2), the nonparametric posterior expectation θ̂ can be represented in the form

of

θ̂ =

∫
θ exp

{
− n

2σ2
n
(θ − X̄)2

}
π(θ)dθ∫

exp
{
− n

2σ2
n
(θ − X̄)2

}
π(θ)dθ

+Qn,

where 565

Qn ≡
∫ b

a
θelogELR1(θ)π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ − ∫
θe
− n

2σ2
n
(θ−X̄)2

π(θ)dθ
∫ b

a
elogELR1(θ)π(θ)dθ∫

e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ
∫ b

a
elogELR1(θ)π(θ)dθ

=

{∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫ b

a

elogELR1(θ)π(θ)dθ

}−1

×
{∫ b

a

(θ − X̄)elogELR1(θ)π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

−
∫

(θ − X̄)e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫ b

a

elogELR1(θ)π(θ)dθ

}
.

It is clear that, taking into account the results (A9), (A10), the facts π(θ) = π(X̄) + (θ − X̄)π′(X̄) + 570

0.5(θ − X̄)2π′′(X̄ + q(θ − X̄)), q ∈ (0, 1),
∫
(θ − X̄)e

− n

2σ2
n
(θ−X̄)2

dθ = 0 and b− a = n1/6−β/
√
n, we

obtain

Qn =

{
nM3

n

3(σ2
n)

3

∫
(θ − X̄)4e

− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

+O(n)

∫ b

a

(θ − X̄)5e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

− nM3
n

3(σ2
n)

3

∫
(θ − X̄)3e

− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
(θ − X̄)e

− n

2σ2
n
(θ−X̄)2

π(θ)dθ 575

−O(n)

∫ b

a

(θ − X̄)4e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
(θ − X̄)e

− n

2σ2
n
(θ−X̄)2

π(θ)dθ

}

×
[{∫

e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

}2

+
nM3

n

3(σ2
n)

3

∫
(θ − X̄)3e

− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

+O(n)

∫ b

a

(θ − X̄)4e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

∫
e
− n

2σ2
n
(θ−X̄)2

π(θ)dθ

]−1

=

{
nM3

n

3(σ2
n)

3

∫
(θ − X̄)4e

− n

2σ2
n
(θ−X̄)2

dθ

∫
e
− n

2σ2
n
(θ−X̄)2

dθ

+O(n)

∫ b

a

(θ − X̄)5e
− n

2σ2
n
(θ−X̄)2

dθ

∫
e
− n

2σ2
n
(θ−X̄)2

dθ

}
580

×
{∫

e
− n

2σ2
n
(θ−X̄)2

dθ

}−2

+O(n−1/2−6β).



Computing the definite integrals written above, we deduces that

θ̂ =

∫
θ exp

{
− n

2σ2
n
(θ − X̄)2

}
π(θ)dθ∫

exp
{
− n

2σ2
n
(θ − X̄)2

}
π(θ)dθ

+

2nM3
n

3(σ2
n)

3

4!(π)1/2(2σ2
n)

5/2

2!n5/225
(2πσ2

n)
1/2

n1/2 +O{n(n1/6−β−1/2)6} (2πσ2
n)

1/2

n1/2

(2πσ2
n)n

−1
+O(n−1/2−6β).

Making use of β = 1/6− ε/6, ε > 0 we complete the proof of Proposition 1.585

Proof of Corollary 1
Corollary 1 can be proven by directly applying the result of Proposition 1.

Proof of Corollary 2
To prove this corollary, we can use the result

θ̂ =

∫ b

a
θ exp

{
− 1

2n
(
∑

Xi−nθ)2

σ2
n

}
π(θ)dθ∫ b

a
exp

{
− 1

2n
(
∑

Xi−nθ)2

σ2
n

}
π(θ)dθ

+
M3

n

σ2
nn

+Op(n
−3/2+ε),

where a = X̄ − ϕnn
−1/2, b = X̄ + ϕnn

−1/2, ϕn = n1/6−β , 0 < γ < β < 1/6, β = 1/6− ε/6, ε > 0.590

This approximation was obtained above via the process related to the proof of Proposition 1. Applying

the Taylor expansion π(θ) = π(X̄) + (θ − X̄)π′(X̄) + (θ − X̄)2π′′(X̄)/2 + (θ − X̄)3π′′′(X̃)/6, X̃ ∈
(θ, X̄) to the asymptotic form of θ̂, and in a similar manner of the Laplace method (e.g., Bleistein &

Handelsman 2010, p.180), we compete the proof.

Proof of Proposition 4595

We begin with the asymptotic analysis related to the numerator of the definition

of the nonparametric posterior expectation D̂G. To approximate the double integral∫ ∫
D(θ1, θ2)e

logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2, we first show that the main term of the integral

is ∫ b

a

∫ b1

a1

D(θ1, θ2)e
logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2,

where a = X̄ − ϕnn
−1/2, b = X̄ + ϕnn

−1/2, a1 = X2 − ϕnn
−1/2, b1 = X2 + ϕnn

−1/2, ϕn =600

n1/6−β , 0 < β < 1/6 and X2 =
∑n

i=1 X
2
i /n. Since

∫ a

X(1)

∫ X2
(n)

X2
(1)

D(θ1, θ2)e
logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2

≤
∫ a

X(1)

∫ X2
(n)

X2
(1)

D(θ1, θ2)π(θ1, θ2)dθ2e
logELR1(θ1)dθ1,

in a similar manner to the proof of Proposition 1, we conclude∫ a

X(1)

∫ X2
(n)

X2
(1)

D(θ1, θ2)π(θ1, θ2)dθ2e
logELR1(θ1)dθ1605

≤
∫ a

X(1)

∫ X2
(n)

X2
(1)

D(θ1, θ2)π(θ1, θ2)dθ2dθ1e
logELR1(a) = O(e−wn1/3−2β

) → 0,

where w is a positive constant and n → ∞.



Likewise, we have
∫X(n)

b

∫X2
(n)

X2
(1)

D(θ1, θ2)e
logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2 = O(e−wn1/3−2β

) → 0, as

n → ∞.
Now, we define ELR5(θ) = nn max

0<p1,...,pn<1
{∏n

i=1 pi :
∑n

i=1 pi = 1,
∑n

i=1 piX
2
i = θ} It is clear that 610

ELR5(θ) ≥ ELR3(θ1, θ) for all (θ1, θ) and hence∫ b

a

∫ a1

X2
(1)

D(θ1, θ2)e
logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2 ≤

∫ b

a

∫ a1

X2
(1)

D(θ1, θ2)π(θ1, θ2)dθ1e
logELR5(θ2)dθ2

≤
∫ b

a

∫ a1

X2
(1)

D(θ1, θ2)π(θ1, θ2)dθ1dθ2e
logELR5(a1) = O(e−wn1/3−2β

) → 0,

and
∫ b

a

∫X2
(n)

b1
D(θ1, θ2)e

logELR3(θ1,θ2)π(θ1, θ2)dθ1dθ2 → 0, n → ∞.

In order to apply almost directly the proof scheme of Proposition 1, we note that 615

logELR3(θ1, θ2) = −
n∑

i=1

log{1 + λ1

n
(Xi − θ1) +

λ2

n
(X2

i − θ2)},

where the Lagrange multipliers λ1 and λ2 satisfy

L1(θ1, θ2) ≡
n∑

i=1

Xi − θ1
n+ λ1(Xi − θ1) + λ2(X2

i − θ2)
= 0 and (A11)

L2(θ1, θ2) ≡
n∑

i=1

X2
i − θ2

n+ λ1(Xi − θ1) + λ2(X2
i − θ2)

= 0

(e.g., Owen 2001). Since (A11), one can show that

∂ logELR3(θ1, θ2)

∂θ1
= λ1(θ1, θ2) and

∂ logELR3(θ1, θ2)

∂θ2
= λ2(θ1, θ2) (A12)

Then the fact λ1(X̄,X2) = 0, λ2(X̄,X2) = 0 and a Taylor expansion argument yield 620

logELR3(θ1, θ2) =
1

2
(θ1 − X̄)2

∂λ1

∂θ1

∣∣∣
θ1=X̄,θ2=X2

+ (θ1 − X̄)(θ2 −X2)
∂λ1

∂θ2

∣∣∣
θ1=X̄,θ2=X2

(A13)

+
1

2
(θ2 −X2)2

∂λ2

∂θ2

∣∣∣
θ1=X̄,θ2=X2

+
1

3!

{
(θ1 − X̄)3

∂2λ1

∂θ21

∣∣∣
θ1=X̄,θ2=X2

+ 3(θ1 − X̄)2(θ2 −X2)
∂2λ1

∂θ1∂θ2

∣∣∣
θ1=X̄,θ2=X2

+ 3(θ1 − X̄)(θ2 −X2)2
∂2λ2

∂θ1∂θ2

∣∣∣
θ1=X̄,θ2=X2

+ (θ2 −X2)3
∂2λ2

∂θ22

∣∣∣
θ1=X̄,θ2=X2

}
+O(n−1/3−4β),

when θ1 ∈ (a, b), θ2 ∈ (a1, b1), 0 < β < 1/6 and where 625

∂λ1

∂θ1

∣∣∣
θ1=X̄,θ2=X2

= − n

σ2
n − (σXX2n)2/σ

2
X2n

,
∂λ2

∂θ2

∣∣∣
θ1=X̄,θ2=X2

= − n

σ2
X2n − (σXX2n)2/σ2

n

, (A14)

∂λ1

∂θ2

∣∣∣
θ1=X̄,θ2=X2

=
∂λ2

∂θ1

∣∣∣
θ1=X̄,θ2=X2

=
n

σ2
X2nσ

2
n/σXX2n − σXX2n

,

∂2λ1

∂θ2k

∣∣∣
θ1=X̄,θ2=X2

=
2n−2σXX2n

∑n
i=1(X

2
i −X2)Ψki − σ2

X2n

∑n
i=1(Xi − X̄)Ψki

(σXX2n)2 − σ2
X2nσ

2
n

,

∂2λ2

∂θ2k

∣∣∣
θ1=X̄,θ2=X2

=
2n−2σ2

n

∑n
i=1(X

2
i −X2)Ψki − σXX2n

∑n
i=1(Xi − X̄)Ψki

σ2
X2nσ

2
n − (σXX2n)2

,



∂2λ1

∂θ1∂θ2
=

∂2λ2

∂θ21
and

∂2λ2

∂θ1∂θ2
=

∂2λ1

∂θ22
630

that can be obtained by utilizing (A11) and (A12) with the definitions

Ψki =

{
∂λ1

∂θk

∣∣∣
θ1=X̄,θ2=X2

(Xi − X̄) +
∂λ2

∂θk

∣∣∣
θ1=X̄,θ2=X2

(X2
i −X2)

}2

, k = 1, 2,

σ2
X2n =

1

n

n∑
i=1

(X2
i −X2)2, σXX2n =

1

n

n∑
i=1

(Xi − X̄)(X2
i −X2).

The validity of the Proposition 4 follows by arguments similar to those of the proof of Proposition 1 (see

the proof scheme from (A8) to the end of the Proposition 1’s proof) where the Taylor expansion for635

D(θ1, θ2) = D(X̄,X2) + (θ1 − X̄)
∂D(θ1, θ2)

∂θ1

∣∣∣
θ1=X̄,θ2=X2

+ (θ2 −X2)
∂D(θ1, θ2)

∂θ2

∣∣∣
θ1=X̄,θ2=X2

+ ...

is applied evaluating a Qn-type remainder term (see the remainder term Qn and its analysis in the proof

of Proposition 1). In this case, we present the remainder term, Jn, which appears in the expansion of

Proposition 4, in the integral form

Jn =

[∫ ∫ {
(θ1 − X̄)

∂D(t1, t2)

∂t1

∣∣∣
t1=X̄,t2=X2

+ (θ2 −X2)
∂D(t1, t2)

∂t2

∣∣∣
t1=X̄,t2=X2

}
(A15)

× 1

6

{
(θ1 − X̄)3

∂2λ1

∂t21

∣∣∣
t1=X̄,t2=X2

+ 3(θ1 − X̄)2(θ2 −X2)
∂2λ1

∂t1∂t2

∣∣∣
t1=X̄,t2=X2
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+ 3(θ1 − X̄)(θ2 −X2)2
∂2λ2

∂t1∂t2

∣∣∣
t1=X̄,t2=X2

+ (θ2 −X2)3
∂2λ2

∂t22

∣∣∣
t1=X̄,t2=X2

}

× e
− 0.5n(θ1−X̄)2

σ2
n−(σ

XX2n
)2/σ2

X2n

− 0.5n(θ2−X2)2

σ2

X2n
−(σ

XX2n
)2/σ2

n
+

n(θ1−X̄)(θ2−X2)

σ2

X2n
σ2
n/σ

XX2n
−σ

XX2n π(θ1, θ2)dθ1dθ2

]

×
⎧⎨
⎩
∫ ∫

e
− 0.5n(θ1−X̄)2

σ2
n−(σ

XX2n
)2/σ2

X2n

− 0.5n(θ2−X2)2

σ2

X2n
−(σ

XX2n
)2/σ2

n
+

n(θ1−X̄)(θ2−X2)

σ2

X2n
σ2
n/σ

XX2n
−σ

XX2n π(θ1, θ2)dθ1dθ2

⎫⎬
⎭
−1

,

where the corresponding derivatives of λ1 and λ2 are defined in (A14).

REFERENCES645

BLEISTEIN, N. & HANDELSMAN, R. A. (2010). Asymptotic expansions of integrals. New York: Courier Dover
Publications.

CARLIN, B. P. & LOUIS, T. A. (2000). Bayes and Empirical Bayes Methods for Data Analysis. New York: Chapman
and Hall/CRC.

CONSONNI, G. & VERONESE, P. (1992). Conjugate priors for exponential families having quadratic variance func-650

tions. Journal of the American Statistical Association 87, 1123–1127.
DASGUPTA, A. (2008). Asymptotic theory of statistics and probability. New York: Springer.
DICICCIO, T. J., KASS, R. E., RAFTERY, A. & WASSERMAN, L. (1997). Computing bayes factors by combining

simulation and asymptotic approximations. Journal of the American Statistical Association 92, 903–915.
EFRON, B. & MORRIS, C. (1972). Limiting the risk of bayes and empirical bayes estimatorspart ii: The empirical655

bayes case. Journal of the American Statistical Association 67, 130–139.
ERKANLI, A. (1994). Laplace approximations for posterior expectations when the mode occurs at the boundary of

the parameter space. Journal of the American Statistical Association 89, 250–258.
EVANS, M. & SWARTZ, T. (1995). Methods for approximating integrals in statistics with special emphasis on

bayesian integration problems. Statistical Science 10, 254–272.660

JAMES, W. & STEIN, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley symposium
on mathematical statistics and probability, vol. 1.



JOHNSON, R. A. (1970). Asymptotic expansions associated with posterior distributions. The annals of mathematical
statistics 41, 851–864.

KASS, R. E. & VAIDYANATHAN, S. K. (1992). Approximate bayes factors and orthogonal parameters, with appli- 665

cation to testing equality of two binomial proportions. Journal of the Royal Statistical Society. Series B (Method-
ological) , 129–144.

LAZAR, N. & MYKLAND, P. A. (1998). An evaluation of the power and conditionality properties of empirical
likelihood. Biometrika 85, 523–534.

LAZAR, N. A. (2003). Bayesian empirical likelihood. Biometrika 90, 319–326. 670

LIEBERMAN, O. (1994). A laplace approximation to the moments of a ratio of quadratic forms. Biometrika 81,
681–690.

MIYATA, Y. (2004). Fully exponential laplace approximations using asymptotic modes. Journal of the American
Statistical Association 99, 1037–1049.

MONAHAN, J. F. & BOOS, D. D. (1992). Proper likelihoods for bayesian analysis. Biometrika 79, 271–278. 675

NEWTON, M. A. & RAFTERY, A. E. (1994). Approximate bayesian inference with the weighted likelihood bootstrap.
Journal of the Royal Statistical Society. Series B (Methodological) , 3–48.

OWEN, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75, 237–249.
OWEN, A. B. (2001). Empirical likelihood, vol. 92. New York: Chapman and Hall/CRC.
POLSON, N. G. (1991). A representation of the posterior mean for a location model. Biometrika 78, 426–430. 680

QIN, J. & LAWLESS, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics ,
300–325.

SCHISTERMAN, E. F., FARAGGI, D., BROWNE, R., FREUDENHEIM, J., DORN, J., MUTI, P., ARMSTRONG, D.,
REISER, B. & TREVISAN, M. (2001). Tbars and cardiovascular disease in a population-based sample. Journal of
cardiovascular risk 8, 219–225. 685

STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In
Proceedings of the Third Berkeley symposium on mathematical statistics and probability, vol. 1.

SWEETING, T. J. (1995). A framework for bayesian and likelihood approximations in statistics. Biometrika 82, 1–23.
TIERNEY, L. & KADANE, J. B. (1986). Accurate approximations for posterior moments and marginal densities.

Journal of the American Statistical Association 81, 82–86. 690

TIERNEY, L., KASS, R. E. & KADANE, J. B. (1989). Fully exponential laplace approximations to expectations and
variances of nonpositive functions. Journal of the American Statistical Association 84, 710–716.

VEXLER, A., LIU, S., KANG, L. & HUTSON, A. D. (2009). Modifications of the empirical likelihood interval
estimation with improved coverage probabilities. Communications in StatisticsSimulation and Computation R© 38,
2171–2183. 695

VEXLER, A., TSAI, W.-M. & MALINOVSKY, Y. (2012). Estimation and testing based on data subject to measure-
ment errors: from parametric to non-parametric likelihood methods. Statistics in Medicine 31, 2498–2512.

WU, J., WONG, A. & JIANG, G. (2003). Likelihood-based confidence intervals for a log-normal mean. Statistics in
medicine 22, 1849–1860.

YEE, J. L., JOHNSON, W. O. & SAMANIEGO, F. J. (2002). Asymptotic approximations to posterior distributions 700

via conditional moment equations. Biometrika 89, 755–767.
YU, J., VEXLER, A., KIM, S.-E. & HUTSON, A. D. (2011). Two-sample empirical likelihood ratio tests for medians

in application to biomarker evaluations. Canadian Journal of Statistics 39, 671–689.
YU, J., VEXLER, A. & TIAN, L. (2010). Analyzing incomplete data subject to a threshold using empirical likelihood

methods: an application to a pneumonia risk study in an icu setting. Biometrics 66, 123–130. 705



   (a)
λ

L(
λ)

L(λ0)=∑
i=1

n
G(Xi, θ) n>∑

i=1

n
G(Xi, θM) n=0o

λ0=0

θ>θM

| >
λ > 0 λ

L(λ)<0

L(λ)>0

0

0

   (b)
λ

L(
λ )

L(λ0)=∑
i=1

n
G(Xi, θ) n<∑

i=1

n
G(Xi, θM) n=0o

λ0=0

θ<θM

| >
λ < 0 λ

L(λ)<0

L(λ)>0

0

0
Fig. 1: The schematic behaviors of L(λ) plotted against λ (the axis of abscissa), when (a): θ > θM and

(b): θ < θM , respectively.

Table 1: Monte Carlo means and variances of X̄ and the MLE.

X1, . . . , Xn ∼ N(1, 1) X1, . . . , Xn ∼ logN(0, 1)
X̄ X̄ MLE

n mean var mean var mean var

10 1.0025 0.0997 1.6511 0.4563 1.7964 0.6137

20 0.9971 0.0499 1.6447 0.2383 1.7056 0.2480

30 0.9993 0.0339 1.6530 0.1539 1.6880 0.1534

50 1.0023 0.0204 1.6516 0.0921 1.6729 0.0870

75 0.9988 0.0138 1.6586 0.0627 1.6647 0.0573

Table 2: Monte Carlo means and variances of the estimator θ̂ by (2) and its asymptotic forms θ̂ P1 and

θ̂ C1 obtained by Proposition 1 and Corollary 1, respectively.

X1, . . . , Xn ∼ N(1, 1) X1, . . . , Xn ∼ logN(0, 1)
Prior: π ∼ N(0, 1) Prior: π ∼ N(0, 1)

θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1
n mean var mean var mean var mean var mean var mean var

10 0.9161 0.0965 0.9157 0.0952 0.9157 0.0952 1.4109 0.1773 1.2376 0.2383 1.2008 0.2760

20 0.9487 0.0489 0.9517 0.0483 0.9517 0.0483 1.5278 0.1094 1.3709 0.1362 1.3607 0.1454

30 0.9618 0.0324 0.9636 0.0321 0.9636 0.0321 1.5641 0.0828 1.4341 0.0970 1.4303 0.1001

50 0.9805 0.0197 0.9815 0.0197 0.9815 0.0197 1.6003 0.0609 1.5033 0.0634 1.5023 0.0640



75 0.9867 0.0132 0.9871 0.0132 0.9871 0.0132 1.6198 0.0452 1.5467 0.0450 1.5465 0.0452

Prior: π ∼ N(1, 0.52) Prior: π ∼ N(exp(1/2), 0.52)

θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1
n mean var mean var mean var mean var mean var mean var

10 1.0003 0.0579 1.0001 0.0569 1.0001 0.0569 1.5792 0.1110 1.5141 0.1110 1.5138 0.1110

20 1.0004 0.0359 1.0004 0.0364 1.0004 0.0364 1.6426 0.0762 1.5734 0.0727 1.5734 0.0727

30 1.0000 0.0268 0.9999 0.0271 0.9999 0.0271 1.6594 0.0648 1.5929 0.0600 1.5929 0.0600

50 0.9998 0.0167 0.9996 0.0168 0.9996 0.0168 1.6752 0.0521 1.6152 0.0466 1.6152 0.0466

75 1.0000 0.0123 1.0001 0.0123 1.0001 0.0123 1.6857 0.0417 1.6328 0.0362 1.6328 0.0362

Prior: π ∼ N(1, 0.12) Prior: π ∼ N(exp(1/2), 0.12)

θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1
n mean var mean var mean var mean var mean var mean var

10 1.0003 0.0024 1.0002 0.0019 1.0001 0.0018 1.6191 0.0081 1.6115 0.0080 1.6119 0.0076

20 1.0002 0.0019 1.0002 0.0019 1.0002 0.0019 1.6341 0.0027 1.6205 0.0047 1.6205 0.0047

30 0.9996 0.0020 0.9995 0.0021 0.9995 0.0021 1.6383 0.0019 1.6252 0.0036 1.6252 0.0036

50 0.9994 0.0023 0.9994 0.0024 0.9994 0.0024 1.6422 0.0018 1.6300 0.0029 1.6300 0.0029

75 1.0008 0.0025 1.0008 0.0026 1.0008 0.0026 1.6439 0.0019 1.6327 0.0026 1.6327 0.0026

Prior: π ∼ N(0, 0.52) Prior: π ∼ N(exp(1/2)− 1, 0.52)

θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1
n mean var mean var mean var mean var mean var mean var

10 0.7546 0.1271 0.7522 0.1259 0.7519 0.1259 1.2500 0.2126 1.0942 0.3380 1.0794 0.3563

20 0.8344 0.0635 0.8425 0.0610 0.8425 0.0610 1.3610 0.1268 1.2099 0.2188 1.2066 0.2227

30 0.8774 0.0418 0.8839 0.0404 0.8839 0.0404 1.4238 0.0878 1.2900 0.1524 1.2888 0.1537

50 0.9232 0.0228 0.9269 0.0224 0.9269 0.0224 1.4945 0.0550 1.3898 0.0885 1.3896 0.0887

75 0.9484 0.0149 0.9503 0.0148 0.9503 0.0148 1.5281 0.0419 1.4467 0.0604 1.4466 0.0605

Prior: π ∼ {N(−1, 0.52) +N(1, 0.52)}/2 Prior: π ∼ {N(−e1/2, 0.52) +N(e1/2, 0.52)}/2
θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1

n mean var mean var mean var mean var mean var mean var

10 0.9903 0.0649 0.9908 0.0639 0.9987 0.0577 1.5821 0.1098 1.5163 0.1083 1.5161 0.1083

20 0.9945 0.0344 0.9947 0.0346 0.9959 0.0340 1.6395 0.0766 1.5697 0.0730 1.5697 0.0730

30 1.0000 0.0262 1.0000 0.0264 1.0005 0.0263 1.6629 0.0626 1.5967 0.0577 1.5967 0.0577

50 0.9948 0.0173 0.9948 0.0174 0.9949 0.0173 1.6721 0.0508 1.6127 0.0461 1.6127 0.0461

75 0.9984 0.0121 0.9984 0.0121 0.9984 0.0121 1.6860 0.0412 1.6338 0.0361 1.6338 0.0361

Prior: π ∼ {N(−1, 0.12) +N(1, 0.12)}/2 Prior: π ∼ {N(−e1/2, 0.12) +N(e1/2, 0.12)}/2
θ̂ θ̂ P1 θ̂ C1 θ̂ θ̂ P1 θ̂ C1

n mean var mean var mean var mean var mean var mean var

10 0.9962 0.0062 0.9979 0.0036 0.9998 0.0017 1.6180 0.0094 1.6099 0.0093 1.6105 0.0087

20 0.9988 0.0018 0.9988 0.0019 0.9988 0.0019 1.6335 0.0028 1.6195 0.0051 1.6195 0.0051

30 0.9999 0.0020 1.0000 0.0021 1.0000 0.0021 1.6391 0.0019 1.6267 0.0034 1.6267 0.0034

50 0.9996 0.0023 0.9996 0.0024 0.9996 0.0024 1.6425 0.0018 1.6306 0.0028 1.6306 0.0028

75 0.9995 0.0024 0.9994 0.0025 0.9994 0.0025 1.6429 0.0019 1.6317 0.0027 1.6317 0.0027

Prior: π ∼ U(0, 1.5) Prior: π ∼ U(0, exp(1/2) + 0.5)

θ̂ θ̂ P1 θ̂ θ̂ P1
n mean var mean var mean var mean var

10 0.9424 0.0613 0.9423 0.0606 1.4692 0.1204 1.3625 0.1540

20 0.9744 0.0376 0.9758 0.0378 1.5564 0.0680 1.4624 0.0865

30 0.9913 0.0279 0.9924 0.0279 1.5949 0.0521 1.5155 0.0628

50 0.9996 0.0192 1.0000 0.0193 1.6341 0.0388 1.5712 0.0428

75 0.9992 0.0132 0.9992 0.0132 1.6511 0.0324 1.5997 0.0339

Prior: π ∼ U(0.75, 1.25) Prior: π ∼ U(exp(1/2)− 0.25, exp(1/2) + 0.25)

θ̂ θ̂ P1 θ̂ θ̂ P1



n mean var mean var mean var mean var

10 0.9991 0.0054 0.9992 0.0050 1.6190 0.0064 1.6068 0.0072

20 1.0007 0.0056 1.0006 0.0058 1.6289 0.0051 1.6121 0.0068

30 0.9987 0.0061 0.9986 0.0063 1.6336 0.0048 1.6164 0.0065

50 0.9985 0.0065 0.9984 0.0066 1.6390 0.0052 1.6220 0.0063

75 1.0010 0.0067 1.0011 0.0068 1.6405 0.0059 1.6235 0.0066

Table 3: The MC means and variances of X̄.j and the estimator θ̂Ej by (6) based on

MVN{(1, 1, 1)T , I}.

n X̄.1 X̄.2 X̄.3 V (X̄.1) V (X̄.2) V (X̄.3) θ̂E1 θ̂E2 θ̂E3 V (θ̂E1) V (θ̂E2) V (θ̂E3)
10 (0.995 0.995 0.989) (0.096 0.100 0.099) (0.994 0.995 0.990) (0.062 0.065 0.064)

20 (1.002 0.993 1.000) (0.052 0.050 0.048) (1.001 0.995 0.999) (0.033 0.032 0.031)

30 (0.999 1.002 1.000) (0.033 0.034 0.034) (0.999 1.001 1.000) (0.021 0.021 0.022)

50 (0.999 1.000 1.000) (0.020 0.020 0.020) (0.999 1.000 1.000) (0.013 0.013 0.013)

75 (1.003 1.000 0.999) (0.014 0.014 0.014) (1.003 1.000 1.000) (0.009 0.009 0.009)

Table 4: The MC means and variances of X̄.j and the estimator θ̂Ej by (6) based on

MV LogNorm{(0, 0, 0)T , I}.

n X̄.1 X̄.2 X̄.3 V (X̄.1) V (X̄.2) V (X̄.3) θ̂E1 θ̂E2 θ̂E3 V (θ̂E1) V (θ̂E2) V (θ̂E3)
10 (1.630 1.656 1.638) (0.446 0.581 0.445) (1.631 1.655 1.638) (0.398 0.531 0.395)

20 (1.657 1.654 1.654) (0.235 0.232 0.239) (1.657 1.654 1.654) (0.206 0.204 0.211)

30 (1.644 1.654 1.640) (0.161 0.162 0.148) (1.645 1.653 1.640) (0.140 0.141 0.128)

50 (1.650 1.642 1.640) (0.093 0.088 0.085) (1.650 1.642 1.640) (0.080 0.076 0.073)

75 (1.649 1.645 1.653) (0.061 0.059 0.063) (1.649 1.645 1.653) (0.052 0.051 0.054)

Table 5: The MC means and variances of X̄.j and the estimator θ̂Ej by (6) based on

MVN{(1, 1, 1)T ,Σ}.

n X̄.1 X̄.2 X̄.3 V (X̄.1) V (X̄.2) V (X̄.3) θ̂E1 θ̂E2 θ̂E3 V (θ̂E1) V (θ̂E2) V (θ̂E3)
10 (0.995 0.993 0.993) (0.101 0.099 0.101) (0.994 0.993 0.994) (0.083 0.082 0.082)

20 (0.996 0.997 0.998) (0.049 0.049 0.049) (0.997 0.997 0.998) (0.040 0.040 0.039)

30 (1.001 1.000 1.000) (0.033 0.035 0.035) (1.001 1.000 1.000) (0.027 0.028 0.028)

50 (1.000 1.003 0.997) (0.019 0.020 0.020) (0.999 1.002 0.998) (0.016 0.016 0.016)

75 (1.002 0.998 0.999) (0.013 0.014 0.014) (1.001 0.999 1.000) (0.011 0.011 0.011)



Table 6: The MC means and variances of X̄.j and the estimator θ̂Ej by (6) based on

MV LogNorm{(0, 0, 0)T ,Σ}.

n X̄.1 X̄.2 X̄.3 V (X̄.1) V (X̄.2) V (X̄.3) θ̂E1 θ̂E2 θ̂E3 V (θ̂E1) V (θ̂E2) V (θ̂E3)
10 1.663 1.637 1.650 0.551 0.471 0.480 1.663 1.637 1.650 0.520 0.441 0.449

20 1.651 1.658 1.652 0.237 0.232 0.218 1.651 1.658 1.652 0.218 0.215 0.202

30 1.651 1.652 1.641 0.148 0.161 0.149 1.650 1.651 1.642 0.136 0.148 0.137

50 1.652 1.648 1.644 0.094 0.095 0.092 1.652 1.648 1.645 0.086 0.087 0.084

75 1.648 1.648 1.645 0.064 0.061 0.061 1.648 1.648 1.645 0.058 0.056 0.056

Table 7: The proposed mean and 95% CI estimations compared with those based on averages X̄ .

Case θ̂ by (2) 95% CI of θ̂ X̄ 95% CI of X̄
Prior: π ∼ N(1, 1) 1.410476 (1.356624, 1.464328) 1.407113 (0.4740198, 2.3402069)

Prior: π ∼ N(1.84, 0.82) 1.411334 (1.357493 , 1.465174)

Prior: π ∼ N(1.84, 0.12) 1.44765 (1.395704 , 1.499596)

Prior: π ∼ N(1.84, (1/300)2) 1.833769 (1.827283 , 1.840255)

Double empirical Bayesian method θ̂E by (3) 95% CI of θ̂E
1.40706 (1.40693 , 1.40719)

Control θ̂ by (2) 95% CI of θ̂ X̄ 95% CI of X̄
Prior: π ∼ N(1, 1) 1.307575 (1.268270, 1.346879) 1.305487 (0.6245805, 1.9863928)

Prior: π ∼ N(1.44, 0.482) 1.307944 ( 1.268666, 1.347222)

Prior: π ∼ N(1.44, 0.12) 1.31313 (1.274586,1.351675)

Prior: π ∼ N(1.44, (1/300)2) 1.43842 (1.431975 , 1.444865)

Double empirical Bayesian method θ̂E by (3) 95% CI of θ̂E
1.30554 ( 1.30541, 1.30567)

Table 8: The Bootstrap type mean and estimators of the variances of θ̂ by (2) and X̄ .

n1 = 50 X̄ Variance of X̄ θ̂ Variance of θ̂ μ =
∑B

i=1 μ̃i/B
Prior: π ∼ N(1, 1) 1.465098 0.003590306 1.480343 0.003760704 1.46829

Prior: π ∼ N(1.1, 0.12) 1.465774 0.006393996 1.370295 0.002919261 1.41322

Prior: π ∼ N(1.3, 0.12) 1.467083 0.004116504 1.420281 0.005468906 1.4843

Prior: π ∼ N(1.4, 0.12) 1.465391 0.003834 1.448914 0.002129113 1.47422

Prior: π ∼ N(1.84, 0.12) 1.466738 0.003594508 1.644271 0.032628722 1.47131

n1 = 70 X̄ Variance of X̄ θ̂ Variance of θ̂ μ =
∑B

i=1 μ̃i/B
Prior: π ∼ N(1, 1) 1.465068 0.00213376 1.476581 0.00236309 1.461262

Prior: π ∼ N(1.1, 0.12) 1.465698 0.004950603 1.388167 0.001362499 1.412425

Prior: π ∼ N(1.3, 0.12) 1.46639 0.002382526 1.429889 0.003684917 1.48225

Prior: π ∼ N(1.4, 0.12) 1.465945 0.00362532 1.453863 0.001748157 1.426625

Prior: π ∼ N(1.84, 0.12) 1.465883 0.002038279 1.612017 0.022057167 1.469325



Table 9: The Bootstrap type mean and estimators of the variances of θ̂E by (3) and X̄ .

Double empirical n1 = 50 X̄ Variance of X̄ θ̂E Variance of θ̂E μ =
∑B

i=1 μ̃i/B
Bayesian method 1.465026 0.003575563 1.464817 0.003617737 1.46839

Double empirical n1 = 70 X̄ Variance of X̄ θ̂E Variance of θ̂E μ =
∑B

i=1 μ̃i/B
Bayesian method 1.46535 0.0021899 1.465335 0.002191446 1.4593


