
A novel characterization of the generalized family wise error rate using

empirical null distributions

Jeffrey C. Miecznikowski∗

Department of Biostatistics

SUNY University at Buffalo

433 Kimball Tower

3435 Main St.

Buffalo, NY, 14214

716.881.8953

jcm38@buffalo.edu

Daniel P. Gaile

Department of Biostatistics

SUNY University at Buffalo

706 Kimball Tower

3435 Main St.

Buffalo, NY, 14214

716.829.2756

dpgaile@buffalo.edu

Abstract

In this manuscript we present a novel characterization of the generalized family wise error rate: kFWER.
The interpretation allows researchers to view kFWER as a function of the test statistics rather than current
methods based on p-values. Using this interpretation we present several theorems and methods (parametric
and non parametric) for estimating kFWER in various data settings. With this version of kFWER, re-
searchers will have an estimate of kFWER in addition to knowing what tests are significant at the estimated
kFWER. Additionally, we present methods that use empirical null distributions in place of parametric dis-
tributions in standard p-value kFWER controlling schemes. These advancements represent an improvement
over common kFWER methods which are based on parametric assumptions and merely report the tests that
are significant under a given value for kFWER.

keywords: empirical null distribution; false discovery rate; family wise error; multiple testing

1. Introduction

With the development of genomic microarrays and related high throughput assays such as mass spec-
trometry there has been a concomitant development of the multiple testing algorithms designed to work with
this type of data. The goal in these algorithms is to determine a subset of genes/proteins/micro ribonucleic
acids (RNAs) generally called “cases” that are related to an outcome. On a univariate level this relationship
is commonly assessed via a hypothesis test and corresponding test statistic and p-value. A group error
rate, such as the false discovery rate (FDR) or the generalized family wise error rate (kFWER), is then
used to determine the significant subset of interest. Commonly, the hypothesis test for each case has a null
hypothesis of “not significantly related to outcome” and the alternative hypothesis of “significantly related
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to outcome.” Likewise, we consider each case as either a “null case” or an “alternative case” depending on
its true (unknown) status. In this general framework, we explore a novel method to study multiple testing
errors.

We will assume the two group model for multiple testing as in Efron (2010). We will also assume that
there are N cases or tests. In a gene expression microarray setting N may be the number of genes. Each
case may be either null or non null with prior probability π0 or π1 = 1 − π0 with test statistics (z values)
having density either f0(z) or f1(z). In other words, we have the following,

π0 = Pr{null}, f0(z) = density if null,
π1 = Pr{non− null}, f1(z) = density if non-null.

(1)

We will also let F0 and F1 denote the probability distributions corresponding to f0 and f1 so that for any
subset Z of the real line,

F0(Z) =

∫

Z

f0(z)dz and F1(Z) =

∫

Z

f1(z)dz. (2)

Thus the test statistics zi follow the mixture density

f(z) = π0f0(z) + π1f1(z), (3)

with the mixture distribution
F (Z) = π0F0(Z) + π1F1(Z). (4)

With the N cases, we further define the following functions:

N0(Z) = the number of null zi in set Z,
N1(Z) = the number of alternative zi in set Z,
N+(Z) = the number of zi in set Z.

(5)

With this notation, we have N+(Z) = N0(Z) +N1(Z). Further, N0 and N1 represent the total of true nulls
and true alternative, respectively among N cases. Using similar notation, and recognizing that researchers
commonly report z ∈ Z as non-null, Efron (2010) defines the false discovery rate quantities,

fdr(z0) = Pr(null|z = z0) = π0f0(z0)/f(z0), (6)

Fdr(Z) = π0F0(Z)/F (Z), (7)

Fdr(Z) = π0F0(Z)/F (Z), (8)

where F (Z) is the empirical distribution function of the zi. The false discovery rate quantity in (6) is
considered the local false discovery rate and (6)-(8) are all functions of the unknowns π0, f0, F0, f, F and,
as such, need to be estimated. Methods to estimate these quantities, and thus the quantities in (6), are
presented in Efron (2010).

In the following subsections we define a novel (functional) version of the generalized family wise error
rate with several estimation methods inspired by the FDR methods in Efron (2010). We relate our kFWER
method to existing kFWER methods and explore conditions under which it should be preferred. We also
develop empirical versions of the traditional parametric p-value based methods to control kFWER.

2. Generalized Family Wise Error Rate

The kFWER error rate is a generalized version of the family wise error rate (FWER). Control of FWER
refers to controlling the probability of committing one or more false discoveries. If we let V denote the
number of false positives from N tests, then notationally, (according to Lehmann and Romano (2005)) α
control of FWER can be expressed as, Pr(V ≥ 1) ≤ α or equivalently, Pr(V = 0) ≥ 1 − α. Note that α is
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usually chosen to be small, e.g. 0.05. In kFWER the equation becomes,

Pr(V ≥ k) ≤ α, (9)

where k and α are usually determined prior to the analysis. Methods designed to control kFWER with
derivations for the exact distribution of V are provided in Miecznikowski et al. (2011).

Thinking about Pr(V ≥ k) as a functional quantity we propose the following novel definition for a
generalized family wise error rate,

kFWER(Z) = Pr(N0(Z) ≥ k), (10)

where N0(Z) is defined in (5). We commonly consider the sets Z = (−∞, z) and Z = (z,∞) where tests
with z scores in Z are reported as non-null. For simplicity of notation, for a single point z we define
the left hand side (LHS) kFWER(z) = kFWER(Z) where Z = (−∞, z) and the right hand side (RHS)
kFWER(z) = kFWER(Z) where Z = (z,∞). Commonly one sided hypotheses tests examine either the
LHS or RHS kFWER, while two sided tests may consider both LHS and RHS kFWER significance.

We expand (10) in light of the two group model (1). By conditioning on the total number of true nulls
N0 we obtain,

kFWER(Z) = Pr(N0(Z) ≥ k) (11)

=
N∑

ν=k

Pr(N0(Z) = ν) (12)

=
N∑

ν=k

N∑

η=ν

Pr(N0(Z) = ν|N0 = η) · Pr(N0 = η) (13)

=
N∑

η=k

(1− Fb(k − 1|η, F0(Z)) fb(η|N, π0), (14)

where FB(a|b, c) and fB(a|b, c) denote the CDF and PDF, respectively, for a binomial distribution evaluated
at a with size parameter b and probability parameter c. Note that our transition from (13) to (14) requires
an

Independence Assumption: Each zi follows model (1) independently. (15)

In our functional specification of kFWER in (14) we must estimate π0 and F0(Z); quantities related to the
null distribution. In Efron (2010), we are presented with several options to estimate these quantities.

2.0.1. Estimating the functional kFWER

We consider a parametric (theoretical) and nonparametric estimator for F0. We will assume that for case
i we have the following null hypothesis,

H0i : case i is “null”. (16)

Commonly, we use a t statistic ti to examine this null hypothesis for case i. As in Efron (2010), we will
transform our ti to zi = Φ−1(G(ti)) where Φ and G are the cumulative distribution functions for the standard
normal and (appropriate) t distribution. Then, under the assumption of normal sampling, zi will have a
standard normal distribution if H0i is true,

H0i : zi ∼ N (0, 1). (17)

We call (17) the parametric null. Thus, the parametric or theoretical estimator F0 is given as F0(Z) =∫
Z
φ(z)dz where φ(z) is the PDF for a standard normal random variable. The non parametric estimator F̂0
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is obtained using the maximum likelihood estimator (MLE) method described in Efron (2010), see Appendix.
In short, the MLE method uses a data driven procedure to estimate the mean and standard deviation for
the null (normal) distribution. Note, the central matching method presented in Efron (2010) can also be
used to estimate F0, see Appendix. Reasons why the theoretical null may fail are provided in the Discussion
section.

Similarly, we estimate π0 using a parametric and non parametric estimator. In our two group model, if
we believe that f1(z) is near zero for a subset of A0 of the sample space, perhaps the points near zero, then
the expected value of N+(A0), the observed number of zi values in A0 is given as E [N+(A0)] = π0N ·F0(A0).
This suggests the parametric estimator

π0 = N+(A0)/
(
N · F0(A0)

)
, (18)

and the non parametric estimator

π̂0 = N+(A0)/
Ä
N · F̂0(A0)

ä
, (19)

where
A0 = Subset of sample space where f1(z) near 0, e.g (−2, 2). (20)

With these estimators for F0 and π0 and assuming (15) we can define a parametric and non parametric

estimator of kFWER in (10). The parametric estimator is given by,

kFWER(Z) =
N∑

η=k

(
1− Fb(k − 1|η, F0(Z)

)
fb(η|N, π0). (21)

The non parametric estimator is given by

Ÿ�kFWER(Z) =
N∑

η=k

Ä
1− Fb(k − 1|η, F̂0(Z)

ä
fb(η|N, π̂0). (22)

3. Other kFWER methods

In this section, we present the methods commonly used to control the traditional kFWER in (9). These
kFWER schemes are more fully presented in Lehmann and Romano (2005); Guo and Romano (2007);
Miecznikowski et al. (2011); Roquain and Villers (2011) including theorems and proofs that each method
controls kFWER in a two group mixture model setting. In the following sections we claim (with proofs
provided in the Appendix) that each method fits into our larger functional definition for kFWER in (14).
We also present simple methods to develop empirical versions of these traditional parametric methods.

3.1. Adjusted Bonferroni Method

The adjusted Bonferroni adjustment to control kFWER at α specifies kα/N as the p-value cut point for
significance where tests with p-values less than the cut point are considered significant. We can define our
p-values using parametric or empirical methods. For simplicity we assume one-sided tests. Our parametric
estimator uses LHS p-values defined by

pi = F0
−1

(zi), (23)

and RHS p-values defined by

pi = 1− F0
−1

(zi). (24)

The empirical estimator uses LHS p-values defined

p̂i = F̂0

−1
(zi), (25)
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and RHS p-values defined by

p̂i = 1− F̂0

−1
(zi). (26)

The LHS (RHS) adjusted parametric Bonferroni procedure rejects all null hypotheses with LHS (RHS) p-
values less than or equal to kα/N where the p-values are estimated by pi as given in (23)-(24). The adjusted
empirical Bonferroni procedure estimates the p-values via p̂i as given in (25)-(26).

Further, if we let zbon = F−1
0 (kα/N), where F0 is given in (2) then kFWER (zbon) ≤ α when using the

(LHS) kFWER definition where kFWER(z) = kFWER(Z) where Z = (−∞, z) (see Appendix for proof).
A similar version holds for the (RHS) kFWER.

3.2. Adjusted Šidàk Method

Under independence of the N cases, the generalized Šidàk procedure to control the generalized family
wise error rate works by rejecting all hypotheses with a p-value less than psid where psid is such that
Fb(k − 1|N, psid) = 1 − α. The proof that this procedure controls kFWER can be found in Miecznikowski
et al. (2011); Roquain and Villers (2011).

Let zsid = F−1
0 (psid) then under the two group model with independence of the N test cases, we have

(LHS) kFWER (zsid) ≤ α when using the (LHS) kFWER definition where kFWER(z) = kFWER(Z)
where Z = (−∞, z) (see Appendix for proof). A similar version holds for the (RHS) kFWER.

As in the adjusted Bonferroni setting, we can define a parametric and empirical version of the adjusted
Šidàk method based on the p-values used in the analysis.

The LHS (RHS) adjusted parametric Šidàk method rejects all null hypothesis with LHS (RHS) p-values
less than or equal to psid where the p-values are estimated with p. The adjusted empirical Šidàk method
uses p̂ to estimate the p-values.

3.3. Adjusted Holm Method

A method to control kFWER using the Holm procedure is given in Lehmann and Romano (2005). This
method is an adjustment to the Holm method designed to control the FWER (Holm, 1979). The following
procedure describes the Holm method to control FWER at level α for N tests. Let

α1 ≤ α2 ≤ . . . ≤ αN (27)

be constants defined by αi = α/(N − i + 1) and let the ordered p-values be denoted by p(1) ≤ · · · ≤ p(N)

corresponding to hypotheses, H(1), · · · , H(N). If p(1) > α1,then reject no null hypothesis. Otherwise, if

p(1) ≤ α1, . . . , p(r) ≤ αr, (28)

then reject hypothesis H(1), . . . , H(r) where the largest r satisfying (28) is used. With this framework to
control FWER at level α, the Holm method to control kFWER at level α is done by redefining αi as

αi =

®
kα
N , i ≤ k,
kα

N+k−i , i > k.
(29)

We show in the Appendix that the largest r satisfying (28) is such that (LHS) kFWER (zholm) ≤ α when
zholm = F−1

0

(
p(r)

)
. A similar version also holds for (RHS) kFWER (see Appendix for proof). The adjusted

parametric Holm method uses p to estimate the p-values while the adjusted empirical Holm method uses p̂
to estimate the p-values.

4. Software Implementation

The kFWER estimators given in (21),(22) are implemented in R (R Core Team, 2012) and can be found
with the authors’ technical report (Miecznikowski and Gaile, 2012). Note the code requires the R locfdr
package (Efron et al., 2011).
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5. Simulation and Examples

In this section we provide three simulations and two examples implementing and comparing kFWER,

and Ÿ�kFWER procedures along with empirical and parametric versions of the adjusted Bonferroni, Šidàk,
and Holm methods. The simulations are designed to study kFWER in an independence setting, a setting
with an overdispersed null distribution, and a setting with correlated test statistics.

5.1. BUM simulation

For our first simulation, we consider control of kFWER when using a beta-uniform model (BUM) for
generating p-values (Pounds and Morris, 2003). Specifically, we consider two different BUM model settings,
a one sided test setting where we examine the LHS kFWER and a two sided test where we examine both
the LHS and RHS kFWER.

The BUM model represents a mixture model for generating p-values. With a BUM model with N tests,
the probability density function (PDF) for the ith p-value, pi, with i ∈ {1, 2, . . . , N} is

g(pi) =

®
(1− π) + π 1

B(γ,µ)p
γ−1
i (1− pi)

µ−1, pi,∈ [0, 1],

0, otherwise,
(30)

where B represents the Beta function. In other words, with probability π, pi is an observation generated
under the alternative hypothesis which is parameterized as a Beta distribution with shape parameters (γ, µ).
Also with probability (1−π), pi is an observation generated under the null hypothesis which is parameterized
as a uniform distribution on [0, 1]. For the one sided test setting we obtained the z-scores via zi = Φ−1(pi).
For the two sided test setting, we assumed the BUM p-values were two sided p-values where pi = 2 ·
min (Φ(zi), 1−Φ(zi)). To obtain the z scores, we employed a Bernoulli scheme with probability = 0.50 and
we inverted (roughly) half of p-values using the standard normal distribution zi = Φ−1(pi/2) and the other
half of the p-values using zi = Φ−1(1− pi/2).

We note differences between the estimated empirical (red) and parametric (black) null densities in Figure
1, which contains the histogram of z-scores which were generated under the one sided test setting and with
N = 500, π0 = 0.95, π1 = 0.05, γ = 0.3, and µ = 5. Such differences are more pronounced in the presence
of an over-dispersed null distribution, and are responsible for differences in the operating characteristics of

kFWER(Z) and Ÿ�kFWER.

Figure 2 displays true kFWER(Z) and estimates kFWER(Z) andŸ�kFWER values which were generated
under the same simulation conditions as Figure 1 and across k values of 1, 5, 20, and 50. Since F0 is a
standard normal CDF, we observed kFWER(Z) and kFWER(Z) that were nearly identical except, with
the differences easily attributable to the Monte-Carlo error associated with the estimation of kFWER(Z).

The shaded grey regions in Figure 2 demark the region between the 5th and 95th quantiles ofŸ�kFWER(Z), as
estimated via 1000 Monte-Carlo simulations. Note, the grey shaded regions are rather narrow and centered

slightly to the left kFWER(Z) indicating that theŸ�kFWER estimation procedure was slightly conservative
in that simulation setting. Single step kFWER cutpoints for the Bonferroni, Holm, and Šidàk methods
designed to control kFWER at 0.20 are also included in Figure 2. The cutpoints indicate that the Šidàk
method was the most liberal among the three methods. As the value of k increased, the Šidàk and Holm
cutpoints converged (bottom panels in Figure 2).

Figure 3 contains a histogram of z-scores which were generated under the two-sided test setting and
with N = 500, π0 = 0.95, π1 = 0.05, γ = 0.3, and µ = 5. Figure 4, illustrates kFWER(Z), kFWER(Z)
estimates as a function of z and across k values of 1, 5, 20, and 50. The shaded grey regions in Figure 4

demark the region between the 5th and 95th quantiles of Ÿ�kFWER(Z), as estimated via 1000 Monte-Carlo
simulations. Note, that the regions are rather narrow and centered around kFWER(Z), indicating that the
empirical estimation procedure is accurate.
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Figure 1: BUM Simulation (One-Sided): The histogram (scaled to a total area of one) of z-values from a BUM model
simulation with N = 500, π0 = 0.95, π1 = 0.05 and F0 a distribution function for a standard normal distribution and
F1 a distribution function that yields one sided p-values that follow a beta distribution with parameters γ = 0.3 and
µ = 5. The z-values were obtained via zi = Φ−1(pi). Estimated empirical (red line) and parametric (black line) null
densities are superimposed.
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Figure 2: BUM Simulation (One-Sided): A BUM model simulation study with 1000 replicate datasets. Data were
simulated with N = 500, π0 = 0.95, π1 = 0.05 and F0 a distribution function for a standard normal distribution
and F1 a distribution function that yields one sided p-values that follow a beta distribution with parameters γ = 0.3
and µ = 5. The z-values were obtained via zi = Φ−1(pi). Parametric LHS kFWER (black broken lines) and
the true LHS ( kFWER (black solid lines) from 1000 simulations are plotted. Since the BUM model assumes
independence, the solid and broken lines are expected to be identical, with the observed differences attributable to
Monte Carlo error. The grey region demarks the empirical 5th percentile and 95th percentile of the empirical kFWER

(ÿ�kFWER) as given in (22). The empirical kFWER appears very accurate under the given simulation conditions.
The parametric Bonferroni, (average) Holm, and Šidàk z value cutoffs for kFWER = 0.20 are shown in green, blue,
and red, respectively.
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Figure 3: BUM Simulation (Two-Sided): The histogram (scaled to a total area of one) of z-values from a BUM model
simulation with N = 500, π0 = 0.95, π1 = 0.05 and F0 a distribution function for a standard normal distribution and
F1 a distribution function that yields one sided p-values that follow a beta distribution with parameters γ = 0.3 and
µ = 5. The z-values are obtained via pi = 2 ·min (Φ(zi), 1− Φ(zi)).
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Figure 4: BUM Simulation (Two-Sided): A BUM model simulation study with 1000 replicate datasets. Data were
simulated with N = 500, π0 = 0.95, π1 = 0.05 and F0 a distribution function for a standard normal distribution
and F1 a distribution function that yields one sided p-values that follow a beta distribution with parameters γ = 0.3
and µ = 5. The z-values are obtained via pi = 2 · min (Φ(zi), 1 − Φ(zi)) where a probability of 0.50 is applied to
choose between the two possible minimum values. Since the BUM model assumes independence, the solid and broken
lines are expected to be identical, with the observed differences attributable to Monte Carlo error. The grey region

demarks the empirical 5th percentile and 95th percentile of the empirical kFWER (ÿ�kFWER) as given in (22). The
empirical kFWER appears very accurate under the given simulation conditions.
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5.2. Overdispersed Null Distribution Simulation

Utilizing a simulation study similar to one proposed in Efron (2010), we demonstrate that ¤�kFWER(Z)
can provides better results than kFWER(Z) when the null distribution of the test statistics is overdispersed.
Such overdispersion can occur when unobserved covariates influence the cases in an experiment, such as one

involving microarrays, and motivates the use of Ÿ�kFWER compared to kFWER.
Specifically, we considered simulated data of the form:

xij = uij +
Ij
2
βi

ß
uij ∼ N(0, 1)
βi ∼ N(0, σ2

β)
(31)

with i = 1, . . . 16 subjects corresponding to 8 subjects in each of two groups, and j = 1, . . . , 200 ’feature’
values (e.g. gene expression values) observed on each subject. Moreover, ui1, ui2, . . . , uin, βi were simulated
to be mutually independent and

Ij =

ß
−1 j = 1, 2, . . . , 8
1 j = 9, 10, . . . 16.

(32)

Under these conditions and the null hypothesis of equal means between groups, the standard two sample
t-statistic, which we denote ti, is distributed as a dilated t distribution with 14 degrees of freedom:

ti ∼
(
1 + 4σ2

β

)1/2
· t14, (33)

and with a dispersion factor of
(1 + 4σ2

β)
1/2. (34)

We transformed the ti values to zi values using zi = Φ−1(F14(ti)) where F14 where Φ and F14 are the CDF
for the standard normal and t14 distributions. As shown in Efron (2010), the empirical null distribution as
estimated via the MLE method “correctly” estimated the null distribution. This improvement with respect

to estimation of the null distribution enabled Ÿ�kFWER(Z) to more accurately estimate kFWER compared

to kFWER(Z). Figure 5 displays Ÿ�kFWER(Z) and kFWER(Z) for a range of overdisperion factors with

the number of false discoveries set at 20 (k = 20). Regardless of the overdispersion factor,Ÿ�kFWER provided
an accurate measure of kFWER, while kFWER was only acceptable, at most, at an overdispersion factor
of 1.2 (upper left panel Figure 5).

5.3. Correlated Z Simulation

Utilizing another simulation study similar to one proposed in Efron (2010), we demonstrate that the

presence of correlated test statistics can manifest notable differences in ¤�kFWER(Z) and kFWER(Z). In
short, correlation can effect our estimates of kFWER by influencing the estimation of the null distribution
and the accuracy of our binomial assumption in (14). From the work in Efron (2010), the accuracy of the
empirical null distribution depends on the root mean square (RMS) of the N ·(N−1)/2 pairwise correlations
of the N length vector of z-values z = (z1, z2, . . . , zN ). In the R package locfdr, the user can employ the
function simz to generate an N length vector of z-values with a desired (approximate) RMS value. We
simulated (approximate) RMS values of 0.10, 0.30, 0.40, and 0.45, where N = 500 with a kFWER setting
where k = 20 and π0 = 0.95. Marginally, each null gene follows a N(0, 1) distribution and each alternative

gene follows a N(−3, 1) distribution. As shown in Figure 6, the standard errors for Ÿ�kFWER were much

larger than for kFWER and increased sharply as the RMS value increases. However, Ÿ�kFWER appears to
provide a relatively unbiased estimator of kFWER across all RMS settings while kFWER estimators begin
to exhibit substantial bias as RMS increases.
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Figure 5: Overdispersed Simulation (One-Sided): An overdispersed t distribution simulation with N = 500. The
overdispersion factor is given in (34). Using 1000 simulations, we examined the parametric, empirical, and true
kFWER. The true kFWER is shown with a solid black line. The grey region displays the Monte Carlo based 5th

percentile and 95th percentile of the empirical kFWER (ÿ�kFWER) as given in (22) with the mean ÿ�kFWER displayed
in the dashed red line. The dotted black lines represent the Monte Carlo based 5th percentile and 95th percentile
of kFWER with the mean shown as a dashed black line. In this simulation we see the empirical kFWER is very
accurate, while the parametric kFWER is increasingly inaccurate as the overdispersion factor in (34) becomes larger.
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Figure 6: RMS Simulation (One-Sided): A simulation with correlation where N = 500, π0 = 0.95, π1 = 0.05 and F0

a distribution function for a multivariate normal distribution. Using 1000 simulations, we examined the parametric,
empirical, and true kFWER. The grey region displays the Monte Carlo based 5th percentile and 95th percentile

of the empirical kFWER (ÿ�kFWER) as given in (22), while the red dashed line represents the mean ÿ�kFWER. The

dotted black lines represent the Monte Carlo based 5th percentile and 95th percentile of kFWER with the mean

shown as a dashed black line. In this simulation we see the variability of ÿ�kFWER increases as the root mean square
(RMS) of the correlation of the statistics increases.
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5.4. Data Examples

We applied functional kFWER methods to the leukemia and prostate cancer datasets referenced and
analyzed in Efron (2010). These examples highlight a setting where the empirical null closely agrees with the
parametric null (prostate cancer dataset) and an example where the empirical null is very different than the
parametric null (leukemia dataset). Both datasets can be found at http://www-stat.stanford.edu/∼omkar/monograph/data.

For the prostate dataset originally presented in Singh et al. (2002), we examined microarray data designed
to measure the level of gene expression for 6033 genes. These measurements were obtained for 102 men where
50 men were control subjects and 52 men had prostate cancer. The goal of this experiment was to discover
genes associated with prostate cancer. As in Efron (2010), we performed two sample t-tests and transformed
the t statistic for each gene to a z statistic via, zi = Φ−1(F100(ti)) where F100 represents the CDF for a t
distribution with 100 degrees of freedom.

For our analysis, we estimated kFWER(Z). Figure 7 (a) shows the histogram of the z-values and Figure

7 (c) shows displays kFWER(Z),Ÿ�kFWER(Z) for the prostate dataset. Since the parametric and empirical

densities were in fair agreement (Figure 7(a)), our estimates of kFWER(Z), Ÿ�kFWER(Z) in Figure 7(c)
were similar for a variety of k, e.g. k = 1, 5, 20. Setting k = 5 and controlling (LHS) kFWER(Z) at

0.10 provided 27 discoveries compared to 16 discoveries with (LHS) Ÿ�kFWER(Z) ≤ 0.10 (see Table 1). For

the RHS versions, there were 27 and 14 discoveries with kFWER(Z) and Ÿ�kFWER(Z), respectively (see
Table 1). Importantly, the difference in results between the empirical LHS and RHS versions of kFWER
demonstrates the potential improvements of our method compared to standard kFWER testing with two
sided p-values. Our functional kFWER estimator may have highlighted significance which was obscured
when using standard kFWER methods (e.g. adjusted Bonferroni, Šidàk, and Holm) with two sided p-values.
With one sided p-values (LHS or RHS), we examined parametric and empirical versions of the adjusted
Bonferroni, Šidàk, and Holm procedures (see Table 1). The empirical based approaches provided slightly
fewer discoveries when compared to their parametric counterparts, a result that can be attributed to the
fact that the empirical distribution was estimated to be slightly wider than the parametric distribution (see
Figure 7(a)).

The leukemia dataset originally presented in Golub et al. (1999) contains microarray data with 7128
gene expression levels for 72 patients, 45 with ALL (acute lymphoblastic leukemia) and 27 with AML (acute
myeloid leukemia). The two sample t-tests (70 degrees of freedom) comparing AML with ALL patients were
transformed to z-values, as described in Efron (2010).

Figure 7(b) provides the histogram (scaled) of z-values and the empirical and parametric null densities.
The histogram is highly overdispersed compared to the N(0, 1) (parametric) null distribution and, as a
result, the parametric kFWER provides a greater number of “discoveries” when compared to the empirical
estimate. Setting k = 5 and controlling (LHS) kFWER(Z) at 0.10, provided 444 discoveries compared to

83 discoveries when controlling (LHS) Ÿ�kFWER(Z) at 0.10 (see Table 1). For the RHS, there were 302 and

47 discoveries at 0.10 with k = 5 when controlling the kFWER and Ÿ�kFWER, respectively. Importantly,
we believe the empirical null is more in line with the expectations of researchers in this experiment. When
discussing similar types of experiments with biologists and scientists, we are more likely to believe that there
are relatively few changes between the two conditions. As stated in Efron (2010) regarding the parametric
(theoretical) null for this example, “it seems more likely that there is something inappropriate about the

theoretical null.” The contrast between kFWER(Z) andŸ�kFWER(Z) and the likelihood that the theoretical
null is incorrect demonstrates the improvements gained by using the empirical version in conjunction with
functional kFWER. We also examined the p-value based methods (Bonferroni, ,Šidàk, and Holm) for the
leukemia dataset in Table 1. Since the empirical distribution has a much larger variance compared to
the parametric distribution, we observed a large discrepancy in the number of discoveries between the two
methods, with the parametric methods most likely having provided a large number of false positives.
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Figure 7: Data Examples: The prostate (a) and leukemia (b) dataset z histograms with the parametric null distri-
bution in black and the empirical null distribution in red. The prostate (c) and leukemia (d) kFWER for k = 1 in
solid line, k = 5 in dashed line, and k = 20 in dotted line with the LHS versions of kFWER to left of 0 and RHS to

right of 0. For (c) and (d), the ÿ�kFWER is in red and the kFWER is in black.
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z-value based p-value based
pF eF pSIDAK eSIDAK pHOLM eHOLM pBON eBON

LHS prostate 27 16 27 17 8 4 8 4
RHS prostate 27 14 26 14 13 8 13 8
LHS leukemia 444 83 426 75 312 35 308 35
RHS leukemia 302 47 286 43 209 23 207 23

Table 1: Data Example Results: Table of counts of significant genes in data examples (prostate and leukemia datasets) using

various kFWER methods with k = 5 and α = 0.10: pF denotes the number of significant genes when kFWER(Z) = 0.10, eF

denotes the number of significant genes when ◊�kFWER(Z) = 0.10, pSIDAK is the Šidàk method using parametric (LHS/RHS) p-

values, eSIDAK is the Šidàk method with empirical F0 (F̂0) to compute p-values, pHOLM is the Holm method using parametric

(LHS/RHS) p-values, eHOLM uses Holm method with empirical F0 (F̂0) to compute p-values, pBON is the adjusted Bonferroni

method (k = 5) using parametric (LHS/RHS) defined p-values, eBON is the Bonferroni method with empirical Fo (F̂0) to
compute p-values.

6. Discussion

Many of the works discussing kFWER controlling methods were designed with p-values in mind, e.g.
Holm, Šidàk, and adjusted Bonferroni methods. Also more advanced techniques such as step up and step
down procedures often commonly rely on the p-values, (e.g. Finos and Farcomeni (2011)). As an alternative
to p-values, the maxT method presented in Dudoit et al. (2004) is a method designed to work on the test
statistics rather than the p-values. These methods also propose similar techniques to determine p-values
based on empirical distributions. Software to implement these stepwise procedures can be found in the
multtest and someKfwer R packages, see Pollard, Ge, Taylor, and Dudoit (Pollard et al.) and Finos and
Farcomeni (2010), respectively. Existing kFWER controlling procedures (e.g. Holm, Bonferroni, and Šidàk)
are designed to report significant tests while controlling kFWER, without necessarily directly estimating
kFWER. As shown in Miecznikowski et al. (2011), certain kFWER controlling methods can indirectly
estimate kFWER more accurately than other controlling methods. Further, these more accurate methods
are shown to have increased power in simulations (Miecznikowski et al., 2011; Roquain and Villers, 2011).

We have demonstrated that existing kFWER controlling procedures can be incorporated into our pro-
posed novel functional method to estimate kFWER and that empirical versions of these traditional methods
can be implemented using empirical null distributions. We have shown our empirical estimator of kFWER
estimates kFWER more accurately in settings where the null distribution may be overdispersed due to un-
observed covariates. These improvements in accuracy will lead to fewer false positives in situations with
an overdispersed null distribution. Although a comprehensive power study was not within the scope of our
present work, we expect our parametric kFWER estimator to have similar power to the Šidàk method in a
two group independence setting. (See Figure 2 where the Šidàk method to control kFWER at 0.20 intersects
our parametric kFWER estimator at 0.20.)

A major challenge facing many multiple testing schemes is robustness in light of correlated data. Many
of the results for correlated data require the positive regression dependency subsets (PRDS) assumption,
e.g. Cai and Sarkar (2006) and Sarkar (2008). This assumption is originally presented in Lehmann (1966)
and can be difficult to assess in practice. Additionally, there are other common assumptions which may be
violated in many situations where multiple testing procedures are desired. Further work with correlated tests
are presented in Romano and Wolf (2005, 2010). As discussed in Efron (2010), there are several reasons
for the theoretical null distribution to fail in practice, thus necessitating a need for an empirically based
null distribution. Namely, failed mathematical assumptions, for example, violations of the independent and
identically distributed assumption required for a two sample t statistic. Also, correlation across sampling
units (e.g. patients) or correlation across cases (e.g. genes) could cause the theoretical null to be a poor
estimate of the null distribution. Lastly, unobserved covariates such as age, weight or body mass index (BMI)
can affect the estimation of the null distribution. Importantly, Efron (2010) in Chapter 7 has presented results
for the MLE and central matching methods for estimating F0 that discuss their performance (accuracy)
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in light of correlation. Ultimately, for many correlated data settings, both methods to estimate the null
distribution work well and it can be shown that their performance is heavily dependent on the root mean
square of the correlation of the test statistics. Other methods to estimate null distributions can be found
in Jin and Cai (2007) and Muralidharan (2010). Comparison of empirical methods for estimating the null
distributions will be pursued as future work.

Note, our derivation for kFWER(Z) in (14) is based on the independence assumption, while the accuracy

of F̂0 and, consequently, π̂0 depend on the root mean square of the N · (N − 1)/2 pairwise gene correlations.
To extend our work to correlated settings, our group is developing a correlation based representation for
kFWER(Z) using a sparse version of Bahadur’s representation for correlated Bernoulli trials (Bahadur,
1959).

7. Conclusion

In this manuscript we have introduced a novel functional version of the generalized family wise error rate
(kFWER). We have shown parametric and non parametric (empirical) versions to estimate kFWER(Z).
We have demonstrated that several popular kFWER controlling methods can be considered as a single
point version of our functional estimator. Additionally we have adapted these popular kFWER controlling
methods for use with empirical null distributions which work well in settings with an overdispersed null
distribution or correlated statistics setting. Our version of kFWER offers improved inference compared to
standard kFWER methods based on (two sided) p-values derived from parametric null distributions. We
expect our version of kFWER will guide researchers in choosing biomarkers for validation in experiments
controlling the generalized family wise error rate.
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9. Appendix

In the following subsections we present results related to the adjusted Bonferroni, Šidàk, and Holm
procedures. Additionally we present several methods to empirically estimate null distributions.

9.1. Adjusted Bonferroni Method

Theorem 1. Using the two sample mixture model defined in (1), zbon = F−1
0 (kα/n) is such that kFWER (zbon) ≤

α when using the (LHS) kFWER definition where kFWER(z) = kFWER(Z) where Z = (−∞, z).

Proof. Let Z = (−∞, zbon). Then,

(LHS) kFWER(zbon) = Pr(N0(Z) ≥ k) ≤ E(N0(Z))
k (by Markov Inequality)

= E (E(N0(Z)|N0)) /k (Law of total expectation)
= E (N0F0(zbon)) /k (since N0(Z)|N0 ∼ Bin(N0, F0(zbon)))
= Nπ0F0

(
F−1
0 (kα/N)

)
/k (since N0 ∼ Bin(N, π0))

= π0α ≤ α.

Corollary 9.1. Using zbon = F−1
0 (1 − kα/n) and the (RHS) kFWER definition, we show that (RHS)

kFWER (zbon) ≤ α where (RHS) kFWER(z) = kFWER(Z) where Z = (z,∞).

Proof. A similar argument to Theorem 1 establishes the (RHS) kFWER result.

9.2. Šidàk Method

Theorem 2. Consider the two sample mixture model defined in (1), zsid = F−1
0 (psid) where psid is such

that
Fb(k − 1|N, psid) = 1− α. (35)

Then (LHS) kFWER (zsid) ≤ α when using the (LHS) kFWER definition where kFWER(z) = kFWER(Z)
where Z = (−∞, z).

Proof. We can assume that psid = F0(zsid). Then we have

(LHS) kFWER(zsid) =
N∑

i=k

(1− Fb(k − 1|i, psid)) fb(i|N, π0). (36)

Note from (35) we can assume that Fb(k − 1|N, psid) = 1 − α and so 1 − Fb(k − 1|N, psid) = α. Hence the
last term of the sum in (36) is απN

0 . Importantly, we further note that Fb(k − 1|n, p) > Fb(k − 1|N, p) for
any n < N . Thus,

1− Fb(k − 1, N, p) > 1− Fb(k − 1, n, p). (37)

Thus, we can rewrite (36) with the understanding that (LHS) kFWER(zsid) = kFWER(Z) with Z =
(−∞, zsid) as follows,

(LHS) kFWER(zsid) =
∑N

i=k (1− Fb(k − 1|i, psid)) · fb(i|N, π0)
≤ α [fb(k|N, π0)) + fb(k + 1|N, π0) + · · ·+
fb(N |N, π0)]

≤ α (1− Fb(k − 1|N, π0))
≤ α (since 1− Fb(k − 1|N, π0) ≤ 1).

(38)
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Corollary 9.2. Similarly, if we define zsid = F−1
0 (1− psid) where psid is such that

Fb(k − 1|N, psid) = 1− α. (39)

Then (RHS) kFWER (zsid) ≤ α when using the (RHS) kFWER definition where (RHS) kFWER(z) =
kFWER(Z) where Z = (z,∞).

Proof. Similar to the proof for Theorem 2.

9.3. Holm Method

Theorem 3. Consider the two sample mixture model defined in (1) and zholm = F−1
0

(
p(r)

)
where r is the

largest index satisfying (28). Then (LHS) kFWER (zholm) ≤ α when using the (LHS) kFWER definition
with one sided p-values defined by pi = F0(zi).

Proof. If r ≤ k, then our α adjustment is the same as the Bonferroni α adjustment and we can use the
Markov inequality as employed in the proof for the adjusted Bonferroni argument.

Assume r > k, then we use the technique employed in Lehmann and Romano (2005). Let y1, y2, . . . , yN0

denote the ordered z statistics for the true null hypotheses where y1 ≤ y2 ≤ y3 · · · ≤ yN0
. Then let zj = yk

where z1 ≤ z2 ≤ · · · ≤ zN denote the ordered z statistics. Thus, the following probability statements hold,

(LHS) kFWER (zholm) = Pr ({N0(−∞, zholm) ≥ k})
= Pr(# of null z-values ∈ (−∞, zholm) ≥ k).

(40)

The event {# of null z-values ∈ (−∞, zholm) ≥ k} is equal to the event {yK = zj ≤ zholm}. In order
to reject at least k true nulls, the largest possible value of j is N − N0 + k, namely, the situation where
the N − N0 true alternatives are the smallest z statistics. Hence, we have that yk = zj ≤ zN−N0+k.
Hence, we have Pr(# of null z-values ∈ (−∞, zholm) ≥ k) = Pr({yk = zj ≤ zN−N0+k}). Now apply
F0 to the event {yk = zj ≤ zN−N0+k} which is a non decreasing function in order to obtain, F0(yk) =
F0(zj) = pj ≤ F0(zN−N0+k) = pN−N0+k. However, since zj ≤ zholm we must have that pj ≤ αj . Also,
αj ≤ αN−N0+k = kα/N0 since α is an increasing function, see (29). Hence,

(LHS) kFWER (zholm) = Pr(# of null z-values ∈ (−∞, zholm) ≥ k)
= Pr({yk = zj ≤ zN−N0+k})
= Pr ({F0(yk) = F0(zj) ≤ pN−N0+k})
≤ Pr(F0(yk) = F0(zj) = pj ≤ αN−N0+k = kα/N0.

= Pr
Ä
Uk ≤ kα

N0

ä
where Uk ≡ F0(yk); the k-th null p-value

= Pr(W > k) where W ∼ Bin(N0, kα/N0)
≤ E(W )/K By Markov inequality
= α

(41)

Corollary 9.3. Consider the two sample mixture model defined in (1) and zholm = 1− F−1
0

(
p(r)

)
where r

is the largest index satisfying (28). Then kFWER (zholm) ≤ α when using the (RHS) kFWER definition
where kFWER(z) = kFWER(Z) where Z = (z,∞).

Proof. Similar to the proof for Theorem 3.
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9.4. Methods to estimate the null distribution

In this section, we paraphrase two methods described in Efron (2010) for estimating the null distribution.
We assume that f0(z) is normal but not necessarily N (0, 1) say,

f0(z) ∼ N (δ0, σ
2
0), (42)

and we define fπ0(z) = π0f0(z). This implies that

log(fπ0(z)) =

ï
log(π0)−

1

2

ß
δ20
σ2
0

+ log(2πσ2
0)

™ò
+

δ0
σ2
0

z −
1

2σ2
0

z2, (43)

is a quadratic function of z.

9.5. The MLE method for empirical null distribution

This method was first introduced in Efron (2007). The maximum likelihood estimator (MLE) method
starts with the zero assumption, where we assume that f1(z) is zero for a certain subset A0 of the sample
space. In other words,

f1(z) = 0 for z ∈ A0. (44)

We assume N0 is the number of zi in A0 and I0 their indices, I0 = {i : zi ∈ A0} and N0 = #I0. We define
z0 as the corresponding collection of z-values,

z0 = {zi, i ∈ I0}. (45)

Also, let ϕδ0,σ0
(z) be the N(δ0, σ

2
0) density function,

ϕδ0,σ0
(z) =

1√
2πσ2

0

exp

®
−
1

2

Å
z − δ0
σ0

ã2´
(46)

and

H0(δ0, σ0) ≡

∫

A0

ϕδ0,σ0
(z)dz, (47)

this being the probability that a N(δ0, σ
2
0) variate falls in A0.

We suppose that the N zi values follow the two-group model (1) with f0 ∼ N(δ0, σ
2
0) and f1(z) = 0 for

z ∈ A0. Then zo has density and likelihood function

fδ0,σ0,π0
(z0) =

ñÇ
N

N0

å
θN0(1− θ)N−N0

ô[∏
I0

ϕδ0,σ0
(zi)

H0(δ0, σo)

]
(48)

when θ = π0H0(δ0, σ0) = Pr({zi ∈ A0}).

Computations can produce maximum likelihood estimators (δ̂0, σ̂0, π̂0); fδ0,σ0,π0
(z0) is the product of

two exponential families which can be solved separately (the two bracketed terms). The binomial term gives

θ̂ = N0/N while δ̂0 and σ̂0 are the MLEs from a truncated normal family, obtained by familiar iterative
calculations, finally yielding

π̂0 = θ̂/Ho(δ̂0, σ̂0). (49)

The log of (48) is concave in (δ0, σ0, π0) guaranteeing that the MLE solutions are unique. This is described
more fully in Section 6.3 of Efron (2010).
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9.6. The central matching method for empirical null distribution

This method was first introduced in Efron (2004). In this method, we define yk as the number of
observations zi in the kth bin,

yk = #{zi ∈ Zk}, (50)

where we partition the range Z of zi values into K bins of equal width d with

Z =
K⋃

k=1

Zk. (51)

Then, with the central matching method, we estimate f0(z) and π0 by assuming that log(f(z)) is quadratic
near 0 and equal to (43) with,

log(f(z)) ≈ β0 + β1z + β2z
2. (52)

Estimating (β0, β1, β2) can be done using least squares with the histogram counts yk around z = 0 and
matching coefficients between (43) and (52). In other words, via matching, we obtain,

σ2
0 = −1/(2β2), (53)

δ0 = −β1/(2β2), (54)

log π0 = β0 −
β2
1

4β2
+ log(−π/β2). (55)

22


