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Abstract 

Behavioral economic demand curves are innovative and well-thought approaches in psychosocial 

research to characterize the relationships between consumption of a substance and its price, 

shedding a light on substance addiction. Based on the linearity between price and elasticity, they 

are commonly established using a linear model through log-transformed values. Since first 

introduced (Hursh et. al, 1988), they have become popular tools to study reinforcing efficacy of 

substances; however, analytical techniques used in data analyses have not been changed much.            

In this article, we particularly address following analytic issues that can influence 

interpretation of demand curves. First, we demonstrate that log transformation with different 

added values for handling zeros alters the analytical results substantially and thus dramatically 

changes derived values such as elasticity, Pmax, and Omax. In addition, demand curves are often 

analyzed using an over-parameterized model, i.e., individual fitting is performed for each 

participant, giving rise to a lack of assessment of the variability among individuals. 

To provide analytical suggestions in the analysis of behavioral economic demand curves, 

we apply a nonlinear mixed effects model, and we propose analytical formulas for the relevant 

standard errors of derived values such as Pmax , Omax , and elasticity, which are not available in 

the current literature. We demonstrate that the proposed model greatly stabilizes the derived 

values regardless of using different added increments and provides substantially smaller standard 

errors and better inference than the over-parameterized model. We illustrate the analytical 

procedure using data from a relative reinforcement efficacy study of marijuana purchasing.  
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1. Introduction 

Behavioral economic demand curves describe the changing behavior of consumption of a drug, 

addictive substance, or other consumable commodity as a function of the cost represented by 

price [1-2]. They are expressed as a decreasing slope of the demand with increasing price to 

assess the reinforcing value of commodities. Hursh et al. [3] first proposed the linear elasticity 

equation for behavioral economic demand curves. It has been widely used for studies ranging 

from the purchase of single substance (e.g., [4]) to consumption of concurrently available drugs 

to compare relative reinforcements (e.g., [5]); however, analytical techniques used in data 

analyses have not been changed much. This article mainly focuses on the behavioral economic 

demand curve analysis in the context of a purchasing task study that evaluates the reinforcing 

efficacy of a study substance. Reinforcing efficacy of a substance is commonly assessed by the 

degree of efforts that individuals make to gain access to the substance [2]. 

In a purchasing task study [2, 4], typically, subjective demand (consumption) of a 

substance is observed at different hypothetical price points for each individual. Suppose that 

there are n  participants in a study and consumption of substances is observed at k  different 

price points. The linear elasticity equation [3] to describe the behavioral economic demand is 

commonly presented in the logarithmic coordinates as 

 log log log( ) , 1,..., , 1,..., ,ij j j ijC L b p ap i n j k       (1) 

where jp  are j -th  price and ijC  are corresponding amount of consumption for the i -th 

participant. In a typical linear regression, the residuals ij  are considered to have the independent 

and identical normal distribution with a constant variance, 2 . Equation (1) is derived based on 

the first order linear relationship between elasticity and price [3], where elasticity is defined as 

log logij jC p  . The parameter L is the amount of consumption at unit price and is referred to 



as derived-intensity [4]. The parameter a  is the major parameter to derive the decreasing 

consumption when price increases. The parameter b is typically a small negative value and 

controls initial dip of the model, that is, the greater absolute value of b gives rise to the steeper 

decrease of initial consumption. The expenditure is defined as ij jC p . Price values jp  are 

considered to be fixed. In laboratory animal studies, price can be expressed as a function of both 

the response requirement and decreasing reward of the studied substance. For example, an 

increasing effort to obtain a study substance (e.g., pressing a lever) and a decreasing dose level 

of that substance for each effort give rise to an increase in price [6]. 

Important quantities that can be derived from Model (1) include max :P  the price to 

achieve the maximum expenditure, max :O  the maximum expenditure, and e :p elasticity at price 

p  as defined by 

 max (1 ) / ,P b a   (2) 

 1 (1 )
max max ,b bO LP e    (3) 

and 

 e .p b ap   (4) 

Often, elasticity is summarized in the average price. Let e  indicate the average elasticity, i.e., 

e b ap  where 
1

/
k

jj
p p k


 . Elasticity (4) becomes -1 at  maxP  and the demand moves from 

inelastic ( 1  ) to elastic ( 1  ) when a price value passes maxP . Thus, a large value of maxP  

shows that the elastic demand of a substance is achieved only at a high price, indicating strong 

reinforcement of a substance of interest [6].  

Although fitting Model (1) seems straightforward, there are a few analytical issues to be 

considered in common data analysis practice. The first issue is in taking the logarithm of data 



points. There are a few different ways of carrying out the log transformation to handle zero 

values in consumption and price, and we observe that the estimated parameter values based on 

Model (1) change dramatically by different log transformation strategies, resulting in unreliable 

parameter estimations. No literature specifically addresses the potential implication of using 

different log transformation strategies. In this article, we will provide a detailed account of the 

effects of the different log transformation strategies on model fitting. The second issue is the 

usage of over-parameterized models where they are fitted for each participant, giving rise to 

inefficient inferences. The third issue is the lack of consideration of a clustering effect in 

multiple observations from the same individuals.           

To address these issues, in this article, we propose to use a nonlinear mixed effects model 

[7-8] to fit behavioral economic demand curves as an alternative to conventional data analysis 

practices.  This article has the following structure. In Section 2, we will illustrate the analytical 

problems in conventional data analyses using data from a purchasing task study. In Section 3, we 

propose a nonlinear mixed effects model for behavioral economic demand curves, and analytical 

formulas of the variance estimations for the derived values, maxP , maxO  and e . We will also 

examine the large sample properties of the variance estimations through a Monte Carlo study.  In 

Section 4, we will demonstrate the application of the proposed model to behavioral economic 

data. Section 5 is devoted to additional discussion.  

 

2. Analytical problems illustrated 

Throughout this article, the analytical problems and an actual data analysis will be described 

based on data obtained from a relative reinforcement efficacy study of marijuana purchasing 

carried out at University at Buffalo (henceforth, referred as to the marijuana purchasing data) [9]. 



In the study, participants completed a computerized simulation task in which they were asked 

how many average-sized high grade marijuana joints they would smoke for 4 hours at various 

prices. The price per joint was: 0, 0.1, 0.25, 0.5, 1, 2, 4, 5, 7.5, 10, 15, 20, 30, 40, 80 and 160 in 

U.S. dollars. The data that we use in this article are from 59 participants.  By fitting a behavioral 

economic demand curve to simulated demand at hypothetical prices, the study aims to assess the 

reinforcing efficacy of marijuana in the study population.  Note that the study design is adapted 

from the purchasing task study by MacKillop and Murphy [4] to assess demand curves for drugs. 

 

2.1 Problem in log transformation 

Coefficients based on log-log coordinates in (1) provide the useful description regarding the 

elasticity. The log transformation is often considered as a valid data analytical step especially for 

handling positive data with skewed distributions [10]; however, when data include zeros, the log 

transformation is not possible unless certain small values are added to the data. In purchasing 

task studies, the range of prices typically includes zero (e.g., $0), and consumption eventually 

decreases to zero when price increases. In the available literature, it is commonly stated that 

some arbitrary low values (such as 0.01) are added to zero values (e.g., [4, 11]). The different 

added values (henceforth referred to as  ) may seriously affect analytical results since arbitrary 

small values may have huge differences in the log scale. For instance, with a log transformation 

using the natural log, the values of 10-2 and 10-5 are transformed to -4.60517 and -11.51293, thus 

the initial difference (i.e., 0.00999) becomes a sizable difference after the log transformation 

(6.90776). In addition, besides the matter of the magnitude of  , we found in some literature 

that zero values for consumption are either replaced by small values or simply removed [11-12]. 

Thus, we consider the following strategies in handling zero values.  



Strategy 1: For each participant, the first zero consumption value is replaced by a small value 

and subsequent consumption values are removed [11-12]. Zero prices are replaced by 

a small value.  

Strategy 2: Zero values of both consumption and price are replaced by a small value. 

Strategy 3: Small values are added to all values, i.e., ijC   and  jp   for all ,i j  in (1).  

Strategy 3 essentially does a parallel shift of the data points. The idea of Strategy 3 is to preserve 

the overall trend by adding the same small increment to all data points.  We fit Model (1) to the 

marijuana purchasing data using the different log transformation strategies and magnitudes of   

(Figures 1 and 2). The least square method is used for curve fitting. Figure 1 shows the fitted 

curves with different strategies with 0.01   in log-log scale. The bullet points in Figure 1 are 

the log of the average consumption corresponding to each price. Strategies 2 and 3 provide 

similarly fitted curves while Strategy 1 seems quite different from the other two. Strategy 1 

shows a slight increase of consumption initially then a sharp change from being inelastic to 

elastic; it does not explain the initial decrease in consumption well and exaggerates the elasticity 

of the later part in the price range. On the other hand, Strategies 2 and 3 provide models that 

show a pretty constant decrease of consumption throughout the price range. That is, these 

different strategies provide quite different interpretations of consumption behavior in terms of 

the elasticity. Overall, the fitted curves do not explain the trend well throughout the price range 

regardless of the different strategies.  

Because Strategy 1 eliminates some available data points and is not the most efficient 

way to use the data points, we will exclude Strategy 1 in the following discussions. 

Figure 2 shows the fitted curves with various values of   based on Strategies 2 and 3. It 

clearly demonstrates that the different   values lead to quite different estimated parameter 



values. All presented strategies show serious fitting issues. The fitted curve with 0.5   is 

provided to demonstrate the fact that, although such a large number is likely to interrupt the trend 

of the data more seriously in the log transformation by shifting the data points more than the 

smallest increment in the price range and thus should not be used, it provides better curve 

estimation than other  ’s. The different fitting curves seriously alter the estimations of derived 

quantities such as (2), (3) and the average elasticity as shown in Table 1 as well. For example, 

the estimated maxP  becomes more than double when   is changed from 0.00001 to 0.01. One 

may argue that the log transformation can provide the variance stabilization making more 

homoscedastic variances throughout the price range; however, we found that some arbitrarily 

added   to zero consumption may result in quite heteroscadastic variances after log 

transformation. 

We conclude that linear model fitting using the log transformation and Model (1) fails to 

provide a reliable result.   

    

2.2. Improved performance of the nonlinear model without log transformation 

Alternatively to Model (1), we can use the equivalent nonlinear model 

  , 1,..., , 1,..., .japb
ij j ijC lp e i n j k      (5) 

Still we need to add some increments to fit the nonlinear model since 0ijC   is not possible for 

jp   ; however, without log transformation, adding small increments to the data points barely 

affects the overall trend of the data. We note that the elasticity based on Model (5) has the 

exactly same interpretation as that with Model (1), although Model (5) is not expressed in log-

log coordinates.  



Fitted curves of (5) based on Strategies 2 and 3 are compared in Figure 3. Overall, the nonlinear 

approach follows the trend of the data much better than the linear approach. In the figure, 

Strategy 2 (left plot) and Strategy 3 (right plot) have little distinction. Figure 3 also shows the 

fitted curves based on various   are quite similar.  

We compare the derived values max ,P  max ,O and e  in Table 2. The derived values are 

more stable with various  compared to the dramatic changes in Table 1. It is notable that the 

estimated values in Table 2 are quite different from those in Table 1, suggesting that the study 

conclusion can be misled by the linear approach combined with the log transformation.  

These results clearly demonstrate that curve fitting without log transformation produces 

much more robust parameter estimations and better fitting to the data.  

We note that, although Model (5) gives improved curve fitting compared to Model (1), it 

fits a single curve for the entire participants, thus it does not consider the variability among 

different individuals. Figure 3 also shows that there is a lack of fit toward the end of the price 

range.  

 

2.3. Over-parameterized model 

For behavioral economic demand analyses, it is the customary analytical practice that a separate 

curve is fitted to each participant based on either Model (1) (e.g. [4, 13]) or Model (5) (e.g., [3, 

14]). Based on Model (5), one can express a model allowing individual fitting as  

  , 1,..., , 1,..., .i ji
a pb

ij i j ijC l p e i n j k      (6) 

Compared to Model (5),  Model (6) considerably increases the number of parameters to 

be estimated, giving rise to an over-parameterized model. After individual model fitting, the 

overall model coefficients and the derived values (2), (3) and (4) are estimated by simply 



averaging the individually obtained parameter estimates, and the corresponding standard errors 

are subsequently obtained. Note that, in the literature on behavioral economic demand curve 

analysis, the parameter estimations and standard errors are commonly presented; the 

corresponding statistical tests rarely accompany those articles. Conceptually, fitting a different 

model for every participant can be considered as an opposite model building scheme to Model 

(5). While Model (6) can incorporate variability from different individuals in parameter 

estimation, it does not take into account deviations of individuals from average behavior based 

on the demand curve. Thus, the model does not directly reflect the variability between and within 

individuals, which may present a problem in generalizing the results to a population with similar 

characteristics [15]. 

When the over-parameterized model (6) is applied to the marijuana purchasing data, the 

estimated residual standard error   is  2.547, much smaller than 8.595, the estimated   based 

on Model (5); however, Model (6) does not provide better fitting of the data than the fitted curve 

based on Model (5)  as shown later in this article (Section 4). This is because of the practice of 

averaging individually estimated parameters in an ad-hoc manner rather than fitting a model 

based on the entire data. Consequently, Model (6) is seriously affected by unusual data values, 

and oftentimes estimate maxP  and maxO  that are not in the valid boundary.  For example, in the 

marijuana purchasing data, the derived maxP  for one participant is estimated as -17,333.1 and the 

corresponding maxO  does not exist. Another participant shows an estimated maxP  of 1269.96.  

Such estimations either inflate the standard errors or do not contribute the parameter estimation 

by eliminating them. In Section 3, using the Monte Carlo study, we will show that the over-

parameterized model produces larger standard errors in general and lower coverage rates for 

confidence intervals compared to a model fitting strategy based on the entire data.  



 

3. Model proposed 

3.1 A nonlinear mixed effects model 

We demonstrated that parameter estimation by the nonlinear model is much more robust than 

that by the linear approach through the log-transformed data. However, the nonlinear model 

assumes a single line for all individuals, and thus it may not explain the variability between 

individuals giving rise to increasing the residual standard error. The over-parameterized model 

reduces the residual standard error considerably comparing to the nonlinear model; however, the 

parameter estimation and their variance estimation depend on the ad-hoc approach resulting in 

the loss of data points and problem with generalizability.  

A nonlinear mixed effects model [15] can provide some middle ground between Models 

(5) and (6). The nonlinear mixed effects model or the hierarchical nonlinear model has been 

widely applied in diverse research areas to analyze data with repeated measurements [8]. Using a 

random coefficient, the nonlinear mixed effects models allow individual variability and 

incorporate clustering effect into the model, similarly to multilevel linear models. To analyze the 

economic demand curve analysis, we propose to use a nonlinear mixed effects model as  

 , 1,..., , 1,..., ,i ji
a pb

ij i j ijC l p e i n j k     (7) 

where 
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In Model (7), β  indicates the fixed effect and ib indicates the random effect that allows the 

variability of parameters for each individual. This additional variability defines the coefficients 

unique to each individual so that it reflects the cluster effect within an individual. In actual model 

building, the necessity of these random effects can be examined visually (see Section 4). The 

variance-covariance matrix of random effects   shows the general positive definite structure.  

The residuals ij   are independent and have heteroscedastic variances as a function of the price, 

reflecting the fact that the consumption variability tends to be large initially then decreases with 

increasing prices.  

Based on the fitted model, the variances of the derived values need to be obtained. Let î   

indicate the estimates of the fixed effects , 1, 2,3i i  , 2
ˆ

ˆ( )
i

iVar


   and ˆ ˆ
ˆ ˆ( , )

i j
i jCov

 
   . 

Also, maxP̂  and maxÔ  are the estimates of maxP  and maxO , respectively, where i  are replaced by 

î . We can obtain the following result.  

Proposition 1: The variances for maxP̂  and maxÔ  are approximated by 
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Since maxP  and maxO  in (2) and (3) are at least twice differentiable, the result above is the direct 

application of the multivariate Taylor’s expansion. Note that, in Proposition 1, a specific 

underlying distribution is not required. Using the properties of the variance calculation, the 

variance of the estimated average elasticity ê  replacing i  by î  based on (4) is given as 

 
2 3 2 3

2 2 2
ˆ ˆ ˆ ˆˆ(e) 2 .Var p p
   

      (10) 

Note that p  in (10) is a fixed value. Actual variance estimation is carried out by replacing the 

variance and covariance terms in (8), (9), and (10) with the estimated ones. In the next 

subsection, we investigate the performance of these variance estimates in inference.  

Model (7) can be fitted using commonly available statistical packages such as SAS or R. 

For nonlinear mixed effects model fitting, starting values need to be provided. Starting values 

can be obtained from a simpler model such as nonlinear models without random coefficients or 

parameter estimations based on the over-parameterized model. The R codes for Model (7) and 

the variance estimations of the derived values are available from the authors. 

 

3.2 Simulations 

We investigate the performance of inferences based on the variance estimations in (8), (9), and 

(10) through an extensive Monte Carlo study (1000 simulations per scenario). For the simulation, 

il  in (7) has a normally distributed random effect while ia  and ib  have fixed effects only, and 

the variance of ij is constant. The fixed effect parameters for simulations are chosen to achieve 

the semblance of the marijuana purchasing data ( 1 2 310.981, 0.026, 0.102      ). In 

addition, the same 16 price points from the marijuana purchasing data are used. The true maxP , 

maxO   and e   for simulations are 9.5, 37.3 and  -2.4, respectively. Through the Monte Carlo 



study, a large sample property is investigated by constructing confidence intervals based on the 

normal approximation, where ij  have various underlying distributions (normal, centralized 

lognormal and centralized 2 ). The coverage rate of the confidence interval and magnitude of 

the standard errors for the nonlinear mixed effects model and over-parameterized model are 

compared in Table 3. For the nonlinear mixed effects model, even with a moderate sample size 

such as 30n  , a viable performance of the confidence intervals based on the variances (8), (9), 

and (10) is shown regardless of the different underlying distributions. On the other hand, the 

over-parameterized model shows unsatisfactory coverage rates throughout the various 

underlying distributions and sample sizes indicating that the over-parameterized model does not 

provide suitable inferences for the derived values.  It is noteworthy that the magnitudes of the 

standard errors of the nonlinear mixed effects model are much smaller than those for the over-

parameterized model, ensuring that the nonlinear mixed effect model is a much more efficient 

way to perform parameter estimation.  

 

4. Data application 

In this section, we demonstrate the actual data analysis using the marijuana purchasing data. For 

model fitting, we choose a small added value, 51 10  based on Strategy 3 (parallel shift). The 

nonlinear mixed effects model proposed in (7) considers many random coefficients and 

correlations between them, where not all random effects are necessary to describe the 

observations. In actual model fitting, for the first look at the data, one can investigate the 

variability of the estimated coefficients based on the over-parameterized model. The over-

parameterized model can suggest the necessity of the random coefficient in the non-linear model 

by observing the ranges of the individually obtained parameter estimates [15]. Plots of the 



individual estimated values of parameters and standard errors based on the over-parameterized 

model are shown in Figure 4. The estimates of il  show a large variability as opposed to fairly 

constant estimates of ib  and ia , suggesting that the random effect 1ib  in Model (7) is reasonable 

while the random effects 2ib  and 3ib  may not be necessary. The standard deviations of 

consumption at each price point gradually decrease from 18.01 (at $0) to 2.19 (at $160), 

suggesting the within-group standard errors are a decreasing function of prices. For the data 

analysis, the residual standard error is defined as a power function of price (i.e., jcp   , where 

c  is a constant and   is a real number). In statistical software R, this can be easily handled using 

a variance function such as varPower in nonlinear mixed effects model fitting. The 

distributions of consumption at each price are not symmetric but generally skewed to the right; 

however, we demonstrated workable inferences based on the non-normal underlying 

distributions even with moderate sample sizes (e.g., 30n  ) in the Monte Carlo study (Section 

3). The fitted values of the fixed effects and standard errors (inside parentheses) based on Model 

(7) are 1̂ 10.163(1.369)  ,  1̂ 0.037 (0.006)    and 1̂ 0.073(0.004)  . For the power function 

of the residual standard error,   is estimated as -0.083.  

Figure 5 shows the fitted curves based on Models (5), (6), and (7). Model (7) follows the 

consumption trend more closely than other models by improving curve fitting toward the end of 

the price range. The residual standard error of Model (7) is much smaller (3.996) than that of 

Model (5) (8.594), indicating a better curve fit than the nonlinear model without random effects. 

The better fit of Model (7) toward the higher price gives rise to the least elastic curve among the 

fitted curves. Estimated values (standard errors in parentheses) of maxP , maxO  and e  are 13.214 

(0.692), 46.635 (6.474) and -1.747 (0.092), respectively.  Note that, for the over-parameterized 



model, the estimated values (standard errors in parentheses) of maxP , maxO  and e  are 17.422 

(5.276), 64.200 (22.029) and -4.018 (0.755), respectively, where the standard errors are 

calculated based on 57 participants due to out-of-boundary estimations as explained in Section 2. 

We note that, even if the nonlinear mixed effects model improves curve fitting compared 

to the other models, there is still a lack of fitting at the tail ends of the curves (Figure 5). This 

problem is a consequence of using the conventionally accepted theoretical model based on the 

concept of the first order linear relationship between elasticity and price. We note that Bickel et 

al. [16] discuss some limitations of the behavioral economic demand curves. If desired, other 

models can be used or one may try a segmented regression [17-18]. However, we argue that the 

conventional behavioral demand curve may be sufficient to investigate maxP ,  maxO  and elasticity, 

which are mostly obtained within the low-price range, where fitting is satisfactory. More 

specifically, maxP  and maxO  are the price point to have the elasticity -1 and the corresponding 

expenditure, respectively. These values are mostly obtained within the low-price range (e.g., 

max
ˆ 13.214P   with the marijuana purchasing data). Also, ê  is obtained at the mean price, i.e., 

23.46, where the curve is well fitted to the data. 

 

5. Discussion 

A common practice in the analysis of behavioral economic demand curves is to replace zero 

values in consumption and/or price with arbitrary small values and then to fit a linear model 

based on the log-transformed data. As shown earlier, there are many different ways that zero 

values are replaced by a small value. These different strategies and a choice of arbitrary small 

values can lead to hugely different model fitting results and derived values. We have observed 

that the nondiscretionary log transformation of the data points leads to poor model fitting in 



general. Although one may argue that the log transformation can stabilize the variance, we found 

that the magnitude of the variances can change dramatically by adding different values to zeros. 

It is also a common practice to fit the model for each individual, resulting in an over-

parameterized model. Because the over-parameterized model individually fits the data from each 

participant, it may not properly evaluate the variability from the population [15]. It is also noted 

that individual fitting often fails to provide realistic derived economic values such as maxP  and 

maxO , inflating the corresponding standard errors.  

We proposed to use nonlinear mixed effects models that provide robust and better 

coefficient estimations of the demand curve than the conventional approach. We also provided 

convenient analytical formulas of variance estimates for the derived economic values once a 

model is fitted, which makes the nonlinear mixed effects model more appealing to practitioners. 

We conclude this article by suggesting that the framework presented here can be 

extended to other demand curve models that use log transformation. The effects that these 

models can have with log transformation in terms of the robustness of parameter estimates and 

overall fitting to the data should be examined. If the log transformation may compromise the 

robustness of parameter estimates, we recommend considering an approach without log 

transformation as suggested in this article. For example, adapting the demand curve proposed by 

Allen [19], Hursh and Silberberg [20] discuss the following demand curve for behavioral-

economic data analysis: 

 0log log ( 1),pC C k e     (11) 

where the log of consumption (C ) exponentially decreases at the rate of   as price ( p ) 

increases. Hursh and Silberberg [20] show that Model (11) can explain demand curves for both 

necessary commodities (e.g., food) and unnecessary commodities. A major advantage of Model 



(11) is noted that the value of   works as a single ‘essential value’ indicating the rate of change 

in elasticity of demand. When fitting Model (11), the log transformation is recommended [20]; 

however, it may cause unstable fitting similarly to Model (1). Instead, taking exponential for the 

both sides of (11), we can fit 

 *( 1)*
0 ,k pC C e

   

where *
pp e  and *

0C  is the parameter related to 0C  in (11), and the random effect can be 

incorporated similarly to Model (7).  

The approach presented in this article will have implications for models in other research areas 

as well, which use log-transformation for their fitting. 
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Figure 1: Fitted curves of Model (1) in log-log scale by various log transformation strategies. 

The solid line, dotted line and dashed line correspond to Strategies 1, 2 and 3, respectively. The 

added   is 0.01 for all three curves. Note that the curves for Strategies 2 and 3 are almost 

identical. 
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Figure 2: Fitted curves of Model (1) in log-log scale by various   values. The left and right 

panels use Strategies 2 and 3 for log transformation, respectively. The bullet points are the log of 

the mean consumption for each price. The different curves are fitted using different   as 

indicated in the figure legend. 
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Figure 3: Fitted curves of Model (5) in log-log scale by various   values. The left and right 

panels use Strategies 2 and 3 for log transformation, respectively. The bullet points are the log of 

the mean consumption for each price. The different lines are fitted using different   as indicated 

in the figure legend. 
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Figure 4: Parameter estimates for each individual based on the over-parameterized model. The 

numbers in x-axis correspond to participants’ identification numbers (a total of 59 participants). 

The dot and the half of the bar indicate the estimated value and the magnitude of its standard 

error. 
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Figure 5: Comparisons of fitted curves based on Model (5) (dashed line), Model (6) (dotted line) 

and Model (7) (solid line) in the actual scale (left plot) and log-scale (plot). The bullet points 

indicate the mean consumption for each price. The grey colored points are the actual 

observations. When the data points are overlapped, slight noises are added at plotting. In the 

right figure, the points at the bottom of the plot are log-transformed zero consumption values 

( 0.00001  ). 
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Table 1:  The comparisons of estimated values of maxP ,  maxO , and e   obtained using Model (1) 

with various   and log transformation strategies. 

Strategy Derived value 0.01   0.0001   0.00001   

Strategy 2 
maxP  24.795 12.248 10.107 

maxO  11.931 5.631 4.169 
e  -0.971 -1.582 -1.893 

Strategy 3 
maxP  24.706 12.248 10.107 

maxO  11.982 5.631 4.169 
e  -0.973 -1.582 -1.893 

 

 

Table 2:  The comparisons of estimated maxP ,  maxO , and e   obtained using Model (5) with 

various   and log transformation strategies. 

Strategy Derived value 0.01   0.0001   0.00001   

Strategy 2 
maxP  11.155 9.800 9.552 

maxO  39.114 37.789 37.523 
e  -2.025 -2.348 -2.419 

Strategy 3 
maxP  11.131 9.800 9.552 

maxO  39.204 37.790 37.523 
e  -2.029 -2.348 -2.419 

 



Table 3. Coverage rates of the 95% confidence intervals and the magnitude of the standard errors 

for the derived values in the Monte Carlo study. The residuals are generated based on the 

centralized underlying distribution indicated in the distribution column.  

 

Distribution n 
Proposed model Over-parameterized model 

maxP  maxO  e  maxP  maxO  e  

Normal (0,1) 

30 
0.951 

(0.233) 
0.935 

(3.121) 
0.950 

(0.058) 
0.835 

(2.110) 
0.757 

(3.165) 
0.953 

(0.3243) 

60 
0.942 

(0.164) 
0.947 

(2.237) 
0.946 

(0.0412) 
0.716 

(1.841) 
0.781 

(2.328) 
0.945 

(0.318) 

100 
0.946 

(0.127) 
0.943 

(1.736) 
0.946 

(0.032) 
0.623 

(1.261) 
0.743 

(1.851) 
0.918 

(0.265) 

        

Lognormal(0,0.752)  

30 
0.950 

(0.267) 
0.934 

(3.142) 
0.943 

(0.067) 
0.770 

(1.051) 
0.834 

(3.150) 
0.941 

(0.448) 

60 
0.949 

(0.189) 
0.945 

(2.248) 
0.937 

(0.047) 
0.697 

(5.231) 
0.792 

(3.847) 
0.919 

(0.392) 

100 
0.942 

(0.146) 
0.949 

(1.753) 
0.935 

(0.037) 
0.638 

(1.535) 
0.697 

(1.934) 
0.858 

(0.403) 

        

2
1df   

30 
0.947 

(0.330) 
0.932 

(3.208) 
0.939 

(0.082) 
0.759 

(4.278) 
0.805 

(3.535) 
0.936 

(0.510) 

60 
0.944 

(0.232) 
0.943 

(2.303) 
0.941 

(0.058) 
0.711 

(2.471) 
0.734 

(2.689) 
0.899 

(0.476) 

100 
0.946 

(0.146) 
0.946 

(1.757) 
0.940 

(0.037) 
0.637 

(1.737) 
0.655 

(2.057) 
0.847 

(0.483) 

 


