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Abstract

We propose a modified nonparametric Baumgartner-Weiß-Schindler test and investigate its use in testing for

trends among K binomial populations. Exact conditional and unconditional approaches to p-value calculation

are explored in conjunction with the statistic in addition to a similar test statistic proposed by Neuhäuser

[24], the unconditional approaches considered including the maximization approach [6], the confidence interval

approach [8], and the E+M approach [17]. The procedures are compared with regards to actual Type I

error and power and examples are provided. The conditional approach and the E+M approach performed

well, with the E+M approach having an actual level much closer to the nominal level. The E+M approach

and the conditional approach are generally more powerful than the other p-value calculation approaches in

the scenarios considered. The power difference between the conditional approach and the E+M approach is

often small in the balance case. However, in the unbalanced case, the power comparison between those two

approaches based on our proposed test statistic show that the E+M approach has higher power than the

conditional approach.
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1 Introduction

In categorical data analysis the problem of testing the equality of K binomial proportions against an ordered

alternative has been studied for many years. The data structure corresponding to the problem can be presented as

a 2×K contingency table where the binary outcome variable is represented by the rows and the column variable

is ordinal in nature. Consider a dose response study where subjects are randomized to different doses of the same

experimental compound and then observed for response. Let ni be the number of subjects enrolled in the i-th

group corresponding to dose di, i = 1, 2, · · · ,K, such that d1 < d2 < · · · < dK . It is reasonable in many scenarios

to assume that if there does indeed exist an effect of the drug, the probability of response is a non-decreasing

function of dosage. The null hypothesis of interest is then

H0 : p1 = p2 = · · · = pK =: p,

which is tested against an ordered alternative of the form

Ha : p1 ≤ p2 ≤ · · · ≤ pK and p1 < pK , (1)

where pi is the probability of the response at dose di, i = 1, 2, · · · ,K. Several testing procedures have been

proposed for investigating binomial trends such as the Cochran-Armitage (CA) test (Cochran [10], Armitage [3]).

The commonly used CA test is based upon the estimated regression coefficient from the weighted linear regression

of the observed proportions of success on the fixed scores corresponding to the ordinal predictor. Several methods

for p-value calculation in conjunction with the CA test statistic have been proposed; e.g. see Shan et al. [25] for

a review of existing methods and an outline of a new unconditional approach.

Under the alternative hypothesis, we would expect the collection of ordinal variable levels (the di’s) for the

responders to be generally larger than the non-responders. Therefore the problem of testing for trend may be

alternatively addressed through use of one of the many one-sided two-sample test statistics available. A linear

rank test such as the Wilcoxon rank-sum test [27, 19, 28] can be applied to test H0 against Ha by treating the ob-

servations as two-sample multinomial data where the multinomial variable takes on one of K levels corresponding

to the di’s [16]. In the case of an equal number of subjects corresponding to the ordinal groups and equally space

di’s , the Wilcoxon rank-sum statistic is mathematically identical to the CA statistic [14]. Other two-sample tests
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may also be considered for testing for trends among binomial proportions.

A rank based test for comparing locations of two continuous populations was proposed by Baumgartern, Weiß,

and Schindler (BWS) [7]. This nonparametric test is based on the squared value of the difference between the

two empirical distribution functions weighted by the respective variance. This weighting places more emphasize

on the tails of the distribution functions and was used in the popular Anderson Darling goodness-of-fit test [2].

Baumgartern et al. studied the asymptotic distribution of the test statistic under normality and showed that the

BWS test is at least as powerful as well known nonparametric tests, such as the Wilcoxon rank sum test [13, 28],

the Kolmogorov-Smirnov test [13], and the Cramer-von Mises test [1]. A permutation approach in conjunction

with the BWS test statistic was suggested by Neuhäuser [22]. Neuhäuser showed that the exact version of the

test is generally associated with a more accurate Type I error control and more power as compared to the exact

Wilcoxon test for a variety of continuous distributions, and especially so when the underlying populations are

exponentially distributed. In the case of normally distributed data, the difference in power between the BWS

test and Wilcoxon test was negligible. Since the BWS test is not suitable for a one-sided alternative hypothesis,

a modified BWS test was later proposed by Neuhäuser [23] for the two-sample problem and K-sample problem

with ordered alternatives. In the context of detecting ordered alternative with K location-shift populations, the

proposed test was compared with the commonly used Jonckheere-Terpstra test [15, 26]. The numerical studies

revealed that the exact Jonckheere-Terpstra test is both more conservative and often times less powerful than

the modified BWS test. In addition, the power of the modified BWS test was seen to be more consistent with

respect to the actual trend pattern.

More recently, the use of the modified BWS test statistic with categorical outcomes has been explored. With

ordinal populations the exact permutation versions of the modified BWS and Wilcoxon tests were compared with

regards to the Type I error rate and simulated power for one-sided alternatives [22]; The exact modified BWS

test was shown to be superior to the Wilcoxon test. Later on, Neuhäuser [24] applied the modified BWS test for

detecting trends among binomial proportions. The procedure, based on conditioning upon the observed marginals

for computing significance, was compared with the asymptotic CA test and the exact conditional CA test via

Monte Carlo simulations. Both exact conditional tests guaranteed the nominal level, while the asymptotic CA
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test suffered consistently from an inflated Type I error rate. Between the two exact tests, the test based on the

BWS test statistic was found to be less conservative and associated with higher power than that based on the

CA test statistic.

Murakami [20] made an additional modification to the BWS test, referred to as the BWSM test, for use with

continuous populations. This modification involved the use of a test statistic, which is a function of the exact

mean and variance of ordered rank statistics. The properties of the BWSM test were compared with the t-test,

the Wilcoxon rank sum test, the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson-Darling

test, and the original BWS test. The BWS test showed similar power as the BWSM test in most cases, but

the BWSM test demonstrated a much higher power than that of the BWS test in some settings, especially in

cases with unequal sample sizes. Analogues of the two-sample tests for the K-sample problem were compared

based on simulations. Similar conclusions were found. Thus far, the BWSM test has only been studied under

the assumption of continuous underlying distributions.

Exact tests are generally preferred in small sample studies due to their guaranteed Type I error rates, but

receive criticism due to the required computational resources. More recently the computational issue is of less

concern given improvements in computing performance. The exact conditional modified BWS test for trends for

binary outcomes was recommended by Neuhäuser [24], but the approach can be highly conservative when the

sample sizes are small or the true proportions are at the 0−1 boundaries. As an alternative to the tests described

above, exact unconditional approaches may be explored, as they are usually less discrete and thus providing Type

I error rates closer to the desired level. The commonly used unconditional approach is maximization, where

the p-value is maximized over the range of the nuisance parameters. When spikes appear in the plot of the p-

value versus the nuisance parameter, the maximization approach may be more conservative than the conditional

approach. For this reason a partial maximization approach was developed by Berger and Boos [8] in order to

reduce the conservatism of the unconditional test. Their method is based on maximization over a 100(1 − γ)%

confidence region for the nuisance parameter instead of the full range. The estimated p-value is obtained by

replacing the unknown nuisance parameter of the null distribution with its maximum likelihood estimate (MLE).

The E+M p-value proposed by Lloyd [17] is then obtained by maximizing the p-value quantity using the estimated
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p-value as the test statistic. All of these unconditional methods for p-value calculation have yet to be explored

when used in conjunction with the test statistic proposed by Neuhäuser [24] for the purpose of detecting trends.

The rest of this article is organized as follows. In Section 2, we review the BWS test and its modifications in

further detail and propose an a new modified statistic for two types of statistical problems. We briefly review

the proposed procedures for detecting binomial trends in Section 3. In Section 4 examples are used to illustrate

the tests and in Section 5 we compare the performance of the competing tests, studying the exact test size and

power results under a wide range of conditions. Section 6 is given to conclusions.

2 BWS statistics family

In this section we review previous work relevant to the problem of interest and develop the newly proposed test

statistic.

2.1 Two-sided two-sample tests

A nonparametric two-sample test for determining whether the two samples are from the same population was

proposed by Baumgartern, Weiß, and Schindler (BWS) [7]. Let the sample corresponding to one population be

denoted by Y˜ = (Y1, Y2, · · · , Ym1)
′

and let Z˜ = (Z1, Z2, · · · , Zm2
)
′

denote the sample for a second population.

The hypotheses are

H0 : F = G,

Ha : F 6= G,

where F and G represent the cumulative distribution functions corresponding to the random variables Y and

Z, respectively. The metric (F̂ (w) − Ĝ(w))2 weighted inversely by w(1 − w) was used to construct the testing

statistic given as

T (Y˜ , Z˜ ) =
m1m2

m1 +m2

∫ 1

0

1

w(1− w)
(F̂ (w)− Ĝ(w))2dw, (2)

where F̂ (.) and Ĝ(.) are the empirical distribution functions. The statistic T (Y˜ , Z˜ ) may be approximated by

B(Y˜ , Z˜ ) =
1

2
(BY˜ +BZ˜ ), (3)
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where

BY˜ =
1

m1

m1∑
j=1

(Rj − m1+m2

m1
j)2

j
m1+1 (1− j

m1+1 )m2(m1+m2)
m1

,

BZ˜ =
1

m2

m2∑
l=1

(Hl − m1+m2

m2
l)2

l
m2+1 (1− l

m2+1 )m1(m1+m2)
m2

,

and Rj , j = 1, 2, · · · ,m1, and Hl, l = 1, 2, · · · ,m2, are the ranks of the samples from the first and second

populations, respectively, from the combined samples. Large values of B(Y˜ , Z˜ ) would support the alternative

hypothesis. Baumgartern et al. showed that their test is easy to apply and is at least as powerful as the Wilcoxon

rank-sum test. Although the null distribution of B(Y˜ , Z˜ ) converges to the limiting case extremely fast in the

continuous setting as shown via simulation, the use of critical values from the limiting distribution results in an

inflated Type I error rate for small sample sizes [22].

It is well known that the expected value and variance of Rj and Hl [4] are

E(Rj) =
m1 +m2 + 1

m1 + 1
j,

V ar(Rj) =
j

m1 + 1
(1− j

m1 + 1
)
m2(m1 +m2 + 1)

m1 + 2
,

E(Hl) =
m1 +m2 + 1

m2 + 1
l,

and

V ar(Hl) =
l

m2 + 1
(1− l

m2 + 1
)
m1(m1 +m2 + 1)

m2 + 2
,

respectively. Note that Murakami [20] proposed a modification of the BWS test statistic incorporating these

quantities, specifically,

B∗(Y˜ , Z˜ ) =
1

2
(B∗Y˜ +B∗Z˜ ), (4)

where

B∗Y˜ =
1

m1

m1∑
j=1

(Rj − m1+m2+1
m1+1 j)2

j
m1+1 (1− j

m1+1 )m2(m1+m2+1)
m1+2

,

and

B∗Z˜ =
1

m2

m2∑
l=1

(Hl − m1+m2+1
m2+1 l)2

l
m2+1 (1− l

m2+1 )m1(m1+m2+1)
m2+2

.

Murakami [20] demonstrated that the test based on the statistic B∗(Y˜ , Z˜ ) has similar power to that of the BWS

test for most location-shift alternatives. However, the modified test is more powerful than the BWS test in the
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case of unequal sample sizes in the two-sample setting, as well as for the K-sample problem for the general

alternative when using the test statistic, 1
K

∑K
q=1

1
mq

∑mq
v=1B

∗
qv, where B∗qv denotes the quantity of the form (4)

for the q-th and v-th populations.

Similar to the test based on B(Y˜ , Z˜ ), the test based on B∗(Y˜ , Z˜ ) is associated with an inflated Type I error

in the finite sample setting when critical values from the asymptotic null distribution are used. It can be easily

seen that the asymptotic distribution of the B∗(Y˜ , Z˜ ) is the same as the B(Y˜ , Z˜ ) statistic.

2.2 One-sided tests

In the two-sample problem of detecting if one population is stochastically larger than the other, neither the test

based on B(Y˜ , Z˜ ) nor the test based on B∗(Y˜ , Z˜ ) is appropriate. Neuhäuser [23] modified the original BWS test

for the one-sided hypothesis test of the form

H0 : F (u) = G(u), u ∈ R,

Ha : F (u) ≥ G(u), u ∈ R,

with strict inequality for some point u. He presented the test statistic

Bα(Y˜ , Z˜ ) =
1

2
(BαZ˜ −B

α
Y˜ ), (5)

where

BαY˜ =
1

m1

m1∑
j=1

(Rj − m1+m2

m1
j)|Rj − m1+m2

m1
j|

j
m1+1 (1− j

m1+1 )m2(m1+m2)
m1

,

and

BαZ˜ =
1

m2

m2∑
l=1

(Hl − m1+m2

m2
l)|Hl − m1+m2

m2
l|

l
m2+1 (1− l

m2+1 )m1(m1+m2)
m2

.

Since BαZ˜ is an increasing function of the location difference between the two groups, and BαY˜ is a decreasing

function under location-shift alternatives, large values of the test statistic support the alternative.

In the context of categorical data analysis, Neuhäuser [21] investigated the use of the midrank when ties are

present and examined the Type I error control of the original BWS test when used in conjunction with ordinal

data. He demonstrated that the more ties that are present, the more the Type I error rate is inflated. Neuhäuser

applied the Bα(Y˜ , Z˜ ) test statistic to ordinal data [21], as well as to binomial data [24]. The one-sided test statistic
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was shown to be less conservative, and often more powerful than the one-sided Wilcoxon rank-sum test for both

continuous distributions and categorical distributions [21], partially due to the more discrete null distribution of

the Wilcoxon exact test statistic.

Following Murakami [20], we propose a new modification of the BWS test statistic. In the context of the

one-sided two-sample problem, the test statistic is of the form

Bβ(Y˜ , Z˜ ) =
1

2
(BβZ˜ −B

β
Y˜ ), (6)

where

BβY˜ =
1

m1

m1∑
j=1

(Rj − m1+m2+1
m1+1 j)|Rj − m1+m2+1

m1+1 j|
j

m1+1 (1− j
m1+1 )m2(m1+m2+1)

m1+2

and

BβZ˜ =
1

m2

m2∑
l=1

(Hl − m1+m2+1
m2+1 l)|Hl − m1+m2+1

m2+1 l|
l

m2+1 (1− l
m2+1 )m1(m1+m2+1)

m2+2

.

The new test statistic Bβ(Y˜ , Z˜ ) can be used for data with or without ties; in the case of ties the R
′

js and H
′

l s

are defined to be the midranks. The asymptotic distribution of the test statistic Bβ(Y˜ , Z˜ ) is not easily derived.

However, an exact permutation test can readily be performed in order to calculate the p-value conditional on a

given data set. The study of the properties of the above test statistic when comparing two continuous populations

will be the subject of a future manuscript and we restrict the rest of this note to the examination of the statistic

when in use for detecting trends among binomial populations.

2.3 Test for binomial trends

As noted earlier, when testing for trends among K binomial proportions, as an alternative to the commonly used

CA test, one-sided two-sample procedures may be employed. By redefining Y˜ and Z˜ to be samples representing

the ordinal group levels of the non-responders and responders, respectively, the test statistics Bα(Y˜ , Z˜ ) and

Bβ(Y˜ , Z˜ ) may be used. Let the test statistics for use in this context be denoted as Bα(x̃) and Bβ(x̃), where

x̃ = (x1, x2, · · · , xK) is the vector of the numbers of responses for the K binomial samples, xi being the number

of responses within the i−th ordinal group. For the newly proposed test statistic, in terms of the notation of the

problem of interest, the statistic is of the form

Bβ(x̃) =
1

2
(Bβ1 −B

β
0 ), (7)
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where

Bβ0 =
1

a0

a0∑
j=1

(Rj − a0+a1+1
a0+1 j)|Rj − a0+a1+1

a0+1 j|
j

a0+1 (1− j
a0+1 )a1(a0+a1+1)

a0+2

and

Bβ1 =
1

a1

a1∑
l=1

(Hl − a0+a1+1
a1+1 l)|Hl − a0+a1+1

a1+1 l|
l

a1+1 (1− l
a1+1 )a0(a0+a1+1)

a1+2

.

where a1 =
∑K
i=1 xi, a0 =

∑K
i=1(ni − xi) are the total number of responses and non-responses, respectively, and

Rj and Hl are now redefined to be the midranks corresponding to the ordinal group levels. In the balanced

scenario, the midrank for the i-th ordinal group is (n+ 1)/2 + (i− 1)n, i = 1, 2, · · · ,K, where n is the common

sample size corresponding to each ordinal group. Similar formula can be defined for the test statistic Bα(x̃).

The exact conditional approach [11], fixing both marginal totals, and the asymptotic approach were used to

compare the performance of the Bα(x̃) and the CA test statistics in a previous work [24]. The exact tests were

seen to be preferable due to the guaranteed Type I error rate, and furthermore, the exact conditional Bα(x̃) test

was seen to be more powerful than exact conditional CA test in most cases. Given these results we further study

exact approaches based on the test statistics Bα(x̃) and Bβ(x̃).

3 P-value calculation for Bα(x̃) and Bβ(x̃)

Due to the intractable asymptotic distribution for the test statistics Bα(x̃) and Bβ(x̃), we investigate alternative

exact approaches for obtaining significance in this article. Four methods are considered here and described in

more detail below: (1) the conditional approach; (2) the maximization approach; (3) the confidence interval

approach; and (4) the estimation and maximization approach. The conditional and unconditional methodologies

based on the test statistic T (x̃), taken to be either Bα(x̃) or Bβ(x̃), will be evaluated for when detecting the

ordered alternative in the 2×K contingency table. The test statistic T (x̃) will support the alternative for large

values. Let x̃0 be the observed vector of responses for a given data set, S(x̃0) be the total number of responders,

and the value of the test statistic T for this table be denoted as T (x̃0).

One commonly used approach for p-value calculation in the analysis of contingency tables is to condition on

the observed marginal totals. The reference distribution is obtained by calculating the value and corresponding

probability of the test statistic T for all the possible tables with the same marginal values based on hypergeometric
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probabilities. The p-value is then defined as the sum of the probabilities of tables with observations x̃, such that

T (x̃) ≥ T (x̃0). The exact conditional p-value for testing for trend is

PC(t) = Pr(T (x̃) ≥ T (x̃0)|S(x̃0) = s,H0) =
∑

x̃∈ΩC(x̃0)

∏K
i=1

(
ni
xi

)(
n
s

) ,

where ΩC(x̃0) = {x̃ : TC(x̃) ≥ TC(x̃0) and S(x̃) = s} is the rejection region of the test.

For the general categorical problem, the Type I error rate of the conditional approach has been shown to be

far below the nominal level, for example, see Shan et al. [25]. An approach for reducing the conservatism of

the test in this context is within the unconditional framework, where only one set of marginal totals is fixed.

The appropriateness of such an approach is rooted in the study design, for example, contingency tables where

the column totals represent fixed sample sizes. Given we consider a fixed number of subjects are to be allocated

to each ordinal group, an unconditional approach may be seen as a reasonable alternative. A commonly used

unconditional approach is conducted through use of maximization (the M approach) [5, 6]. In this case, the

p-value (referred to as the M p-value) is defined to be the supremum of the p-value function over the whole range

of the parameter space,

PM (x̃0) = max
0≤p≤1

{
∑

x̃∈ΩM (x̃0)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi}.

The M approach is sometimes challenging due to the computational intensity of the maximization step. However,

a grid search algorithm is usually a reasonable method to find the maximum for a given data set.

If the nuisance parameter is unbounded maximization is further complicated. Berger and Boos [8] proposed a

new approach, maximizing the tail probability over the confidence interval for the nuisance parameter instead of

the whole range. For a given penalty value γ, this confidence interval p-value (referred to as the CI p-value) is

defined as the supremum of the p-value function over C(x̃0) plus the penalty value, where C(x̃0) is the 100(1−γ)%

confidence interval of the parameter estimated using x̃0. The CI p-value is defined by

PCI(x̃0) = sup
p∈C(x̃0)

{
∑

x̃∈ΩCI(x̃0)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi}+ γ,

where ΩCI(x̃0) = ΩM (x̃0), and C(x̃0) is the Clopper-Pearson interval [9]. Small values of γ are desirable, and in

this note we take γ = 0.001. This methodology has been applied to test for trend in a 2×K table using the CA

test statistic, see Freidlin and Gastwirth [12].
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The estimation approach is an older and is a much easier computational approach. The idea is to replace the

nuisance parameter in the null likelihood with the maximum likelihood estimate (MLE) of the parameter under

H0. For a given data set x̃0, the rejection region for this approach is

RE(x̃0) = {x̃ : {T (x̃) ≥ T (x̃0))}.

The simply calculated p-value, referred to as the E p-value, is

PE(x̃0) =
∑

x̃∈RE(x̃0)

K∏
i=1

(
ni
xi

)
p̂xi(1− p̂)ni−xi ,

where p̂ is the value of maximum likelihood estimate of p under the null hypothesis, p̂ =
∑K
i=1 xi/

∑K
i=1 ni. While

the E p-value is not valid and not exact, an exact p-value can be obtained after a maximization step, which is

the basis of the method proposed by Lloyd [17]. In this case the E p-value is taken to be the test statistic. The

corresponding rejection region of the so called E+M p-value for the test is

ΩE+M (x̃0) = {x̃ : PE(x̃) ≤ PE(x̃0)},

and the E+M p-value is given by

PE+M (x̃0) = sup
p∈[0,1]

{
∑

x̃∈ΩE+M (x̃0)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi}.

The E+M p-value PE+M (x̃) is exact, while the CI p-value PCI(x̃) and the E p-value PE(x̃) are not [17].

The conditional approach based on Bα(x̃) for testing for trends among ordered binomial proportions was

investigated by Neuhäuser [24], and was shown to be less conservative and more powerful than that based on

the CA test statistic. The unconditional approaches mentioned above (M, CI, E+M approaches) based on the

modified one-sided BWS test statistics, and the conditional approach based on the test statistic Bβ(x̃) have not

been studied in this context. Before investigating the Type I error and power properties of these procedures, we

illustrate the approaches through use of some examples.

4 Examples

We consider an inhalation study by Malley et al. [18]. The aim of the inhalation study was to determine the

potential toxicity and/or potential neurotoxicity of cyclohexane. Groups of rats were exposed to 0, 500, 2000,
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or 7000 ppm of the compound. Here, the control group was exposed to air alone. In the 90-day toxicity study,

rats of 12 per group were studied. Both males and females had significantly increased incidence of stained chin

when testing for the alternative of the form (1) using the CA test. The same trend was observed in the 90-day

neurotoxicity study which was based on 20, 10, 10, and 20 rats in group 1 through 4, respectively. The data from

both studies, which consisted of multiple binary endpoints each, is given in Table 1.

For the sixteen data examples the p-value profile as a function of the nuisance parameter was calculated using

the four different approaches outlined in Section 3. Figure 1 shows the observed null likelihood based on the new

test statistic Bβ(x̃) as a function of the nuisance parameter under the null hypothesis. In 12 out of these 16 cases,

the E+M approach has a smaller p-value than the M approach’s; see Table 2. In the majority of cases, the E+M

approach results in a much smaller p-value than that obtained via the conditional approach. The corresponding

plots for the test statistic Bα(x̃) are shown in the Figure 2, and as can be seen, for the majority of cases the plots

are similar between the two test statistics. We focus specific attention to the comparison of the tests based on the

first data set in Table 1 (Figures 1 a and 2 a). At the 0.05 significance level, the conclusions are not consistent

among the tests. There is a big spike in the null likelihood graph based on Bα(x̃) for the M approach, which

results in a p-value greater than 0.1. However, all other p-values based on either test statistic are less than 0.05.

The CI p-value based on Bβ(x̃) is closer to the M p-value, but the CI p-value based on Bα(x̃) is smaller than the

M p-value in the plot. The E+M p-value is the smallest among these p-values based on either test statistic.

5 Method comparison

To evaluate the performance of the exact conditional and unconditional tests, we compare their actual significance

levels as well as exact powers at the 0.05 nominal level. The computation is based on complete enumeration and

no simulation is involved.

5.1 Type I error rate

Figure 3 shows the actual Type I error rates of the tests as a function of the value of the common binomial

parameter under the null hypothesis. We studied the balanced case with sample sizes 10, 20, 30 and 50 for each

group (1st, 2nd, 3rd, and 4th row, respectively, in Figure 3). Plots in the first column (plots (a), (c), (e), (g))
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show the actual Type I error rates of the four exact tests based on test statistic Bα(x̃) with K = 3. The plots

in the second column are based on the test statistic Bβ(x̃). There is a slight difference between the plots based

on different test statistics. Large spikes are observed in the case of small sample sizes in the plots for the CI

approach, whose maximization over the whole range is greater than the nominal level. The other three approaches

preserve the nominal level of the test for all the cases. As shown in the Figure 3, the actual Type I error rate of

the E+M approach is much closer to the nominal level as compared to the other approaches. This advantage is

most apparent when the sample sizes are small and at two ends of the parameter range (close to 0 or 1). Although

not presented here, similar results are obtained for larger K.

The Type I error rate comparisons with unequal sample sizes are shown on the Figure 4. The plots in the left

side of the figure are based on the test statistic Bα(x̃) and the right side has results for Bβ(x̃). Two different sets

of sample sizes (n1, n2, n3) were considered for the K = 3 scenario: (8,9,12) which appears in plots (a) and (b),

respectively, and (8,12,10) which correspond to the plots (c) and (d), respectively. As we can seen from the figure,

there are very slight differences in the Type I error rates between the two test statistics. The interesting result is

that the M approach is extremely conservative in these unbalanced cases, as is the CI approach. The conditional

approach and the E+M approach performed well, with the E+M approach having an actual level much closer to

the nominal level. Similar results are seen for larger values of K which are not provided in this manuscript.

5.2 Power study

Having examined the true Type I error rate of each test, we now compare the procedures with respect to power.

The power of testing procedures based on the test statistic Bα(x̃) and our proposed test statistic Bβ(x̃) were

investigated for different true alternatives and results appear in Figures 5, 6, and 7. In Figures 5 and 6, the

study was based on K = 4 with balanced sample sizes of 10 and 20 per group, respectively. The two alternatives

studied were those considered by Neuhäuser [24]: (1) p1 = 0.1, p2 = p3 = 0.1 + x/2, p4 = 0.1 + x, and (2)

p1 = 0.1, p2 = p3 = p4 = 0.1 + x, where 0 < x < 0.9. Unbalanced case results are given in Figure 7 with K = 3

and sample sizes (10,12,10). The alternatives considered here were (1) p1 = 0.1, p2 = 0.1 + x/4, p3 = 0.1 + x,

and (2) p1 = 0.1, p2 = 0.1 + x/2, p3 = 0.1 + x, where 0 < x < 0.9. From the graphs of the balanced case,

the conditional approach and the E+M approach are almost uniformly more powerful than the other p-value

13



calculation approaches. The power difference between the conditional approach and the E+M approach is often

small in the balance case, as is the difference in power between the M and CI approach. In the unbalanced case,

there is no clear winner between the conditional approach and the E+M approach based on the test statistic

Bα(x̃). However, the power comparison between those two approaches based on Bβ(x̃) show that the E+M

approach has higher power than the conditional approach.

6 Conclusions

In this article we proposed a modified test statistic based on the BWS test denoted Bβ(x̃). An exact conditional

approach based on Bα(x̃) was studied by Neuhäuser [24], which was shown to have superior properties to the

well known CA test, and we also considered such an approach for p-value calculation in this note. Furthermore,

we applied the two commonly used unconditional approaches, the M and CI approach, as well as the recently

proposed E+M approach due to Lloyd [17]. Maximizing the p-value based on using the estimated p-value as

the test statistic resulted in an exact test, guaranteeing the nominal level of the test. Although all considered

procedures were satisfactory, we recommend use of the E+M approach in conjunction with Bα(x̃) or Bβ(x̃) for

use in practice.

The focus of this manuscript has been on the problem of comparing K binomial populations versus an ordered

alternative. The exploration of the use of the Bβ(Y˜ , Z˜ ) test statistic for comparing two continuous or ordinal

populations with an one-sided alternative is currently underway. In addition, one may consider a test of trend

among K continuous or ordinal populations using the test statistic (following the approach of Jonckheere [15]

and Terpstra [26])

TBβ =

K−1∑
q=1

K∑
v=q+1

Bβqv

where Bβqv is the proposed two-sample test statistic of the form (6) for comparing q-th and v-th populations.
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[23] M. Neuhäuser. One-sided two-sample and trend tests based on a modified baumgartner-weiß-schindler statis-

tic. Journal of Nonparametric Statistics, 13(5):729–739, 2001.
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Table 1: Sixteen data sets from Malley et al.

Data Observation Gender Response

90-day nuerotoxicity study with sample sizes (20,10,10,20)

a Stained face M 0 0 1 3

b Stained chin M 0 0 1 10

c Wet chin M 1 1 0 8

d Stained face F 1 7 8 3

e Stained chin F 0 1 4 9

f Wet chin F 0 0 0 11

90-day rat study with sample sizes (12,12,12,12)

g Colored discharge mouth M 0 0 1 18

h Stained chin M 0 0 0 15

i Stained perineum M 0 1 1 0

j Wet chin M 0 0 0 9

k Wet perinuem M 0 0 1 1

l Colored discharge mouth F 0 0 0 16

m Stained chin F 0 0 0 11

n Stained perineum F 1 2 1 4

o Wet chin F 0 0 0 6

p Wet perinuem F 1 2 5 14

Table 2: Comparison of p-values of tests using sixteen data sets based on test statistic Bβ(x̃).

E+M approach M approach CI approach Conditional approach

E+M approach 12 15 15

M approach 14 10

CI approach 1

Numeric value is the number of data sets out of the sixteen total where the row test’s

p-value is less than the column test’s p-value.
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Figure 1: P-value profiles based on test statistic Bβ(x̃).
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Figure 2: P-value profiles based on test statistic Bα(x̃).
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Figure 3: Actual Type I error of the tests under the null hypothesis with balanced sample sizes and K = 3 for

test statistics Bα(x̃) (left) and Bβ(x̃) (right).
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Figure 4: Actual Type I error of the tests under ther null hypothesis with unequal sample sizes and K = 3 for

test statistics Bα(x̃) (left) and Bβ(x̃) (right).
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Figure 5: Power study with K = 4, n = 10 per group for test statistics Bα(x̃) (left) and Bβ(x̃) (right), under the

alternative p1 = 0.1, p2 = 0.1 + x/2, p3 = 0.1 + x/2, p4 = 0.1 + x (the first row) and p1 = 0.1, p2 = 0.1 + x, p3 =

0.1 + x, p4 = 0.1 + x (the second row).
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Figure 6: Power study with K = 4, n = 20 per group for test statistics Bα(x̃) (left) and Bβ(x̃) (right), under the

alternative p1 = 0.1, p2 = 0.1 + x/2, p3 = 0.1 + x/2, p4 = 0.1 + x (the first row) and p1 = 0.1, p2 = 0.1 + x, p3 =

0.1 + x, p4 = 0.1 + x (the second row).
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Figure 7: Power study with K = 3, n = (10, 12, 10) for test statistics Bα(x̃) (left) and Bβ(x̃) (right), under the

alternative p1 = 0.1, p2 = 0.1 + x/2, p3 = 0.1 + x (the first row) and p1 = 0.1, p2 = 0.1 + x/4, p3 = 0.1 + x (the

second row).
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