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Abstract

Outcome versus time data is commonly encountered in biomedical and clinical research. A common

strategy adopted in analyzing such longitudinal data is to condense the repeated measurements on each

individual into a single summary statistic such as the area under the curve (AUC). Standard parametric

or non-parametric methods are then applied to perform inferences on the conditional AUC distribution.

Disadvantages of this approach include the disregard of the within-subject variation in the longitudinal pro-

file. We propose a general linear model approach, accounting for the within-subject variance, for estimation

and hypothesis tests about the mean areas. Inferential properties of our approach are compared to those

from standard methods of analysis using Monte Carlo simulation studies. The impact of missing data,

within-subject heterogeneity and homogeneity of variance are also evaluated. A real working example is

used to illustrate our approach. It is seen that the proposed approach is associated with a significant power

advantage over traditional methods, especially when missing data is encountered.
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1 Introduction

When an outcome is measured repeatedly over time on the same individual the data is said to be longitudinal

in nature. Longitudinal data differs from cross-sectional data in that within-subject data points are in general

not independent. Hence statistical methods for analysis of such data, which assume such independence, are

not valid. As remarked by Fitzmaurice et al. [1], a common strategy adopted in analyzing such longitudinal

data is to condense the repeated measurements on any individual to a single summary statistic, which

encapsulates an important feature. Scientific researchers find the use of summary statistics appealing since

it offers an integrated approach in representing the subject’s overall response and is also easy to interpret.

Examples of widely used summary statistics are the area under the curve (AUC), mean or the median

response for each individual, the maximum of each individual observation and the time corresponding to the

maximum observation.

Analysis of longitudinal data using a summary statistic is also known as response-feature analysis or

two-staged analysis. Such an approach transforms the problem from a longitudinal one to one which is cross-

sectional in nature, essentially eliminating the within-subject correlation component. When the comparison

of groups is the objective, these independent observations can be analyzed using standard methodologies, e.g.

the two-sample t-test or the non-parametric wilcoxon rank-sum test. When the sample size is not sufficient

to model correlated observations, summary measures analysis is appealing from a statistical perspective [1]

although concerns exist regarding the loss of information when ignoring the correlation structure.

The summary statistics approach is found to be sufficiently flexible to accomodate missing values [2].

To deal with missing observations, Everitt and Pickles [2] suggest using the available data to compute the

summary statistic, particularly when the proportion of missing observations is small. It should be noted that

when using the available data to compute the summary statistic, both the proportion and type of missingness

will potentially bias estimates and impact the efficiency of inference procedures.

The relationship between outcome and time can be illustrated using an outcome versus time graph. The

area beneath the outcome-time curve is commonly known as the AUC. The AUC is applicable in many

longitudinal settings and is particularly useful when the expected trajectories are complicated [3]. Fayers

and Machin [4] discuss how when using the AUC, assumptions are made about the linearity of responses,

e.g. if a 100-point scale is being analyzed, then a shift in score from 0 to 10 is as important as a shift from 50

to 60. Statistical simplicity aside, investigators are interested in using the AUC due to its scientific/clinical

significance. In pharmacokinetics, the AUC is used as a measure of drug exposure or drug clearance from the

body, where as in quality of life studies, the area under the curve represents a measure of the overall health

of the subject. In AIDS studies evaluating the effectiveness of antiretroviral treatments, the area under the

viral load vs. time curve translates to a measure of overall viral burden and acts as a predictor of clinical

progression. In nutritional studies, the area under the blood sugar response curve reflects the total rise in
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blood glucose levels. A recent article by Clark et al. [5] discusses a randomized cross-over study conducted

to evaluate the effects of breakfast meal composition on second meal metabolic responses in adults with type

2 diabetes mellitus. Patients were randomized to two sequence groups, one with a high glycemic load and

the other with a low glycemic load. After a standard lunch 4hrs post breakfast, blood plasma concentrations

were obtained in regular intervals and were assayed for values of glucose, insulin and free fatty acid. Using

a summary statistic such as the AUC has a few drawbacks, some of which are discussed by Fitzmaurice [1].

Analysis using a summary statistic is possible only if the covariates are time-invariant. Another disadvantage

is that individuals may have the same AUC, but may have completely different individual profiles.

Various methods for approximating the AUC have been referenced in the literature such as the linear

trapezoidal rule, log-linear trapezoidal rule, Lagrange method, spline method, to name a few [6]. Meth-

ods for the computation of the AUC also differ in the aspect of the area included, e.g. the total AUC,

positive incremental AUC, net incremental AUC and the partial AUC. Advantages and disadvantages of

each approach have been examined extensively, refer to Venter et al. [7] and Allison et al. [8] for more

details. The total AUC calculates the entire area below the outcome-time curve above zero and is widely

used. In this paper, we focus on the total AUC using the most commonly used and easy to implement linear

trapezoidal method. Towards this end let Yij be the observed response for subject i at the jth time point

tj , where i = 1, 2, . . . , n and j = 1, 2, . . . , m . Assuming all subjects to be observed at the same set

of occasions, the total AUC for the ith individual can be computed using the trapezoidal rule as follows.

Letting Yi =

(
Yi1 Yi2 Yi3 . . . Yim

)
′

, the AUC for the ith subject can be written as AUCi = c′Yi,

where c =

(
c1 c2 c3 . . . cm

)
′

, and

cj =





tj+1−tj
2 , j = 1,

tj−tj−1

2 , j = m,

tj+1−tj−1

2 , otherwise.

(1)

Replacing repeated measures on a single individual with a single metric leads to loss of information

due to the fact that within-subject variability fails to be captured. This motivates us to consider a new

linear model-based approach that incorporates the characteristics of the individual response profile while

still using the mean AUC as the parameter of interest. Though the actual estimate of AUC has the same

interpretation as before, we obtain a variance estimate using all the available information. Thus yielding

more efficient inference procedures based on the same metric. Estimation of parameters will be approached

via the restricted maximum likelihood (REML) method along with the Newton-Raphson iterative algorithm

to optimize the likelihood function. Contrasts can be constructed using the estimates obtained at each

time point to test null hypotheses regarding the mean AUC. This will be explained in more detail in the

next section. The difficulty associated with fostering such an approach lies in choosing the true working
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correlation structure. Correct specification of the functional form of the covariance matrix improves the

efficiency of the estimates [9]. The AIC criterion has often been chosen to guide the selection of a covariance

structure ([10],[11]) and we utilize it in our simulation studies.

The rest of the paper is structured as follows. In Section 2, we develop our proposed method for making

inferences on AUC means. Inclusion of covariates is discussed in Section 3. Comparison of inferential

properties between our approach and the traditional method is conducted using simulation studies in Section

4. In Section 5, we provide a working example to illustrate the applicability of our approach and compare

it with the traditional method. To conclude, we summarize the paper and outline our future research in

Section 6.

2 The Proposed Approach

In this section we discuss the relationship between the linear combination of time point specific sample

means and the parameter of interest, the model-based method for use in inference on the parameter, and

the robustness of the method in the context of missing values.

2.1 Re-expression of the mean AUC as a linear combination of means

Let Yij be defined as in the previous section withY =

(
Y11, Y12, . . . , Y1m, . . . , Ynm

)
′

, and letY =

(
Y

·1, Y ·2, . . . , Y ·m

)
′

,

where Y
·j =

1
n

∑n
i=1 Yij . Furthermore let µj = E(Y

·j). The estimate of the mean AUC based on the trape-

zoidal rule can be written as a linear combination of the mean responses at each time point.

Theorem 1. The estimate of the mean AUC (µ̂AUC) obtained using the trapezoidal rule can be re-expressed

as a linear combination of the mean outcome values at each sampling time.

Proof. The mean AUC can be estimated using

µ̂AUC =
1

n
1′

n(In ⊗ c′)Y

=
1

n
(1′

n ⊗ I1)(In ⊗ c′)Y

=
1

n
(1′

nIn)⊗ (I1c
′)Y

=
1

n
(1′

n ⊗ c′)Y

=
1

n
(c′ ⊗ 1′

n)Y

=
1

n
(c′Im)⊗ (I11

′

n)Y

=
1

n
(c′ ⊗ I1)(Im ⊗ 1′

n)Y

= c′
1

n
(1′

n ⊗ Im)Y = c′Y (2)
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where 1n is a column vector of size n, I is the identity matrix and c is as noted in equation (1). Thus the

estimator of µAUC can be expressed as a linear combination of sample means at each time point.

Corollary 1. The estimate of mean AUC has an expected value of c′µ, where the elements of c are as noted

in (1).

Proof. Using (2), E(µ̂AUC) = E(c′Y) = c′µ, where µ = (µ1, µ2, · · · , µm)′.

Corollary 2. The variance of the estimate of mean AUC can be written as a function of variances and

covariances associated with the mean outcome values at each time point.

Proof. Using (2), the variance of the estimate of the mean AUC can be formulated as

V ar(µ̂AUC) = c′V ar(Y)c (3)

Denoting the variance of Y
·j by σ2

jj and the covariance between Y
·j and Y

·k by σ2
jk , (3) becomes

V ar(µ̂AUC) =
m∑

j=1

c2jσ
2
jj + 2

m−1∑

j=1

m∑

k>j

cjckσ
2
jk (4)

Expressing the mean AUC as the linear combination of the mean values at each sample time point leads

us to the consideration of the use of alternative methods for inference on the mean AUC. Our proposed

method is intended to be flexible in that it can be extended to various experimental designs, accomodate

confounding variables and controls for baseline values in randomized settings. It also allows the covariates

to vary over clusters and response to vary over clusters after controlling for covariates.

2.2 Linear model-based inferences

We now focus our attention to simple parallel group studies with a goal of testing equality of group means.

In the experiments of interest, units are randomized to r groups and outcomes are obtained at prespecified

time points. A null hypothesis of interest is

H0 : µAUC,k = µAUC,k′ , k 6= k′ . (5)

Let Yijk be the response obtained from the ith individual at the jth time point in the kth group (i =

1, 2, . . . , n, j = 1, 2, . . . , m and k = 1, 2, . . . , r). Furthermore let Y =

(
Y′

1,Y
′

2, . . . ,Y
′

r

)
′

, where

Yk =

(
Yi1k, Yi2k, . . . , Yimk

)
′

is a column vector of size nm. It follows that E(Y) = θ, where θ = µ⊗ 1nm.
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We may then specify a linear relationship of the form Y = Wµ+ ǫ, where W = 1r ⊗ 1n ⊗ Im. Now letting

β = Mµ, where M is a non-singular matrix, we may assume a linear model of the form

Y = Xβ + ǫ, (6)

where Y is a (nmr) column vector of raw outcome values obtained for each individual at each time point, X

= WM−1 is the design matrix for fixed effects, β is a [r + m + (r x m)] column vector of unknown fixed

effects parameter vector representing group membership, categorical time points and the interaction between

treatment group and time, E(ǫ) = 0 and V (ǫ) = Σ. The expectation and variance of Y can thus be written

as, E(Y) = Xβ and V (Y) = Σ, where the matrix Σ is a block diagonal matrix with the within-subject

covariance structure representing blocks on the main diagonal and zeros elsewhere.

Definition 1. Under model (6), the population mean AUC of the rth treatment group is µAUC,r = g(c)β =

d
′β, where c is as defined in (1) and g(c) = c

′

[
1m Im Im

]
for the parameter levels of interest.

When the parameterization is such that the model is full rank, µAUC = d′β. For the less than full rank

parameterization of the model, µAUC = d′Aβ 6= d′β, where A = G−G is a matrix and G− is the generalized

inverse such that it satisfies the condition GG−G = G. Then the estimate of AUC obtained is not unique and

depends on the particular generalized inverse used. However, inferences are based on the reparameterized

full rank model ensuring a unique solution. For a general linear model of the form in equation (6), where

β consists of parameters representing categorical predictors, the estimate β̂ consists of sample means of

observations from their respective predictor populations. Using Theorem 1, we propose estimating the mean

area of the rth treatment group using d′β̂. Taking advantage of the fact that the mean AUC can be written

as a function of the mean outcome values as seen in Theorem 1, we can implement a repeated measures

model using the raw outcome means as responses. Utilizing the vector of coefficients c defined in equation

(1), appropriate contrasts can be constructed to test for the hypothesis of equality of mean AUC’s.

Theorem 2. Assume model (6) and furthermore assume ǫ ∼ N(0,Σ). Then the estimate of the mean area

in group r, µ̂AUC,r = d
′β̂. The distribution is given by d

′β̂ ∼ N(d′β,d′V ar(β̂)d).

Proof. Under the assumption ǫ ∼ N(0,Σ), it follows that β̂ ∼ N(β, V ar(β̂)). Then according to multivariate

theory, the linear combination of the estimate, d′β̂ is also normally distributed with E(µ̂AUC,r) = d′β =

µAUC,r and Var(µ̂AUC,r) = d′V ar(β̂)d.

Remark 1. Under the relaxed assumption ǫ ∼ G(0,Σ), where G represents a general distribution, the

distribution of β̂ can be approximated by the normal distribution under mild regularity conditions. Thus the

estimate d
′β̂ is also asymptotically normally distributed.

Based on the above distributional assumptions, hypothesis tests about the mean areas can be conducted.
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Theorem 3. If the estimate of the mean AUC for group k and group k’ is represented using µ̂AUC,k and

µ̂AUC,k′ respectively, then the difference in the mean areas of the two treatment groups (µAUC,k−k′) can be

estimated as µ̂AUC,k−k′ ∼ N(µAUC,k − µAUC,k′ , V ar(µ̂AUC,k − µ̂AUC,k′)).

Proof.

E(µ̂AUC,k−k′) = E(µ̂AUC,k − µ̂AUC,k′)

= E(µ̂AUC,k)− E(µ̂AUC,k′)

= µAUC,k − µAUC,k′ .

V (µ̂AUC,k−k′) = V ar(µ̂AUC,k − µ̂AUC,k′).

Our goal to test for equality of AUC means is defined as H0 : µAUC,k−k′ = 0 vs. H0 : µAUC,k−k′ 6= 0.

Using Theorems 1-3, the null hypothesis can be expressed in terms of the vector of coefficients c and the

parameter vector β.

Estimation of β involves the estimation of the unknown variance and covariance components in Σ, which

is approached via the restricted maximum likelihood approach (REML) along with an iterative algorithm to

optimize the likelihood function. Though likelihood ratio tests for fixed-effect parameters are not appropriate

using REML, it offers several advantages over the maximum likelihood (ML) approach, one of them being the

elimination of bias in the estimation of variance parameters for small samples. See Verbeke and Molenberghs

[12], Pinheiro and Bates (2000) [13] and Morrel (1998) [14] for more details. After the estimation of variance

components, Σ̂ is then used in the estimation of the fixed effect β. The estimate of β,

β̂ = (X′Σ̂
−1

X)−1X′Σ̂
−1

Y (7)

is obtained using the generalized least squares methodology [15]. The estimate of the variance of β̂ is given

by

̂
V (β̂) = (X′Σ̂

−1
X)−1 (8)

In the event of a less than full rank matrix, estimation of β is performed using the generalized inverse

denoted by (.)−, where β̂ = (X′Σ̂
−1

X)−X′Σ̂
−1

Y. The estimate of mean AUC is then denoted by µ̂∗

AUC =

dAβ, which depends on the choice of the generalized inverse A. When the variance-covariance matrix is not

of full rank, estimation is performed using the generalized inverse. The test statistic is given by

F =
(d′β̂)′[d′(X′Σ̂

−1
X)−1d]−1(d′β̂)

rank(d)
∼ F(rank(d),df).
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Though the test statistics asymptotically follow a chi-squared distribution, in practice statistical inferences

are based on the F distribution with the denominator degrees of freedom specified using various methods

such as the generalized Satterthwaite approximation [16] and the Kenward-Roger approximation (KR) [17]

to name a few. The KR method to estimate the degrees of freedom improves the estimate for Σ and uses

a modified test statistic F ∗ to account for small sample bias and variability in Σ̂ [18]. Refer to Kenward

and Roger [17] for further details. For a detailed outline of linear models and their implementation, refer to

Littell [19], Diggle et al. [20] and Verbeke and Molenberghs [12].

2.3 Missing observations

In clinical research the presence of missing data is frequent. Missing data may arise due to administrative

errors, drop-outs, missed appointments, etc. Missing data, especially if encountered in large amounts can

lead to substantially biased inferences. Following Rubin’s classification scheme ([21], [22]), the missing

mechanism may be categorized into Missing At Random (MAR), Missing Completely at Random (MCAR)

and Not Missing At Random (NMAR). MCAR occurs when missingness is unrelated to any of the data

values, missing or observed. MAR occurs when missingness is related to values that have been observed.

NMAR occurs when the cause of missingness is related to unobserved data and is considered to be a case of

non-ignorable missingness.

The impact of missing data in the assessment of mean AUC in the context of bioequivalence has been

discussed by Chow and Liu [23] and Donner et al. [24]. Though no concrete solution has been offered,

Donner et al. [24] demonstrates how incomplete profiles impact bias and variance of the estimated AUC

and hence the assessment of bioequivalence. The varying influence of different missingness patterns have

also been discussed. Chow and Liu [23] note how the presence of missing values between two end sampling

points have little effect on the comparison of bioavailability. However a substantial bias is seen when missing

values occur at the two end sampling points.

Under MCAR assumption, the simplest strategy to deal with missing values for the proposed test for

equality of AUC means is to discard those instances. To test for equality, Spritzler et al. [25] proposes an

estimator for the mean AUC using indicator functions for missing observations. When only few measurements

are missing, another strategy is to utilize imputation methods. Commonly, the last observation carried

forward (LOCF) method is applied. In our study, we investigate the influence of missing observations on the

inferential properties of the test.

Remark 2. Allison [26] notes how under the assumption of MCAR, parameter estimates obtained using

available data are consistent. Thus under the assumption of MCAR, there may be a loss of efficiency and

power, but our model parameter estimates (6) and hence the estimate of the mean AUC obtained using our

proposed approach is unbiased, i.e. E(d′β̂) = d
′β.
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3 Inclusion of covariates

In the non-randomized setting, differences observed in outcomes between treatment groups cannot always be

attributed solely to the intervention applied, but may also be explained by the inherent variability among the

groups caused by confounding variables, e.g. gender associated differences in the plasma drug concentrations

of various antiretroviral therapies [27]. In a randomized setting, randomization aims to dissolve imbalances in

confounding variables between treatment groups thus rendering the groups comparable. Hence any observed

difference in responses among groups can be attributed as being so due to the intervention. However in

practice, covariate imbalances are witnessed even with randomization. In a randomized setting, covariates

perceived to influence the outcome can be identified prior to the study and accounted for in the analysis

allowing for chance imbalances and efficiency gains. For example, analysis of a continuous outcome using

ANCOVA reduces error variability resulting in more precise estimates of the treatment effect. Apart from

comparability of groups, treatment differences as a function of covariates may also be of interest.

Generally, confounding variables are accounted for by their inclusion in statistical models. Measurable

independent subject factors, categorical or continuous in nature, can be included in the model as illustrated

below. Borrowing the notation used in Section 2, we can formulate the model as

Y = X1β1 +X2β2 + ǫ, (9)

where Y and ǫ are defined as before, X1 is the design matrix for fixed effects treatment, time and their

interaction, β1 is its corresponding unknown fixed effects parameter vector, X2 is the design matrix for other

between-subject possibly time-invariant subject factors such as gender, age etc., and β2 is its corresponding

unknown fixed effects parameter vector. Constraining all the fixed effects to a single vector of parameters

β = (β′

1 β′

2)
′ and X = (X1 X2), the model can be reformulated as

Y = Xβ + ǫ. (10)

Inclusion of covariates in the model allow us to predict the mean response for a subject associated with

a particular set of covariate values, Xh, and the estimated conditional mean in this case may be written

as Ŷ
·j(Xh) = Xhβ̂. Clinically relevant or study motivated values of covariates can be plugged in to acquire

the predicted AUC for a specific class of subjects. Making use of the vector of adjusted conditional means,

Ŷh =

(
Ŷ1,Xh

,Ŷ2,Xh
, . . . , Ŷm,Xh

)
′

, we define the adjusted mean AUC in group i to be µAUC(Xh),r = d′Ŷh.

In the comparison of two groups, null hypotheses of interest may then be of the form,

H0 : µAUC(Xh),1 = µAUC(Xh),2 , (11)
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where µAUC(Xh),1 and µAUC(Xh),2 are the adjusted mean AUCs in groups 1 and 2, respectively.

4 Simulation Study

For the purpose of examining the properties of the proposed approach in testing the equality of mean AUCs,

we conducted a simulation study. We generated outcomes following the mean vector µ1 = (2, 2.5, 3, 3, 2.5, 2)′

measured at six time points t = (1, 2, 3, 4, 5, 6)′. Using the Cholesky approach detailed by Ripley [28], we

generated a multivariate vector with mean µ1 with correlation modeled under the homogeneous or hetero-

geneous first-order autoregressive structure (AR(1) or ARH(1)) structure depending on whether variance

homogeneity or heterogeneity was assumed. To take into account variance heterogeneity within subjects,

simulations were also performed with the coefficient of variation (cv) measure ranging from 0.1 to 0.5.

For example, for a cv equal to 0.2, the corresponding variance for the six time points would be equal to

(0.4, 0.5, 0.6, 0.6, 0.5, 0.4)′. In less than 2% of the cases, simulations involving a high coefficient of variation

generated negative outcome values which were set to zero. Under the homogeneous variance assumption,

variance σ2 was set to be equal to 0.1. The within-subject correlation parameter ρ was allowed to range

from 0.3 to 0.7.

For each iteration, n = 30 random samples were randomized equally to two groups with mean vectors

µ1 and µ2 = γµ1, where the coefficient γ ranged from 1.00 to 1.20 (γ = 1.00 represents the null scenario).

Simulations were performed for 10,000 iterations for each combination of ρ and γ. A repeated measures

model (PROC MIXED in SAS) with covariates group, time and their interaction were fit with appropriate

contrasts constructed to test for equality of areas. Inferential properties of our approach such as power,

actual Type I error rate, coverage and the bias and standard error of estimates were evaluated. Covariance

structures such as compound symmetric (CS), unstructured (UN), and the true covariance structure were

assumed. Properties of the repeated measures model selected using the Akaike’s Information Criterion (AIC)

[29] were also studied. Although the appropriate choice of the denominator degrees of freedom is debatable,

good small sample properties of the Kenward-Roger degrees of freedom dictated its use in our analysis [30].

For the sake of comparison, results based on the traditional approach being the standard two-sample t-tests

are included.

Our results demonstrated comparable properties for all methods. Among all the methods, the model

assuming the compound symmetric structure exhibited inflated false positive rates. A decrease in power was

also seen with an increase in the coefficient of variation for heterogeneous models. Estimates of the difference

in areas were observed to be unbiased with comparable standard errors and both approaches maintained

coverage probability.

To evaluate the effect of missing values, outcomes at each time point were generated under a constant

missing probability, p. Simulations were performed for p ranging from 0% to 30%. Various combinations
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of ρ and p under the homogeneous and heterogeneous variance assumptions yielded a total of 60 simulation

scenarios. Simulation results obtained under the homogeneous and heterogeneous variance assumption are

summarized in Tables 1 - 4. Power curves for the different methods have been graphically illustrated in

Figures 1 - 4. Although power curves of all the methods were comparable when complete data was available,

it can be noted that under both the AR(1) and ARH(1) assumption, an increase in p translated to an increase

in distance between power curves of the t-test and the proposed approach. Though the t-test maintained

coverage and Type I error in the presence of missing data, the estimates were found to be slightly biased

with larger standard errors and wider confidence intervals. The bias, standard error and confidence interval

width were seen to increase with increase in missingness.

A few other features of this simulation study are worth mentioning. Convergence criteria was met

satisfactorily in all but UN models, with the lack of convergence increasing with p. The proportion of

negative observations generated in our simulations for each scenario ranged from 0 - 2.5%, the maximum being

observed under cv = 0.5. Inflated Type 1 error was observed in CS models in the presence of heterogeneous

variances and a decrease in power was noted with increasing correlation. The power curve obtained using the

model selected by the AIC did not appear to be visually different from the model following the true covariance

structure. Using the repeated measures model has its disadvantages in that it requires the specification of the

covariance structure to be used. Our simulations have demonstrated that in such cases, the model selection

can be guided by the AIC without experiencing a loss of power. Our simulations also demonstrate that when

compared with the two sample t-test, the proposed repeated measures analysis leads to a more powerful test

for equality of area under the curves for unbalanced data.

5 Application: Acupuncture Study

Consider a randomized controlled trial evaluating a short course of traditional acupuncture compared with

usual care for persistent non-specific low back pain conducted by three private acupuncture clinics and 18

general practices in York, England [31]. The trial enrolled 241 adults aged 18-65 with non-specific low back

pain of 4-52 weeks duration. The intervention consisted of 10 individualised acupuncture treatments from

one of six qualified acupuncturists or usual care only. The primary outcome variable was the bodily pain

dimension of the SF-36 health status questionnaire, measured at 12 and 24 months. Secondary outcomes

consisted of quality of life scores obtained using the remaining dimensions of the SF-36 administered at

baseline and at 3, 12, and 24 months. Walters [32] considered summarizing the SF-36 bodily pain scores

over the 2-year follow-up using the AUC based on the 173 patients who completed all four assessments.

Individual profile plots, histograms of the distribution of the AUC, and mean plots for each treatment group

are presented in Figures 5 and 6. The variable SF-36 is scored on a 0 to 100 scale where 100 implies no pain

and a score of 0 indicates the most severe score.
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The proposed approach discussed in the manuscript was applied and was based on a model which included

parameter effects for treatment, time, treated as a categorical variable, and their interaction. From the fitted

model estimated mean scores at the four time points 0, 3, 12 and 24 months was obtained and the mean

AUC for each intervention group was estimated using contrasts specified in Table 5. The within-subject

covariance was modelled using the structures AR(1), UN and CS. Analysis was considered for the complete

data available as well as for completers, where a completer is defined as a subject with all four assessment

values available. For comparison, the traditional approach where the AUC is calculated using the trapezoidal

method for every individual and groups are then compared using a two sample t-test was applied.

The results from our analysis using the complete data and using only patients that completed all four

assessments are provided in Table 6 and 7, respectively. Analysis of complete data suggested a significant

difference in mean areas favouring the acupuncture group. The AIC statistic computed revealed the UN

model to be the best fit. Using only data from completers, the UN and t-test methods demonstrated only

marginal significance.

To illustrate the flexibility of our proposed approach, the differential effect of patient age and its interac-

tion with the treatment group was investigated. The model with the additional terms age and its interaction

with treatment was fit and the vector of estimated conditional means at each time point were obtained.

The adjusted mean AUC for each intervention as a function of age appears in Figure 7. A higher estimated

mean AUC was revealed for the acupuncture group with the AUC decreasing with increase in age. It is also

observed that the difference in mean AUCs between the usual care and the acupuncture group decreases

with increase in the covariate age.

6 Discussion and Conclusion

In this paper we introduced a general linear model approach that encapsulates the entire subject profile

to make inferences on the group AUC means. Inferential properties of the test of group means under the

proposed and the standard approach were evaluated using simulation studies. For simplicity, our simula-

tions were conducted by generating a hypothetical means model assuming a variety of covariance structures.

Little difference was noted between in the inferential properties of the two approaches when the complete

data was observed. However, our approach was seen to produce a significant power advantage over tradi-

tional methods in conjunction with missing data, with the distance between power curves widening with

increased missingness. In the presence of missingness, though the traditional approach maintained coverage

consistently, it was observed to produce biased estimates with larger standard errors and wider confidence

intervals.

Our work can be extended by considering other distinct missingness profiles. When the distribution of

the test statistic under the null is suspect, a permutation version of our approach can also be implemented.

12



For extremely small sample sizes, a bootstrap version can be considered. The proposed approach can be

extended to the assessment of bioequivalence and observations encountering limit of detection. Research

including the above mentioned is currently underway.
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Figure 1: Comparison of power curves for tests for equality of area under the curves. Data was generated under the AR(1) assumption with µ =
(2, 2.5, 3, 3, 2.5, 2)′, ρ = 0.3 and σ2 = 0.1. Simulations were performed for 10,000 iterations.
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Figure 2: Comparison of power curves for tests for equality of area under the curves. Data was generated under the ARH(1) assumption with µ =
(2, 2.5, 3, 3, 2.5, 2), ρ = 0.3 and cv = 0.1. Simulations were performed for 10,000 iterations.
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Figure 3: Comparison of power curves for tests for equality of area under the curves. Data was generated under the ARH(1) assumption with µ =
(2, 2.5, 3, 3, 2.5, 2)′, ρ = 0.5 and cv = 0.1. Simulations were performed for 10,000 iterations.
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Figure 4: Comparison of power curves for tests for equality of area under the curves. Data was generated under the ARH(1) assumption with µ =
(2, 2.5, 3, 3, 2.5, 2)′, ρ = 0.7 and cv = 0.1. Simulations were performed for 10,000 iterations.
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Table 1: Comparison of Bias, Std, Coverage and CI width for the test of equality of areas under the curve. Data was
generated under the AR(1) assumption with µ = (2, 2.5, 3, 3, 2.5, 2)′ and σ2 = 0.1. Simulations were performed for 10,000
iterations.

p γ
Bias (std) Coverage (CI width)

UN CS AR(1) T-Test UN CS AR(1) T-Test

ρ = 0.3

0
1 0.002(0.315) 0.002(0.307) 0.002(0.315) 0.002(0.315) 0.945(1.289) 0.941(1.253) 0.947(1.269) 0.945(1.289)

1.02 0.003(0.314) 0.003(0.306) 0.003(0.315) 0.003(0.314) 0.948(1.286) 0.943(1.25) 0.95(1.267) 0.948(1.286)
1.05 0.003(0.315) 0.003(0.307) 0.003(0.315) 0.003(0.315) 0.951(1.289) 0.944(1.252) 0.95(1.268) 0.951(1.289)
1.07 0.001(0.315) 0.001(0.307) 0.001(0.315) 0.001(0.315) 0.946(1.289) 0.94(1.252) 0.948(1.269) 0.946(1.289)
1.1 0.006(0.315) 0.006(0.307) 0.006(0.315) 0.006(0.315) 0.952(1.29) 0.946(1.254) 0.951(1.269) 0.952(1.29)

0.2
1 0(0.342) 0(0.331) 0.001(0.337) -0.002(0.445) 0.948(1.408) 0.945(1.352) 0.951(1.358) 0.952(1.825)

1.02 -0.001(0.343) -0.002(0.332) -0.002(0.337) 0.01(0.449) 0.947(1.412) 0.94(1.355) 0.946(1.36) 0.953(1.837)
1.05 -0.002(0.342) -0.003(0.331) -0.003(0.336) 0.029(0.451) 0.951(1.409) 0.948(1.354) 0.952(1.358) 0.951(1.849)
1.07 0.006(0.342) 0.004(0.331) 0.004(0.337) 0.047(0.455) 0.949(1.409) 0.945(1.353) 0.951(1.359) 0.95(1.862)
1.1 -0.001(0.342) -0.002(0.331) -0.002(0.336) 0.062(0.457) 0.947(1.408) 0.943(1.352) 0.946(1.357) 0.947(1.872)

ρ = 0.7

0
1 0.004(0.442) 0.004(0.432) 0.004(0.441) 0.004(0.442) 0.948(1.812) 0.942(1.766) 0.948(1.789) 0.948(1.812)

1.02 0.003(0.443) 0.003(0.433) 0.003(0.442) 0.003(0.443) 0.949(1.817) 0.944(1.77) 0.949(1.795) 0.949(1.817)
1.05 0.006(0.443) 0.006(0.432) 0.006(0.442) 0.006(0.443) 0.949(1.815) 0.941(1.77) 0.946(1.794) 0.949(1.815)
1.07 -0.006(0.443) -0.006(0.433) -0.006(0.442) -0.006(0.443) 0.949(1.817) 0.943(1.771) 0.949(1.793) 0.949(1.817)
1.1 -0.006(0.442) -0.006(0.431) -0.006(0.441) -0.006(0.442) 0.946(1.811) 0.942(1.765) 0.946(1.789) 0.946(1.811)

0.2
1 -0.001(0.454) -0.001(0.445) -0.001(0.45) -0.012(0.53) 0.95(1.861) 0.944(1.821) 0.946(1.827) 0.951(2.171)

1.02 0.001(0.454) 0.004(0.444) 0.004(0.449) 0.018(0.532) 0.948(1.862) 0.944(1.815) 0.948(1.823) 0.952(2.181)
1.05 0.001(0.453) -0.001(0.444) 0(0.45) 0.03(0.535) 0.948(1.859) 0.943(1.819) 0.949(1.827) 0.949(2.194)
1.07 0.005(0.454) 0.005(0.445) 0.004(0.45) 0.048(0.538) 0.953(1.861) 0.95(1.822) 0.954(1.829) 0.952(2.203)
1.1 -0.002(0.454) -0.002(0.444) -0.003(0.449) 0.058(0.541) 0.95(1.861) 0.946(1.818) 0.948(1.825) 0.949(2.218)

Table 2: Comparison of Bias, Std, Coverage and CI width for the test of equality of areas under the curve. Data was
generated under the ARH(1) assumption with µ = (2, 2.5, 3, 3, 2.5, 2)′, cv = 0.1 and σ2 = 0.1. Simulations were performed
for 10,000 iterations.

p γ
Bias (std) Coverage (CI width)

UN CS ARH(1) T-Test UN CS ARH(1) T-Test

ρ = 0.3

0
1 -0.003(0.267) -0.003(0.248) -0.003(0.268) -0.003(0.267) 0.955(1.092) 0.936(1.011) 0.954(1.082) 0.955(1.092)

1.02 -0.002(0.27) -0.002(0.25) -0.002(0.271) -0.002(0.27) 0.952(1.104) 0.937(1.023) 0.954(1.095) 0.952(1.104)
1.05 0(0.274) 0(0.255) 0(0.275) 0(0.274) 0.952(1.123) 0.935(1.039) 0.952(1.113) 0.952(1.123)
1.07 -0.001(0.276) -0.001(0.257) -0.001(0.277) -0.001(0.276) 0.95(1.131) 0.934(1.047) 0.952(1.121) 0.95(1.131)
1.1 -0.001(0.281) -0.001(0.261) -0.001(0.282) -0.001(0.281) 0.953(1.151) 0.939(1.066) 0.953(1.14) 0.953(1.151)

0.2
1 0.004(0.29) 0.003(0.268) 0.003(0.287) 0.003(0.414) 0.951(1.195) 0.934(1.093) 0.952(1.164) 0.953(1.697)

1.02 -0.001(0.293) 0(0.27) 0(0.29) 0.011(0.416) 0.947(1.208) 0.93(1.103) 0.948(1.175) 0.952(1.705)
1.05 0.003(0.297) 0.002(0.274) 0.002(0.294) 0.032(0.422) 0.945(1.222) 0.929(1.118) 0.949(1.192) 0.952(1.731)
1.07 0.001(0.3) 0(0.276) 0(0.296) 0.045(0.428) 0.952(1.236) 0.935(1.129) 0.952(1.202) 0.951(1.751)
1.1 0(0.305) 0.001(0.281) 0(0.302) 0.063(0.434) 0.951(1.256) 0.932(1.148) 0.95(1.223) 0.948(1.779)

ρ = 0.7

0
1 0.002(0.37) 0.002(0.348) 0.002(0.371) 0.002(0.37) 0.953(1.518) 0.939(1.422) 0.953(1.511) 0.953(1.518)

1.02 0(0.374) 0(0.351) 0(0.375) 0(0.374) 0.951(1.533) 0.938(1.437) 0.951(1.527) 0.951(1.533)
1.05 -0.003(0.381) -0.003(0.358) -0.003(0.381) -0.003(0.381) 0.952(1.562) 0.937(1.464) 0.95(1.555) 0.952(1.562)
1.07 0.003(0.383) 0.003(0.36) 0.003(0.384) 0.003(0.383) 0.948(1.571) 0.934(1.472) 0.95(1.565) 0.948(1.571)
1.1 0(0.39) 0(0.366) 0(0.39) 0(0.39) 0.952(1.599) 0.938(1.499) 0.953(1.591) 0.952(1.599)

0.2
1 -0.002(0.379) -0.001(0.356) -0.001(0.377) -0.002(0.475) 0.947(1.553) 0.934(1.459) 0.948(1.541) 0.952(1.945)

1.02 0(0.383) -0.001(0.361) -0.001(0.382) 0.014(0.481) 0.949(1.573) 0.934(1.478) 0.95(1.561) 0.951(1.969)
1.05 -0.001(0.388) -0.002(0.366) -0.002(0.387) 0.033(0.487) 0.949(1.592) 0.937(1.497) 0.95(1.581) 0.949(1.994)
1.07 0.002(0.392) 0.002(0.369) 0.002(0.391) 0.048(0.492) 0.945(1.606) 0.93(1.51) 0.946(1.595) 0.947(2.014)
1.1 -0.005(0.398) -0.006(0.375) -0.005(0.397) 0.056(0.499) 0.948(1.632) 0.933(1.534) 0.95(1.62) 0.949(2.044)
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Table 3: Comparison of Bias, Std, Coverage and CI width for the test of equality of areas under the curve. Data was
generated under the ARH(1) assumption with µ = (2, 2.5, 3, 3, 2.5, 2)′, cv = 0.3 and σ2 = 0.1. Simulations were performed
for 10,000 iterations.

p γ
Bias (std) Coverage (CI width)

UN CS ARH(1) T-Test UN CS ARH(1) T-Test

ρ = 0.3

0
1 0.001(0.799) 0.001(0.743) 0.001(0.801) 0.001(0.799) 0.953(3.275) 0.936(3.031) 0.953(3.239) 0.953(3.275)

1.02 -0.003(0.808) -0.003(0.75) -0.003(0.81) -0.003(0.808) 0.954(3.309) 0.933(3.063) 0.953(3.274) 0.954(3.309)
1.05 0.012(0.821) 0.012(0.763) 0.012(0.824) 0.012(0.821) 0.952(3.365) 0.936(3.115) 0.953(3.33) 0.952(3.365)
1.07 -0.006(0.829) -0.006(0.771) -0.006(0.832) -0.006(0.829) 0.955(3.398) 0.939(3.147) 0.955(3.362) 0.955(3.398)
1.1 -0.01(0.841) -0.01(0.781) -0.01(0.843) -0.01(0.841) 0.952(3.444) 0.934(3.188) 0.952(3.408) 0.952(3.444)

0.2
1 -0.004(0.871) -0.005(0.802) -0.003(0.86) -0.004(0.872) 0.953(3.588) 0.939(3.275) 0.954(3.486) 0.954(3.572)

1.02 -0.014(0.879) -0.014(0.809) -0.012(0.867) 0.001(0.881) 0.949(3.622) 0.934(3.304) 0.953(3.515) 0.951(3.609)
1.05 -0.012(0.89) -0.013(0.819) -0.014(0.879) 0.02(0.891) 0.951(3.665) 0.935(3.348) 0.951(3.563) 0.949(3.652)
1.07 -0.01(0.9) -0.007(0.829) -0.008(0.888) 0.042(0.901) 0.945(3.706) 0.929(3.385) 0.948(3.602) 0.948(3.691)
1.1 -0.01(0.913) -0.012(0.841) -0.011(0.902) 0.059(0.915) 0.948(3.767) 0.931(3.437) 0.949(3.658) 0.947(3.75)

ρ = 0.7

0
1 0(1.11) 0(1.041) 0(1.11) 0(1.11) 0.954(4.546) 0.94(4.261) 0.954(4.525) 0.954(4.546)

1.02 -0.012(1.122) -0.012(1.052) -0.012(1.121) -0.012(1.122) 0.953(4.597) 0.939(4.307) 0.954(4.572) 0.953(4.597)
1.05 0.009(1.138) 0.009(1.067) 0.009(1.139) 0.009(1.138) 0.953(4.661) 0.938(4.368) 0.953(4.642) 0.953(4.661)
1.07 0.004(1.15) 0.004(1.079) 0.004(1.15) 0.004(1.15) 0.947(4.71) 0.932(4.415) 0.948(4.688) 0.947(4.71)
1.1 0.013(1.167) 0.013(1.095) 0.013(1.167) 0.013(1.167) 0.955(4.779) 0.942(4.48) 0.954(4.756) 0.955(4.779)

0.2
1 -0.002(1.136) -0.001(1.071) 0(1.133) -0.006(1.119) 0.947(4.661) 0.934(4.382) 0.95(4.626) 0.948(4.586)

1.02 -0.007(1.15) -0.009(1.082) -0.008(1.145) 0.004(1.133) 0.951(4.716) 0.936(4.429) 0.951(4.676) 0.951(4.643)
1.05 -0.004(1.164) -0.005(1.096) -0.007(1.161) 0.026(1.147) 0.953(4.774) 0.94(4.486) 0.955(4.741) 0.952(4.698)
1.07 -0.006(1.174) -0.005(1.107) -0.004(1.171) 0.046(1.156) 0.949(4.818) 0.932(4.529) 0.948(4.781) 0.945(4.736)
1.1 -0.002(1.194) -0.004(1.125) -0.005(1.191) 0.059(1.177) 0.95(4.898) 0.935(4.604) 0.949(4.862) 0.951(4.821)

Table 4: Comparison of Bias, Std, Coverage and CI width for the test of equality of areas under the curve. Data was
generated under the ARH(1) assumption with µ = (2, 2.5, 3, 3, 2.5, 2)′, cv = 0.5 and σ2 = 0.1. Simulations were performed
for 10,000 iterations.

p γ
Bias (std) Coverage (CI width)

UN CS ARH(1) T-Test UN CS ARH(1) T-Test

ρ = 0.3

0
1 0.012(1.285) 0.012(1.194) 0.012(1.289) 0.012(1.285) 0.951(5.265) 0.934(4.874) 0.951(5.209) 0.951(5.265)

1.02 0.008(1.297) 0.008(1.204) 0.008(1.299) 0.008(1.297) 0.951(5.312) 0.933(4.917) 0.951(5.252) 0.951(5.312)
1.05 -0.008(1.317) -0.008(1.223) -0.008(1.319) -0.008(1.317) 0.954(5.394) 0.934(4.994) 0.954(5.332) 0.954(5.394)
1.07 -0.021(1.331) -0.021(1.236) -0.021(1.334) -0.021(1.331) 0.955(5.451) 0.936(5.047) 0.953(5.394) 0.955(5.451)
1.1 -0.025(1.348) -0.025(1.252) -0.025(1.353) -0.025(1.348) 0.95(5.522) 0.932(5.112) 0.95(5.471) 0.95(5.522)

0.2
1 0.008(1.394) 0.011(1.286) 0.007(1.38) 0.004(1.344) 0.95(5.746) 0.932(5.254) 0.952(5.595) 0.948(5.508)

1.02 -0.018(1.412) -0.006(1.3) -0.008(1.395) 0.004(1.359) 0.949(5.815) 0.934(5.312) 0.95(5.656) 0.95(5.566)
1.05 0.015(1.432) 0.018(1.321) 0.018(1.416) 0.043(1.38) 0.951(5.9) 0.932(5.395) 0.949(5.742) 0.947(5.653)
1.07 0.021(1.443) 0.023(1.331) 0.023(1.428) 0.066(1.39) 0.947(5.942) 0.929(5.437) 0.946(5.789) 0.944(5.693)
1.1 -0.033(1.47) -0.033(1.355) -0.034(1.454) 0.035(1.416) 0.946(6.056) 0.929(5.537) 0.947(5.895) 0.948(5.799)

ρ = 0.7

0
1 -0.02(1.782) -0.02(1.672) -0.02(1.78) -0.02(1.782) 0.945(7.301) 0.929(6.841) 0.946(7.257) 0.945(7.301)

1.02 -0.02(1.8) -0.02(1.688) -0.02(1.798) -0.02(1.8) 0.946(7.373) 0.932(6.908) 0.947(7.328) 0.946(7.373)
1.05 -0.009(1.827) -0.009(1.714) -0.009(1.826) -0.009(1.827) 0.948(7.486) 0.931(7.015) 0.947(7.444) 0.948(7.486)
1.07 0.02(1.847) 0.02(1.733) 0.02(1.847) 0.02(1.847) 0.949(7.567) 0.934(7.091) 0.95(7.529) 0.949(7.567)
1.1 -0.019(1.873) -0.019(1.757) -0.019(1.873) -0.019(1.873) 0.946(7.672) 0.934(7.188) 0.948(7.634) 0.946(7.672)

0.2
1 -0.023(1.824) -0.014(1.715) -0.014(1.816) -0.014(1.751) 0.951(7.484) 0.936(7.018) 0.95(7.411) 0.949(7.172)

1.02 0.004(1.844) 0.009(1.736) 0.008(1.836) 0.023(1.772) 0.952(7.567) 0.936(7.103) 0.951(7.496) 0.951(7.258)
1.05 0.001(1.869) 0.005(1.761) 0.003(1.862) 0.034(1.795) 0.95(7.667) 0.935(7.206) 0.948(7.6) 0.947(7.353)
1.07 -0.04(1.89) -0.034(1.779) -0.035(1.881) 0.019(1.818) 0.95(7.752) 0.938(7.281) 0.95(7.68) 0.951(7.446)
1.1 -0.011(1.919) -0.011(1.805) -0.012(1.909) 0.053(1.843) 0.948(7.871) 0.933(7.387) 0.95(7.794) 0.95(7.548)

24



Table 5: Vector of coefficients (c) to test for equality of mean areas

c1 c2 c3 c4

1.5 6 10.5 6

Table 6: Summary of results from the Acupuncture Study

Method Estimate (95% CI) SE p− value

T-Test -164.50 (-305.2, -23.6803) 72.6143 0.0223

AR(1) -156.21 (-285.76, -26.6676) 65.8468 0.0183

UN -149.36 (-285.58, -13.1343) 69.1339 0.0318

CS -150.17 (-275.22, -25.1166) 63.5423 0.0188

Table 7: Summary of results from the Acupuncture Study using only completers

Method Estimate (95% CI) SE p− value

T-Test -150.8(-296.7, -4.9712) 75.5975 0.0428

AR(1) -150.8(-280.81, -20.8812) 65.9938 0.0231

UN -150.8(-300.07, -1.6203) 75.5975 0.0476

CS -150.8(-284.29, -17.4038) 67.6681 0.0269
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