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Abstract

An exact testing approach was developed by Lloyd [21] to eliminate nuisance parameters which was shown

to be advantageous in testing for differences between two population proportions. We utilizes this approach to

obtain unconditional tests for trends in 2 ×K contingency tables. The unconditional procedure is compared

to other unconditional and conditional approaches based on the well know Cochran Armitage test statistic.

An example is given to illustrate the approach and a comparison between the methods with regards to Type

I error and power is provided. The proposed procedure is preferable due to it being less conservative and its

superior power properties.
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1 Introduction

The problem of statistically testing the equality of K binomial populations against an ordered alternative exists

in a wide variety of research settings. In clinical trials, for example, it is often of interest to investigate the

relationship between the dosage and the effect of the drug under study with regards to a binary outcome. Several

testing procedures have been proposed for analyzing the data from such studies which can be organized in a

2×K contingency tables. The Cochran-Armitage (CA) test (Cochran [14], Armitage [3]) is the most frequently

used test in this setting. The test is based upon the estimated slope coefficient from the weighted regression

of the observed proportions of success on fixed scores corresponding to the grouping variable. The test can

be highly sensitive to linearity between the true proportions and the fixed scores and will have higher power

than the Pearson chi-square test which ignores the intrinsic ordering of the grouping variable. The asymptotic

null distribution of the square of the CA test statistic, which is that of a chi-square random variable with one

degree of freedom, has been recommended for use in practice. The properties of the test when in use with the

asymptotic null distribution have been investigated by Agresti and Yang [1], who showed the Type I error rate

to be inflated thereby implying that use of the asymptotic null distribution is questionable (see, Chen et al. [12],

Corcoran et al. [16]). Kang and Lee [19] studied the case of large sample sizes, and theoretically proved that the

actual significance level of the CA trend test is always greater than or equal to the nominal level. The non-null

asymptotic distribution of the test statistic, which was derived by Nam [26], is of the form aΦ(b, a), where a and

b are functions of the proportions under the alternative and the dose scores, and Φ(b, a) is the CDF of a normal

random variable with mean b and standard deviation a. The power of the CA test based on the asymptotic

non-null distribution can be over estimated [24], which makes the use of the asymptotic approach in the context

of study planning misleading. As an alternative to the CA test, Neuhäuser [28] proposed a nonparametric trend

test among binomial proportions based on a modification of the Baumgarter-Weiß-Schindler statistic.

In light of the problems of Type I error control, an exact CA test may be considered in order to preserve the

nominal level of the test (Agresti et al. [2], Tang et al. [30]). The difficulty in the development of an exact

procedure is the reliance of the null distribution on the unknown common probability of success across all groups.

Mehta et al. [24] proposed an exact conditional test where both the row and column totals are treated as fixed.

2



Corcoran et al. [16] studied the exact power of the asymptotic CA test, the exact conditional CA test, and the

procedure given by Cohen and Sackrowitz [15]. The commercial softwares StatXact [25] and SAS [29] are available

to compute both the exact conditional p-value for a given data set, and within StatXact, the exact power of the

conditional CA testing procedure is available for the purpose of study planning.

An alternative for nuisance parameter elimination in the unconditional framework is the maximization method

(Basu [5], and Bickel and Doksum [9]). In short, the p-value is calculated by maximizing the null likelihood, de-

fined as the tail probability determined by the test statistic, over the complete domain of the unknown nuisance

parameter. Barnard [4] was the first to propose the unconditional approach for testing independence in the 2× 2

contingency tables and further claimed that the unconditional test can be more powerful than the conditional

version provided by Fisher [17]. In addition to the mechanics, there exist philosophical differences in the condi-

tional and unconditional approaches. The debate in the context of testing for differences between two independent

proportions has been summarized by Mehrotra et al. [23]. An empirical investigation of exact conditional and

unconditional testing approaches in conjunction with the CA test statistic was given by Tang et al. [31], where

the actual significance level and exact power were provided using a recursive polynomial multiplication algorithm.

They demonstrated that the exact unconditional CA test not only possesses an actual size closer to the nominal

level, but also is associated with a considerable power gain compared with the conditional version.

A modification of the unconditional maximization method has been suggested by Berger and Boos [8] in the

2×2 table setting, who noticed that the full maximization method can be more conservative than the conditional

approach in some scenarios. They proposed a new method of computing the so called confidence interval p-

value, which is defined as the maximum of the null likelihood over a 100(1 − β)% confidence region Cβ for the

nuisance parameter, then adding a penality term β. For use in practice, the value of β is rather small, such as

0.001 or 0.0001. Berger [7] showed that the proposed confidence interval method reduces the conservatism of the

unconditional approach. Freidlin and Gastwirth [18] extended the confidence interval p-value approach to obtain

unconditional tests for trends in 2 × K tables, and showed that the unconditional test is more powerful than

the conditional test when the expected number of responses is small. Although less conservative, the confidence

interval p-value approach to statistical problems suffers from a number of weakness as discussed by Lloyd [21].
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In order to address the weakness he proposed use of the E+M (Estimation + Maximization) p-value [21]. The

estimated p-value is first obtained by replacing the unknown nuisance parameter of the null distribution with its

maximum likelihood estimate (MLE); the E+M p-value is then obtained by maximizing the null likelihood using

the estimated p-value as a test statistic. The E+M approach has been successfully applied to the likelihood ratio

statistic for testing for differences between two independent proportions [20, 22], and has been recommended for

use in practice due to its power compared to other unconditional testing procedures. No work has been done

thus far in extending the E+M approach to testing for monotone trends among more than two independent

proportions.

The rest of this article is organized as follows. In Section 2, we briefly review exact CA tests for detecting

linear trend and propose an exact unconditional version based on the E+M approach. In Section 3, we compare

the performance of the competing tests, studying the size and power of the procedures under a wide range of

conditions. Section 4 is given to conclusions.

2 Existing methods and the proposed approach

Suppose that K ordered doses are used in a dose-response study, d1, d2, · · · , dK with d1 < d2 < · · · < dK , and

say a fixed number of subjects, ni, are assigned to the i−th group where all subjects receive dose di. Letting pi

be the probability of response at dose di, we wish to test the null hypothesis

H0 : p1 = p2 = · · · = pK =: p,

against an ordered alternative of the form

Ha : p1 ≤ p2 ≤ · · · ≤ pK and p1 < pK . (1)

An efficient test of the null hypothesis against the ordering alternative is the CA test, which is based on the test

statistic

TCA(x̃) =

∑K
i=1 xidi − p̂

∑K
i=1 nidi√

p̂(1− p̂)
∑K
i=1 ni(di − d̄)/n2

,
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where p̂ =
∑K
i=1 xi/n, n =

∑K
i=1 ni, d̄ =

∑K
n=1 nidi/n, and xi is the observed number of responders among the

ni subjects at dose level di. Larger values of the test statistic would denote evidence against the null. Although

we focus on an alternative of the form (1), the CA test statistic is also suitable for the ordered alternative

p1 ≥ p2 ≥ · · · ≥ pK and p1 > pK , and two-sided tests may be based on use of the statistic T 2
CA. Letting

s =
∑K
i=1 xi and t =

∑K
i=1 xidi, the test statistic TCA can be alternatively expressed as

TCA(s, t) =
t− d̄s√

s(n− s)
∑K
i=1 ni(di − d̄)/n2

.

The remainder of this section is given to the formal description of existing methods for obtaining p-values based

on the above test statistic, an outline of the proposed approach, and an example illustrating use of the procedures.

2.1 Existing methods

A commonly implemented approach to eliminate nuisance parameters in categorical analysis is conditioning on

observed marginal totals. Mehta et al. [24] suggested computing the observed significance of the test statistic

TCA by conditioning on the total number of responses s. Let x̃ = (x1, x2, · · · , xK) be a vector of the number

of responders for the K populations, and x̃0 be the observed vector for a given data set. The exact conditional

p-value for testing linear trends is defined as [24]

PCond(x̃0) = Pr(TCA(x̃) ≥ TCA(x̃0)|
∑
x̃ =

∑
x̃0, H0) =

∑
x̃∈ΩCond(x̃0)

∏K
i=1

(
ni

xi

)(
n
s

) ,

where s =
∑
x̃0 and the reject region ΩCond(x̃0) = {x̃ : TCA(x̃) ≥ TCA(x̃0) and

∑
x̃ =

∑
x̃0}. We note that

the conditional null distribution consists of a small set of unique values of the test statistic when sample sizes

are small, thereby resulting in a testing procedure which performs in a conservative manner. A straightforward

unconditional scheme to obtaining the p-value is to define the p-value (referred to as the M p-value) to be the

supremum of the null likelihood over the whole range of the nuisance parameter so to eliminate the dependence

of the test on the quantity. The M p-value [30] is given as

PM (x̃0) = sup
p∈[0,1]

{
∑

x̃∈ΩM (x̃0)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi},

where ΩM (x̃0) = {x̃ : TCA(x̃) ≥ TCA(x̃0)} is the reject region.
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Mehta et al. [24] evaluated the exact Type I error rate and power of the conditional and unconditional M

approaches. For various choices of p and n, they found that the actual Type I error rate is generally more

conservative using the conditional strategy compared to the unconditional test, although the difference between

the tests diminishes with increasing sample sizes. Both tests have nearly identical power when the sample sizes

are large, but for small sample sizes the unconditional test is generally more powerful due to the less discrete null

distribution. In some scenario, the conditional test was shown to be more powerful than the unconditional test.

Berger and Boos [8] developed another unconditional approach to eliminate the nuisance parameter based

on the following two observations: If the parameter space is not bounded, then it can be difficult to find the

global maximum of the null likelihood over the parameter space of the nuisance parameters. In addition to this

computational problem, there is additional information contained in the observed data, specifically the MLE

and the corresponding confidence interval of the parameters. Therefore, they proposed the p-value to be the

supremum of the null likelihood taken over the confidence interval rather than over the whole range. Freidlin

and Gastwirth [18] extended this approach for testing homogeneity in the 2 ×K table. The confidence interval

p-value (referred to as the CI p-value), based on the CA test statistic, is defined by

PCI(x̃0) = sup
p∈C(x̃0)

{
∑

x̃∈ΩCI(x̃0)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi}+ β,

where ΩCI(x̃0) = ΩM (x̃0), and C(x̃0) is the Clopper-Pearson 100(1 − β)% interval [13], and β = 0.001 as per

Berger and Boos’ [8] recommendation. Freidlin and Gastwirth [18] showed a power gain by using the CI approach

over competitors which decreased as the sample size increased. Lloyd [20] pointed out that the CI p-value proposed

by Berger and Boos is not exact and can be highly conservative in some cases, and a similar observation can be

made for the test given by Freidlin and Gastwirth [18].

2.2 E+M approach based on CA test

An unconditional approach based on estimation and maximization, applicable to many statistical problems, has

been proposed by Lloyd [21]. Suppose there is a test statistic Q, and without loss of generality, say large values

of Q support the alternative Ha. The estimated p-value (E p-value) for a given observed data x̃0 is

PE(x̃0) =
∑

x̃∈RE(x̃0)

∏
Pr(x̃|ψ̂),
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where ψ̂ and RE(x̃0) = {x̃ : Q(x̃) ≥ Q(x̃0)} are the MLE for the nuisance parameter ψ and the reject region for

given data x̃0, respectively. This E p-value, although convenient for use in practice, is not an exact p-value for the

test [20, 22]. An exact testing procedure is obtained by using the E p-value as a test statistic, fully maximizing

the null likelihood over the whole range of the nuisance parameters, thereby defining the E+M p-value as

PE+M (x̃0) = sup
ψ∈ω
{

∑
x̃∈RE+M (x̃0)

∏
Pr(x̃|ψ)},

where ω is the parameter space for ψ, and RE+M (x̃0) = {x̃ : PE(x̃) ≤ PE(x̃0)} is the reject region.

We extend the E+M approach (Lloyd [21]) to obtain an alternative unconditional version of the CA test. For

given data x̃0, the reject region for the E p-value is

RE(x̃0) = {x̃ : TCA(x̃) ≥ TCA(x̃0)},

and the calculated p-value is

PE(x̃0) =
∑

x̃∈RE(x̃0)

K∏
i=1

(
ni
xi

)
p̂xi(1− p̂)ni−xi ,

where p̂ =
∑K
i=1 xi/n is the value of maximum likelihood estimate of p under the null hypothesis. The corre-

sponding reject region for E+M p-value for the CA test is

ΩE+M (x̃0) = {x̃ : PE(x̃) ≤ PE(x̃0)},

and the E+M p-value is

PE+M (x̃0) = sup
p∈[0,1]

{
∑

x̃∈ΩE+M (x̃0)}

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi}.

Although not considered here, further estimation steps may be performed before maximization in order to

obtain a null likelihood which is even less reliant on the nuisance parameter. We now applied the theoretical

results from Lloyd [21] to our newly defined test.

Theorem 2.1. The E+M p-value PE+M (x̃0) is a non-decreasing function of PE(x̃0)

Proof: Suppose PE(x̃1) < PE(x̃2), where x̃1 and x̃2 are the vectors from two observed tables. For any x̃ ∈

ΩE+M (x̃1), from the the definition of the reject region for the E+M p-value, we know that PE(x̃) ≤ PE(x̃1). Then
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obviously PE(x̃) < PE(x̃2) when PE(x̃1) < PE(x̃2) is ture. Thus, x̃ ∈ ΩE+M (x̃2), and so ΩE+M (x̃1) ⊆ ΩE+M (x̃2).

For any given p,

∑
x̃∈ΩE+M (x̃1)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi ≤

∑
x̃∈ΩE+M (x̃2)

K∏
i=1

(
ni
xi

)
pxi(1− p)ni−xi ,

therefore the E+M p-value PE+M (x̃0) is a non-decreasing function of PE(x̃0).

Theorem 2.1 is also true for the M p-value, but not always true for the CI p-value due to Freidlin and Gastwirth

[18]. The CI p-value is calculated based on the partial maximization, and the bounds of the CI are dependent on

the observed data. For these reasons, the CI p-value is not a non-decreasing function of the test statistic.

The traditional definition of validity of a p-value, P (x̃), is basic [11], which only require a guarantee of the

nominal level of the test: Pr(P (x̃) ≤ α|θ) ≤ α, where θ is a nuisance parameter, is satisfied for any θ in the

parameter space and 0 ≤ α ≤ 1. For discrete data, the Type I error rate will be less than the nominal level unless

P (x̃) = α for some x̃, therefore resulting in a conservative test for any nominal size [21]. Lloyd [21] defined the

exact p-value in a more stringent way: If sup
θ
Pr(P (x̃) ≤ P (x̃0)|θ), is exactly equals to P (x̃0) for any x̃0, then the

p-value P (x̃0) is exact.

Theorem 2.2. The E+M p-value PE+M (x̃0) is exact.

The proof follows from Theorem 1 in Lloyd [21]. Note that the CI p-value PCI(x̃0) and the E p-value PE(x̃0)

are not exact [21, 20].

2.3 An example

We consider an example and apply the five different approaches discussed in this article: (1) the asymptotic

approach; (2) the conditional approach; (3) the M approach; (4) the CI approach; (5) the E+M approach. We

analyzed the follicular cell adenomas data from the study reported in Bickis and Krewski [10] shown in the

Table 1. Figure 1 shows the one sided exact null likelihood of the tests as a function of p for the data set. The

exact p-values can be seen to be 0.090 for the conditional approach, 0.074 for the M approach, 0.047 for the CI

approach with the CI (0.0052, 0.2064), and 0.036 for the E+M approach. At the 0.05 significance level, the CI

and E+M methodologies support the alternative hypothesis.

As seen in the Figure 1, obviously the null likelihood for the asymptotic and conditional approaches does not
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depend on p. There is a spike in the curve for the M approach near the right end of the range of the nuisance

parameter, contributing to the larger p-value for this approach. The CI p-value is smaller in comparison since

the confidence intervals does not contain the spike. The curve for the E+M approach is much flatter than that

of the M approach, and importantly, the spike in the curve for the M approach is no longer present for the E+M

approach demonstrating the weaker dependence of the test statistic on the nuisance parameter. The curve for

the E+M approach is uniformly lower than that of other approaches, therefore the E+M p-value is the smallest

among them.

3 Results

To evaluate the performance of the proposed procedure with competitors, the exact Type I error rate and power

at the 0.05 nominal significance level were compared. Figure 2 shows the Type I error rates of the tests as a

function of the true value of the nuisance parameter. The balanced case with sample sizes 20 and 50 per group

were considered. Plots (a) and (b) of Figure 2 show the Type I error rates of the five tests with K = 3, and

doses (d1, d2, d3) = (0, 1, 3), and plots (c) and (d) of Figure 2 illustrate the corresponding quantities with K = 4,

and doses (d1, d2, d3, d4) = (0, 1, 3, 4). The sample size for each group in plots (a), (b), (c), and (d) are 20, 50,

20, and 50, respectively. Maximization was performed through calculation of probabilities using jumps of 0.01

in the range of p. As can be seen, the asymptotic test violates the nominal significance level for most values of

p. Tests based on the M approach, E+M approach, and conditional approach guarantee the nominal significance

level of the test. The conditional test can be seen to be conservative, even for the larger sample sizes, but the

procedure can be less conservative than the unconditional M or CI approaches for some scenarios. The E+M

exact unconditional test has a flat significance level curve, which is less conservative than the conditional and

other unconditional tests in most cases.

Having examined the true Type I error of each test, we now compare the procedures with respect to power.

For a given alternative pi, i = 1, 2, · · · ,K, the exact power of the exact unconditional tests is

PowerA(x̃0) =
∑

x̃∈ΩA(x̃0)

K∏
i=1

(
ni
xi

)
pxi
i (1− pi)ni−xi ,

where A = {M,CI,E + M}. The power for the unconditional approach may be written as a weighted sum of
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conditional powers, and the detailed expression for the power calculation can be found in Mehta et al. [24]. The

asymptotic approach will not be considered due to the substantial Type I error violation, thereby invalidating

the procedure. The power of four exact tests for K = 4, ni = 20, i = 1, 2, 3, 4, are shown in Figure 3, 4, and 5.

Dose scores for Figure 3, 4, and 5 are (0,1,2,3), (0,1,2,4), and (0,2,3,4), respectively. Each of these three figures

contains four plots, plot (a)–(d), with corresponding four values of p1: 0.05, 0.1, 0.2, 0.45. Each curve is plotted

as a function of the parameter γ from the logistic regression model [31] given by

pi =
elog(p1/(1−p1))+γdi

1 + elog(p1/(1−p1))+γdi
, i = 2, 3, 4.

The difference in power between the conditional and unconditional tests is substantial. In all 12 cases, the E+M

approach is uniformly more powerful across γ than the conditional approach, and the difference between points

in the curves can be as high as 5.6%. The M approach is not as powerful as the E+M approach, although they

have close to equivalent power in some cases. In 1 out of 12 cases, the power of CI approach at some γ values is

1.1% greater than that of the E+M approach. However, in other cases, the E+M approach can be 4.4% higher

power than the CI approach.

4 Conclusion

In this article, we extended Lloyd’s [21] approach to obtain unconditional versions of the procedure developed by

Cochran [14] and Armitage [3] for testing the equality of the response rates in K binomial populations against an

ordered alternative. By using the estimated p-value as a test statistic, and then maximizing the null likelihood

over the range of the nuisance parameter, a procedure is obtained which not only guarantees the nominal level

of the test, but is also associated with a power gain compared to competitors. Our investigation in this article is

based on the CA trend test. This test was chosen because of its popularity in dose response data analysis. There

are several other tests may be alternatively used, one of them being the rank based test statistic proposed by

Neuhäuser [27], which is a modified Baumgartner-Weiß-Schindler statistic [6]. An investigation of the test using

a similar approach as considered in this note is currently underway.
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Table 1: Follicular cell adenomas study

Response Scores

0 0.5 1

Tumor 0 0 4

No Tumor 8 23 35
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Figure 1: Observed null likelihood curves for different tests using the data from the follicular cell adenomas

study: Asymptotic approach (red); Conditional approach (blue); M approach (green); E+M approach (darkred);

Confidence interval lines for CI approach (pink).
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Figure 2: Type I error rates for: (a) K=3 n=20, (b) K=3 n=50, (c) K=4 n=20, and (d) K=4 n=50. Asymptotic

approach (red); Conditional approach (blue); M approach (green); CI approach (pink); E+M approach (darkred).
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Figure 3: Power study with K=4, n=20, and the dose d=(0,1,2,3). Four difference alternatives: (a) p1=0.01 (b)

p1=0.1 (c) p1=0.2 (d) p1=0.45. Four exact tests: Conditional approach (blue); M approach (green); CI approach

(pink); E+M approach (darkred).
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Figure 4: Power study with K=4, n=20, and the dose d=(0,1,2,4). Four difference alternatives: (a) p1=0.01 (b)

p1=0.1 (c) p1=0.2 (d) p1=0.45. Four exact tests: Conditional approach (blue); M approach (green); CI approach

(pink); E+M approach (darkred).
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Figure 5: Power study with K=4, n=20, and the dose d=(0,2,3,4). Four difference alternatives: (a) p1=0.01 (b)

p1=0.1 (c) p1=0.2 (d) p1=0.45. Four exact tests: Conditional approach (blue); M approach (green); CI approach

(pink); E+M approach (darkred).
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