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Abstract

Adaptive designs find an important application in the estimation of unknown percentiles

for an underlying dose-response curve. A non-parametric adaptive design was suggested by

Mugno et al. (2004) to simultaneously estimate multiple percentiles of an unknown dose-

response curve via generalized Polya urns. In this paper, we examine the properties of the

design proposed by Mugno et al. (2004) when delays in observing responses are encountered.

Using simulations, we evaluate a modification of the design under varying group sizes. Our

results demonstrate unbiased estimation with minimal loss in efficiency when compared to

the original compound urn design.

1 Introduction

Dose-response studies are conducted primarily in Phase II efficacy trials to estimate prespec-

ified dose percentiles or the underlying dose-response function of an investigational drug. A

standard dose selecting trial randomizes subjects to several fixed dose groups and analyzes

the data after all the responses have been obtained. There are two major disadvantages

with this approach. The first being the risk of unnecessarily exposing patients to suboptimal

dose levels and the second being inefficient utilization of resources. For a review of ethical

issues with conventional randomized design, see Rosenberger and Lachin (1993) and Bather

(1985).

Response-adaptive designs have been used as an alternative to the traditional random-

ization scheme to overcome these issues. Generally speaking, in response adaptive designs,

treatment assignment is a function of the response information accrued up to that point in

time in the study. Interim analyses are conducted after each patient response is obtained

and subsequent patient doses are determined from responses sequentially gathered during

the study. Adaptive designs reduce the number of patients exposed to less effective doses and
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also open up the possibility of early termination of the trial, offering significant ethical and

cost advantages while increasing the probability of success. Adaptive designs and its advan-

tages over the conventional approach have been discussed extensively in the literature; see

Bauer (2004), Hu and Rosenberger (2006), Rosenberger (1996), Flournoy and Rosenberger

(1995) and Hu and Ivanova (2004), to name a few for details.

Various adaptive designs using stochastic approximation methods and urn models have

been developed. See Chow and Chang (2007). Here, we focus our attention on the generalized

Polya urn (GPU) model and its extensions. Extensions of this design involving simultaneous

estimation of several percentiles, referred to as the compound urn design may be found in

Mugno et al. (2004). In their paper, they implemented a sequential response-adaptive design

to simultaneously target three quartiles. The design properties were studied and the dose

estimates were concluded to be unbiased, efficient and robust against poor and biased prior

information. An advantage of the compound urn design lies in being able to estimate dose

percentiles by employing both parametric and non-parametric techniques.

Usually in clinical trials, patient responses are not instantly obtained. Delayed responses

are often associated with oncology and psychiatry trials and is a relevant issue. In an adaptive

design, this delays the randomization of the subsequent subject to the next dose level and

can notably lengthen the duration of the trial.

To tackle this issue, subjects are randomized in cohorts to dose levels as responses from

previous cohorts become available. Properties of adaptive designs for clinical trials with

delayed responses have been discussed by Hu and Zhang (2004) and Bai et al. (2002). To in-

vestigate the effect of delayed response in an adaptive urn design, we examine the compound

urn model reviewed by Mugno et al. (2004) for a group sequential scheme. We estimate

percentiles of interest and evaluate its properties.
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2 Review of Methods

In this paper we focus our efforts on urn models, which is only one of the various approaches

to accomplish response-adaptive randomization. The generalized Polya urn (GPU) model

was first introduced by Athreya and Karlin (1968) as the “generalized Friedman’s urn” and

then discussed by Wei (1979) for randomizing patients into different treatment groups. This

design can similarly be applied to randomize patients into different dose levels of the same

treatment. More details are provided in Athreya and Ney (1972).

The GPU design can be described as follows: Consider patients being randomized to K

dose levels for a treatment that is under investigation. The urn consists of K balls, each

representing a particular dose level. When a patient is accrued into the clinical trial, a ball

is randomly drawn with replacement from the urn and the patient is assigned that particular

dose j. If the patient response indicates success, n1 balls representing dose j are added to

the urn. If the patient response indicates failure, n2 balls each, of dose levels not equal to j

are added to the urn. This design mitigates the probability of patients being randomized to

a sub-optimal dose levels.

The GPU has been modified for adaptive randomization in dose-response studies to

estimate percentiles of interest. Rosenberger and Grill (1997) efficiently estimated quartiles

of a dose-response curve using the GPU. Assuming randomization to K dose levels, the

initial urn composition (IUC) is first chosen. The different strategies have been outlined by

Rosenberger and Grill (1997). Once the IUC has been chosen, a ball is randomly chosen

from the urn with replacement and the patient is randomized to the representing dose level.

A positive response from the patient elicits the addition of k (>1) balls for each of the lower

dose levels, while a negative response prompts the addition of k balls for each of the higher

dose levels in the urn. Thus the urn is updated after each patient response is obtained. To

estimate percentiles other than the ED50, say the ED100π, where π ∈ [0,1], the skewing
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factor is defined as,

g =


π

1−π , π 6 0.5

1−π
π

, π > 0.5

When estimating a percentile greater than the ED50, as before, subject non-response

implies that k balls are to be added to the urn for each of the k higher dose levels. Subject

response implies that k balls are to be added to the urn corresponding to the k lower levels

with probability g and k balls are to be added all corresponding to the dose just administered

with probability 1 - g. Targeting percentiles less than the ED50 may be done using similar

rules.

Mugno et al. (2004) extended the adaptive GPU proposed by Rosenberger and Grill to a

compound urn design to simultaneously target several percentiles of a dose-response curve.

A compound urn design is obtained by combining several GPU designs, each targeting a

single percentile. These compound urn designs were found to be robust against poor and

biased prior information due to their adaptive nature. These designs were also found to be

very efficient when the IUC were centered around the true quartiles. The advantage of the

compound urn model lies in being able to simultaneously estimate multiple percentiles. The

design also allows for both non-parametric and parametric estimation techniques.

The algorithm of the compound urn design requires that patient response be obtained

before the subsequent patient is randomized. Due to the nature of the study, our response

of interest may not be instantly obtained. Delayed responses are encountered in many

practical situations. Bai et al. (2002) describes an adaptive placebo-controlled clinical trial of

fluoxetine in depression as an example where the outcome was not immediately ascertainable.

A clinical trial investigating the overall survival of patients is another example of a situation

where delayed responses are encountered. Being unable able to obtain immediate responses

delays the randomization of the next subject and subsequently slows down the clinical trial.
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Subject recruitment is a challenge in medical trials and an adaptive design that can minimize

delays is called for.

When dealing with delayed responses, instead of following the traditional algorithm of

updating the urns after each patient response is obtained, the urns are updated after all

patient responses from the previous cohort are obtained. The algorithm is as follows:

1. A cohort of size r will be enrolled into the trial.

2. All subjects in the cohort will be assigned a specific dose of the drug.

3. The urn will be updated once responses have been obtained from all subjects in the

cohort.

4. Using the updated urn, the next cohort of subjects will be assigned a dose.

A trade off in efficiency is expected when considering delays in the algorithm as compared

to the original compound urn design.

3 Simulation Study

We conduct a simulation study to evaluate the properties of the compound urn design under

accrual groups of various sizes.

Here we only explore the logistic family of dose-response functions of the location-scale

form,

log

(
π(x)

1− π(x)

)
= β(x− α) (1)

Thus, the MLE for a prespecified target percentile can be derived as:

µ̂ = α̂ +
log
(

π
1−π

)
β̂

(2)
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It has been shown in Mugno (2001) that, provided that the urns are generated inde-

pendently and each targets an arbitrary percentile, the MLE of a percentile is a consistent,

asymptotically normally distributed and efficient estimate for the corresponding percentile

under the dependent sampling scheme of the compound GPU design.

Throughout the simulation, we generate data as specified in Mugno et al. (2004). We

replicate the results of the compound urn design for patient cohorts of size 3, 4, 6, 25 and

50. The parameters are similar to the original study (Mugno et al. (2004)) with the goal

being estimation of the three quartiles (true ED25=32, ED50=37 and ED75=42) of the dose-

response curve, assuming α = 37 and β = 0.22. The urn is assumed to have K = 71 levels

and simulations are performed for k = 5, N =100 trials per iteration for 8000 iterations.

As in Mugno et al. (2004), a dual GPU design is considered where two urns are used,

one targeting ED25 and the other targeting ED75. To be consistent with the design in

Mugno et al. (2004) and for the sake of comparability of results, the two urns are initially

populated using IUC4, where the initial urn content for the estimation of ED25 and ED75

is concentrated around the best guess of the truth, i.e. around levels 32 and 42 respectively.

The trial begins with the enrollment of the first cohort of patients of size n into the study.

Adopting the terminology used in urn problems, a ball is randomly selected from the urn

and all patients in the first cohort are subjected to that level. Once the patient responses

from the cohort are obtained, the urn is updated using all the n responses and another ball

is randomly selected. A trial is performed at this level for the next cohort of patients of size

n.

The estimates and standard deviations for the MLE estimates are given in Table 1.

Simulation results demonstrate unbiased parametric estimates without any drastic loss in

efficiency relative to the original sequential compound urn design.

The behavior of non-parametric estimates such as the empirical mean of the allocation

distribution and the mode of dose levels were also investigated. The empirical mean is given
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Table 1: MLE estimates and standard deviations obtained for IUC4
Cohort Size p = 0.25 p = 0.50 p = 0.75

3 31.92(1.56) 37.03(1.30) 42.13(2.23)
4 31.97(1.54) 37.03(1.15) 42.10(1.83)
6 31.94(1.53) 37.00(1.15) 42.06(1.78)
25 31.92(1.60) 36.99(1.11) 42.06(1.62)
50 31.91(1.61) 36.99(1.09) 42.06(1.62)

by
K∑
i=1

xiNi(n)/n, where Ni(n)/n is the proportion of trials at dose level xi. As specified in

Mugno et al. (2004), an unbiased non-parametric estimate of the target percentile can also

be obtained using the empirical mode of each individual urn.

The estimates of the empirical mean and mode are given in Table 2. These non-parametric

estimates are observed to be approximately unbiased with standard deviations decreasing

with increasing cohort size.

Table 2: Empirical mean, mode and standard deviations obtained for IUC4
Cohort Size Statistic p = 0.25 p = 0.75

Empirical Mean 31.90(1.32) 41.80(2.31)
3

Empirical Mode 31.48(2.22) 42.32(2.92)
Empirical Mean 31.91(1.24) 41.87(2.04)

4
Empirical Mode 31.48(2.14) 42.32(2.75)
Empirical Mean 31.93(1.07) 41.90(1.63)

6
Empirical Mode 31.50(2.05) 42.21(2.45)
Empirical Mean 31.99(0.49) 41.98(0.55)

25
Empirical Mode 31.57(1.91) 41.98(2.01)
Empirical Mean 31.99(0.28) 42.00(0.28)

50
Empirical Mode 31.70(2.00) 41.71(1.99)

Parameters of the true dose-response curve are seldom known. To investigate how effi-

ciency and bias were affected when the initial urn contents were not concentrated about the

target percentiles, additional simulations were conducted. The urn contents were concen-

trated three dose levels lesser than the truth. The empirical mean, the parametric estimates,
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the mode for dose-levels and the standard deviations for the MLE estimates obtained are

given in Table 3 and 4. The results obtained suggested parametric estimates that were

unbiased, with slight change in efficiency. With increase in cohort size, the change in ef-

ficiency appears to be modest and negligible. Non-parametric estimates under this design

were found to be biased with standard deviations similar to that obtained in Table 2 using

IUC4. Non-parametric estimates and their standard deviations are given in Table 4.

Table 3: MLE estimates and standard deviation obtained for IUC concentrated 3 doses lesser
from the truth
Cohort Size p = 0.25 p = 0.50 p = 0.75

3 32.04(1.39) 37.22(1.70) 42.40(2.91)
4 32.00(1.39) 37.20(1.58) 42.40(2.74)
6 32.00(1.37) 37.17(1.51) 42.33(2.61)
25 32.00(1.36) 37.09(1.23) 42.18(2.11)
50 32.00(1.41) 37.08(1.20) 42.17(2.00)

Table 4: Empirical mean, mode and standard deviations obtained for IUC concentrated 3
doses lesser from the truth
Cohort Size Statistic p = 0.25 p = 0.75

Empirical Mean 29.60(1.35) 37.66(2.46)
3

Empirical Mode 28.95(2.25) 38.83(3.26)
Empirical Mean 29.57(1.23) 37.78(2.21)

4
Empirical Mode 28.96(2.17) 38.82(3.01)
Empirical Mean 29.50(1.08) 37.93(1.76)

6
Empirical Mode 28.91(2.06) 38.81(2.62)
Empirical Mean 29.19(0.49) 38.72(0.58)

25
Empirical Mode 28.79(1.94) 38.87(2.01)
Empirical Mean 29.00(0.28) 39.00(0.28)

50
Empirical Mode 28.70(1.97) 38.70(1.99)
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4 Discussion & Conclusion

The primary goal of of this paper has been to expand on the response-adaptive compound urn

design introduced by Mugno et al. (2004) to a group-sequential enrollment scheme and study

its properties. We have investigated the properties of the urn design when there is a delay

in obtaining responses using simulations. The results suggest unbiased parametric estimates

and minimal loss in efficiency as compared to the original compound urn design regardless of

how the initial urn contents are chosen. We conclude that the response-adaptive compound

urn design can be used in clinical practice to simultaneously estimate multiple percentiles

without experiencing a huge loss in efficiency when subjects are enrolled in cohorts.

The weakness of this method lies in regarding the cohort size (r) to be fixed throughout

each trial. Enrollment of patients do not occur at fixed time points in a clinical trial. In

practice, patients are enrolled as they volunteer and deemed eligible. Thus, the ideal situation

would be to update the urn with the availability of patient responses than waiting for all

the responses from the previous cohort. We have examined the operating characteristics of

the design in the occasion that the primary outcome of the trial is binary in nature. E.g

non-existence of a symptom, occurrence of an event, death, cure etc. This design introduced

by Mugno et al. (2004) could be modified for situations where patient responses might be

categorical or continuous in nature.
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