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Abstract

In pre-clinical studies and clinical dose-ranging trials, the Jonckheere-Terpstra test is widely used in the

assessment of dose-response relationships. Hewett and Spurrier [1] presented a two-stage analog of the test

in the context of large sample sizes. In this paper, we propose an exact test based on Simon’s minimax and

optimal design criteria originally used in one-arm phase II designs based on binary endpoints. The convergence

rate of the joint distribution of the first and second stage test statistics to the limiting distribution is studied

and design parameters are provided for a variety of assumed alternatives. The behavior of the test is also

examined in the presence of ties and the proposed designs are illustrated through application in the planning

of a hypercholesterolemia clinical trial. The minimax and optimal two-stage procedures are shown to be

preferable as compared to the one-stage procedure due to the associated reduction in required sample size.

Keywords: Clinical Trials, Exact Tests, Jonckheere-Terpstra Test, Minimax Designs, Nonparametric, Op-

timal Designs, Phase II Designs.

1 Introduction

In pre-clinical studies and clinical dose-ranging trials, investigators are frequently interested in assessing dose-

response relationships, the most common conjecture being that the response is a monotonic increasing (decreasing)
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function of dose [2]. The assumption of monotonicity is often rooted in historic data, or based on biological reason-

ing. Consider the clinical trial discussed by Dmitrienko et al. [3] in which patients with hypercholesterolemia are

randomized to four groups where patients received one of three doses of a cholesterol-lowering drug or placebo.

This four-arm clinical trial is based on a continuous primary endpoint, the reduction in low-density lipopro-

tein cholesterol after a 12-week treatment. It is hypothesized that the underlying dose response relationship is

monotonic increasing.

The null hypothesis to be tested among k ordinal groups is

H0 : θ1 = · · · = θk,

and the ordered alternative is

Ha : θ1 ≤ · · · ≤ θk and θ1 < θk,

where θi is the location parameter associated with group i, i = 1, 2, · · · , k. The above problem has received

considerable attention in the literature. Jonckheere [4] and Terpstra [5] were among the first to develop a

nonparametric test for the nondecreasing ordered alternative (referred to as the JT test) based on the linear

combination of the Mann-Whitney U-statistics [6] associated with the k(k − 1)/2 possible pairs between the k

ordinal groups. Tryon and Hettmansperger [7] proposed a modified procedure based on a weighted version of the

original test statistic which was shown to be equivalent to calculating Spearman’s rank correlation between the

observed data and the corresponding group number. Neuhäuser et al. [8] showed that this modified test can be

more powerful than the JT test with smaller sample sizes for reasons related to the less discrete distribution of

the test statistic. More recently, McKean et al. [9] implemented a bootstrap Spearman-based approach to the

problem. In addition to the p-value, their method produces a measure of association with a range of −1 to 1

along with a corresponding confidence interval. Terpstra and Magel [10] proposed a nonparametric test based on

the total number of possible sets of observations (one from each group) which follow the alternative ordering. The

receiver operating characteristic (ROC) curve is commonly used for evaluating the ability of a diagnostic marker

measured on a continuous scale to correctly classify subjects into two groups. An extension of the ROC curve,

namely the ROC surface, has been proposed in the context of three groups [11, 12]. When k = 3, the volume

under the ROC surface is proportional to the test statistic given by Terpstra and Magel. This is analogous to the
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well known relationship observed between the area under the ROC curve and the Mann-Whitney test statistic.

Cuzick [13] proposed an extension of the signed rank Wilcoxon test based on a weighted rank for use in testing

for trends. Le [14] proposed a test for monotone ordered alternatives similar to the Kruskal-Wallis test which is

equivalent to the Cuzick test when the sample sizes are equal for all groups. Mahrer and Magel [15] conducted a

study which compared the JT test with those due to Cuzick and Le and found that all three tests were comparable

in terms of power.

Two-stage tests have been proposed for a variety of problems with the primary advantage being a reduction in

sample size compared to the usual one-stage testing approach. The general procedure for a two-stage test begins

with the selection of the first stage subjects used to assess whether continuation of the trial beyond the interim

analysis is warranted. Following many two-stage designs applied in clinical trials, the sampling procedure will be

stopped only for lack of evidence in favor of the alternative based on the first stage data. If we do not decide

in favor of the null in the first stage, additional subjects are enrolled in the second stage. The final decision

is based on all the observations from both stages. A number of two-stage procedures have been proposed in

the context of clinical research for use with binary outcomes [16, 17, 18]. Wilding et al. [19] executed an exact

two-stage Mann-Whitney test for continuous endpoints and showed that the sample size savings are substantial as

compared to the one-stage procedure. Generally, it is often true that two-stage designs can substantially reduce

the expected sample sizes required to achieve a given power. A two-stage JT test has been proposed by Hewett

and Spurrier [20, 1]. The asymptotic null distribution of the first and second stage JT test statistics, denoted

by JT1 and JT2, respectively, was derived. Although critical values were provided, these values were calculated

from the limiting null distribution with pre-specified probabilities of rejecting and accepting the null hypothesis

at the first and second stage, and the critical values provided are not claimed to be optimal in any sense. In

addition, the authors did not study the rate of convergence of the joint probability distribution of JT1 and JT2

to the limiting null distribution. There is no published optimal two-stage k-sample designs for pre-clinical and

dose-ranging trials at this time.

In this paper, we consider two-stage k-sample designs for continuous endpoints for use with ordered alternatives.

We review results pertaining to the limiting distribution of the two-stage JT test statistics and present a study
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of the rate of convergence in Section 2. Section 3 is given to the procedures for obtaining the design parameters

of the proposed Monte Carlo exact and asymptotic-based two-stage k-sample designs. The proposed designs are

applied in Section 4 to a clinical experiment. Section 5 is given to some recommendations and discussion.

2 The test statistics

The JT test was proposed by Jonckheere and Terpstra independently for testing for monotonically ordered

alternatives in the k-sample problem. The underlying distribution functions are assumed absolutely continuous

and of the form, Fi = F (x − θi), i = 1, 2, · · · , k, and the sample sizes are m1,m2, · · · ,mk for the k populations.

There is no difference among the populations under the null hypothesis, and the distributions under the alternative

differ by their location parameters θi, i = 1, 2, · · · , k. Specifically, the hypotheses are

H0 : θ1 = · · · = θk,

and

Ha : θ1 ≤ · · · ≤ θk and θ1 < θk.

The JT test statistic is given as

JT =

k−1∑
i=1

k∑
j=i+1

Uij ,

where the Mann-Whitney test statistic Uij is calculated based on the set of all possible pairs of observations from

the i−th and j−th populations: Uij =
∑mi

l=1

∑mj

v=1 I(Xil < Xjv), where Xil, l = 1, 2, · · · ,mi, denotes the l−th

observation from the i−th group, and I(.) denotes an indicator function that takes the value 1 if the condition in

the parenthesis is satisfied, and takes the value 0, otherwise.

Hewett and Spurrier considered the two-stage analog of the JT test. Samples of sizes m1,m2, · · · ,mk are

assigned to k groups, usually via a randomization scheme, the responses of which are used to compute the first

stage JT test statistic

JT1 =

k−1∑
i=1

k∑
j=i+1

U1
ij . (2.1)

If the procedure goes to the second stage, additional n1, n2, · · · , nk samples are enrolled. The final decision is
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based on the second stage test statistic, JT2, which is calculated using the information from both stages,

JT2 =

k−1∑
i=1

k∑
j=i+1

U2
ij . (2.2)

The statistics U1
ij and U2

ij are Mann-Whitney test statistics based on the samples from the first stage and both

stages, respectively. Letting U
′

= (U1
12, U

2
12, · · · , U1

(k−1)k, U
2
(k−1)k)1×(k−1)k, the two-stage test statistics can be

expressed as a linear combination of vector U ,

JT1 = C1U and JT2 = C2U,

where C1 = (1, 0, 1, 0, · · · , 1, 0)1×(k−1)k and C2 = (0, 1, 0, 1, · · · , 0, 1)1×(k−1)k. We take a similar approach as

Wilding et al. [19] for obtaining designs based upon JT1 and JT2. Let corresponding critical values at each stage

be denoted as r1 and r. At the first stage, mi subjects for the i−th treatment, i = 1, 2, · · · , k, are enrolled. If the

first stage JT1 statistic is less than or equal to r1 then it is deemed there exists no trend, otherwise it continues

on to the second stage. In the second stage, more patients (ni for the i−th treatment) are accrued. If at the end

of the trial the second stage JT2 statistic is less than or equal to r, we fail to reject H0 and conclude that there is

no difference among the groups. Otherwise, if JT2 > r, we conclude that the θi’s follow a nondecreasing ordering.

2.1 Asymptotic distribution of JT1 and JT2

We start with an investigation of the asymptotic distribution of the test statistics. The expectation and variance

of the Mann-Whitney statistics U1
ij and U2

ij directly follow from results in Mann and Whitney [6]. The following

lemma from Hewett and Spurrier [20] provides the first and second central moments associated with the two-stage

JT test statistics.

Lemma 2.1. (Hewett and Spurrier [20]) Under H0, the expectation of the first and second stage JT test statistics,

given in (2.1) and (2.2), are

µ1 = E(JT1) =

k−1∑
i=1

k∑
j=i+1

mimj

2
, µ2 = E(JT2) =

k−1∑
i=1

k∑
j=i+1

(mi + ni)(mj + nj)

2
.

The corresponding variances and covariance are

σ2
1 = V ar(JT1) =

k−1∑
i=1

k∑
j=i+1

mimj(mi +mj + 1)

12
+

k−2∑
h=1

k−1∑
i=h+1

k∑
j=i+1

mhmimj

6
,
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σ2
2 = V ar(JT2) =

k−1∑
i=1

k∑
j=i+1

(mi + ni)(mj + nj)(mi + ni +mj + nj + 1)

12

+

k−2∑
h=1

k−1∑
i=h+1

k∑
j=i+1

(mh + nh)(mi + ni)(mj + nj)

6
,

and

σ12 = Cov(JT1, JT2) =

k−1∑
i=1

k∑
j=i+1

mimj(mi + ni +mj + nj + 1)

12
+

k−2∑
h=1

k−1∑
i=h+1

k∑
j=i+1

mh(mi + ni)mj

6
.

The following asymptotic result will allow us to form large sample two-stage JT procedures based on a stan-

dardized version of the vector U ,

Ust =

(
U1
12 − E(U1

12)√
(V ar(U1

12))
,
U2
12 − E(U2

12)√
(V ar(U2

12))
, · · · ,

U1
k−1k − E(U1

k−1k)√
(V ar(U1

k−1k))
,
U2
k−1k − E(U2

k−1k)√
(V ar(U2

k−1k))

)
.

Theorem 2.1. (Hewett and Spurrier [20]) If ρi = mi/(
∑k
i=1mi) → bi, τi = ni/(

∑k
i=1 ni) → ci, and mi/(mi +

ni) → λ, i = 1, 2, · · · , k, as m1, · · · ,mk, n1, · · · , nk go to infinity, where bi, ci, λ are constant, then the joint

limiting distribution of (JT1 − µ1)/σ1 and (JT2 − µ2)/σ2 is bivariate normal distribution with mean (0, 0)
′
, unit

variances, and covariance
√
λ.

Hewett and Spurrier [20] proved that Ust follows a multivariate normal distribution as sample sizes go to infinity

by using Theorem 6(II) from Lehmann [21]. Since there exist matrices A and B, such that (JT1, JT2) = AUst+B,

the limiting distribution of (JT1, JT2) is bivariate normal. Large sample two-stage designs may be obtained.

Remark 2.1. In practice, it is common in two-stage designs to have balanced data across groups, that is,

m1 = m2 = · · · = mk = m and n1 = n2 = · · · = nk = n.

In the balanced case
m1

m1 + n1
= · · · = mk

mk + nk
=

m

m+ n
.

That is, in each stage, we have the same proportion of observations from each population. In this case, the

conditions of Theorem 2.1 are met with λ = m
m+n , bi = ci = 1

k , i = 1, 2, · · · , k .

2.2 Convergence rate to the limiting null distribution

It is of interest to know how large the sample sizes must be in order for the limiting null distribution to be

adequately used to approximate the finite sample distribution of the first and second stage JT test statistics.

We investigated contour plots of the asymptotic and Monte Carlo simulated finite sample joint distributions of
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the two-stage 3-sample JT test statistics for λ = 1/4, 2/4, 3/4 and various values of N = m + n. In the finite

sample case, the contours were plotted based on a two-dimensional kernel density estimator, as implements by the

R function kde2d [22]. Although the finite sample distribution does not depend on the underlying distribution

assumed for each population, in our Monte Carlo simulation study based on 10,000 iterations, the responses in

the 3 groups were assumed to be distributed as standard normal random variables. From the contour plots in the

Figure 1, we see that the asymptotic approximation for the finite sample distribution appears adequate even for

smaller N for the three values of λ considered.

An additional Monte Carlo simulation study was conducted to assess the asymptotic approximation to the joint

distribution of (JT1 − µ1)/σ1 and (JT2 − µ2)/σ2. In the simulation experiment with k = 3, observations were

generated from a standard normal distribution for N = 4, 8, 12, 16, · · · , 80. Then JT1 and JT2 were calculated

based on the first λN and all N observations, respectively, where λ = 1/4, 2/4, 3/4. This procedure was repeated

3,000 times for each N and λ combination. For each simulated sample, the Shapiro-Wilk test for multivariate

normality [23] was performed. Since this test has been seen to perform well in finite sample and is known to

be asymptotically exact, we may use the observed Type I error rate to gauge the appropriateness of using the

asymptotic approximation. Table 1 shows the relative frequencies of rejecting the null hypothesis of bivariate

normality at given nominal levels. As the sample size increases, the relative frequencies converge on the nominal

levels as expected. As can be seen, the adequacy of the approximation is highly dependent on the value of λ.

3 Description of designs

In this section we describe the proposed designs, provide design parameters to be used in practice, and study the

robustness of the procedures.

3.1 Design criteria

One may employ an upper boundary as considered by Hewett and Spurrier [20] to stop the trial early when

substantial evidence in favor of Ha is observed in the first stage, but we consider only early stopping in the case

of evidence in favor of H0 as in [17], [18], and [24]. We consider equal sample sizes in the k groups at each stage

for a maximum total sample size of k(m + n) = kN . Although unbalanced designs may also be considered, the
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balance design is that which is most common in pre-clinical and clinical experiments.

Since the trial is stopped in the first stage if the test statistic JT1 is less than or equal to r1, the probability

of early termination (PET) is defined as

PET =

r1∑
i=0

P (JT1 = i).

Corollary 3.1. Using the previously presented Theorem 2.1, it follows that

PET→ Φ
(r1 − µ1

σ1

)
,

as m→∞, where Φ(.) is the cumulative distribution function of a standard normal random variable.

In the event that JT1 > r1 in the first stage, the trial continues to the second stage with additional subjects

enrolled and observed for response. The probability of rejecting the null hypothesis with an experiment based on

the design parameters s = (m,N, r1, r) is defined as

τs(θ̃) = P (JT1 > r1, JT2 > r), (3.1)

where θ̃ represent the vector of location parameters. The above is equal to the Type I error (TIE) rate of the

test under θ̃ = θ̃0, or the power when θ̃ = θ̃a, where θ̃0 and θ̃a are the vectors of location parameters under the

null and alternative, respectively. The expected sample size (ESS), which is a function of the PET, is given as

ESS = km+ (1− PET)k(N −m).

For given first and second stage sample sizes, m and n, ESS is a decreasing function of PET.

There are many solutions of s = (m,N, r1, r) that satisfy Type I error (α) and power (1 − β) requirements,

and the set of such designs are contained in Ωα,β,θ̃0,θ̃a = {s|τs(θ̃0) ≤ α, τs(θ̃a) ≥ (1 − β)}. The minimax and

optimal designs proposed by Simon [18] have both been widely used in two-stage one-arm clinical trials based on

binary endpoints, and we may also consider use of the criteria in this context. The optimal design is defined as

the design with the minimum ESS under the null, that is,

{
s|s, t ∈ Ωα,β,θ̃0,θ̃a ; ESSs|H0

= min
t

(ESSt|H0
)
}
,

where ESSs|H0
denotes the expected sample size for design s under the null hypothesis. The minimax design is

that which has the smallest maximum sample size, and within this fixed sample size N , the minimum ESS under
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the null. Letting Ns denote the maximum sample size for each arm associated with design s, and Ωα,β,θ̃0,θ̃a(N) =

{s|s ∈ Ωα,β,θ̃0,θ̃a , Ns = N}, the design criteria may be written as

{
s|s, t ∈ Ωα,β,θ̃0,θ̃a ; q ∈ Ωα,β,θ̃0,θ̃a(Ns);Ns = min

t
(Nt); ESSs|H0

= min
q

(ESSq|H0
)
}
.

The search algorithm for the optimal and minimax designs begins by evaluation of the set Ωα,β,θ̃0,θ̃a(N) for

increasing values of N . Reasonable starting values include max{2, Nos − 5}, where Nos is the sample size per

group for the one-stage design. For a given N , values of m from 1 to N−1 are considered. For fixed m and N , the

range for the integer value r1 (r) is [0, k!
(k−2)!2!m

2] ([0, k!
(k−2)!2!N

2]). The search algorithm proceeds by evaluating

all possible r values with this range. For a fixed value of r, Equation (3.1) is a non-increasing function of r1, and

therefore the maximum value of r1, denoted rmax1 , can be identified such that the power constraints are satisfied

by using the bisection search method. If there exists a set of parameters (m,N, r∗1 , r) ∈ Ωα,β,θ̃0,θ̃a(N) for some

r∗1 , then the design based on rmax1 is included among them, r∗1 ≤ rmax1 , and the design (m,N, rmax1 , r) will have

the smallest ESS under the null since it will have the largest PET. If the Type I error rate of (m,N, rmax1 , r) is

larger than α, there exists no design satisfying the Type I error and power requirements for given m,N, and r.

Increasing value of N are considered until the first occurrence of the event that Ωα,β,θ̃0,θ̃a(N) 6= ∅, that is, at least

one valid design with adequate power properties is identified. For this set, the design with the smallest ESS under

the null is the minimax design. To find the optimal design, values of N must be increased until it is clear that the

design within Ωα,β,θ̃0,θ̃a with the smallest ESS has been identified. Critical to the algorithm is the calculation of

τs(θ̃0) and τs(θ̃a) for a given design s. Values of τs(θ̃0) may be calculated exactly used a recurrence relationship,

as in Wilding et al. [19], estimated using the asymptotic distribution provided in Section 2.1, or estimated via

Monte Carlo exact methods. Due to complications similar as those in the one-stage design, estimates of τs(θ̃a)

are limited to Monte Carlo methods.

The minimax design may be more desirable when the difference in expected sample sizes is small, patient accrual

is slow and there is a limited source of subjects. Although the null distribution depends only on the sample sizes,

the non-null distribution of our test statistics depends on Fi, i = 1, 2, · · · , k. A number of underlying distributions

could be considered, but the normal distribution is a continuous probability distribution that often gives a good

description of data which cluster around the mean. Therefore, the underlying distributions are assumed to be
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that of normal populations.

Remark 3.1. For the special case of k = 2, the two-stage JT designs proposed in this note are equivalent to the

two-stage Mann-Whitney designs proposed in Wilding et al. [19].

3.2 Design comparison

We investigated the proposed minimax and optimal designs under assumed alternatives for the case of k = 3

and k = 4. In the three sample scenarios the assumed alternatives take the form of different parametric

contrasts for various shapes: linear (θ1, θ2, θ3) = (0, 1, 2), convex (θ1, θ2, θ3) = (0, 0, 3), concave (θ1, θ2, θ3) =

(0, 2, 2), and increasing (θ1, θ2, θ3) = (0, 2, 3). In the case of k = 4, the following are considered: linear

(θ1, θ2, θ3, θ4) = (0, 0.5, 1, 1.5), convex (θ1, θ2, θ3, θ4) = (0, 0, 0, 2), concave (θ1, θ2, θ3, θ4) = (0, 2, 2, 2), and increas-

ing (θ1, θ2, θ3, θ4) = (0, 0, 1.5, 1.5). The units used for the contrasts are in standard deviations of the outcome

of interest. For specified values of the Type I error rate and power, the minimax and optimal designs were de-

termined using both Monte Carlo exact methods and the asymptotic approximation to the null distribution of

(JT1, JT2). In the case of the non-null distribution, Monte Carlo methods were used in both cases. The Monte

Carlo exact methods were based on 10,000 replicates. A Type I error rate of 5% is commonly used in practice

and was used throughout our evaluation. The two-stage JT designs for power of 80% are provided in Tables 2

and 4, and for power of 90% see Tables 3 and 5. In addition to the minimax and optimal design parameters

obtained by the Monte Carlo exact and asymptotic-based probability calculations, the tables contain the ESS of

each design under the null, the PET, the actual Type I error, and the actual power of the test; These quantities

were calculated via Monte Carlo exact methods. In addition, the classic one-stage design via Monte Carlo exact

methods is also provided for the sake of comparison.

The savings in sample size of the two-stage designs are large in comparison to the single stage versions. For

example, for the linear monotone ordering alternative of θ1 = 0, θ2 = 1, θ3 = 2, with power of 80% (Table 2), the

sample size needed for the one-stage design is 5 per group, for a total of 15. However, the expected total sample

size for the two-stage methods is only 8.6, resulting from enrolling 2 subjects at the first stage and another 3

subjects in the second stage if necessary. Under the alternative θ1 = 0, θ2 = 0, θ3 = 0, θ4 = 2, and power of 90%

(Table 5), the total sample size needed for the one-stage design is 32, however the ESS for the two-stage methods
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are all less than 20.

When comparing the two-stage designs obtained using Monte Carlo exact and asymptotic methodologies, the

ESS difference can be substantial. When using the asymptotic approach to obtain designs for power of 80%

(Table 4), the ESS is 12.2 subjects under the alternative θ1 = 0, θ2 = 0, θ3 = 1.5, θ4 = 1.5; the minimax design

based on the Monte Carlo exact method reduces the ESS from 12.2 to 11.2 subjects. Note that we have considered

large effect sizes in this section as is often seen in the planning of pre-clinical studies and early phase clinical

trials. The same approach may be taken when smaller effect sizes are hypothesized, where difference between the

exact and asymptotic-based probability calculations would be negligible.

3.3 Robustness

In the one-stage Mann-Whitney test, Hollander and Wolfe [25] showed that the variance of the Mann-Whitney

statistic becomes smaller in the presence of ties. The test statistics JT1 and JT2 are linear combinations of

Mann-Whitney statistics. Consequently, the variance of the JT test statistic is also affected by the presence of

ties in the data, both within and between groups. Wilding et al. [19] showed that exact two-stage Mann-Whitney

designs still provide excellent Type I error control and power properties in the presence of different percentages of

ties in the data, that is, the procedure was shown to be robust. We investigated the influence of ties in the two-

stage 3-sample JT designs by Monte Carlo simulations for Type I error rates of 5% and power of 80% for various

alternatives. We rounded simulated observations generated from normal populations to the nearest multiple of

0.01, 0.1, 0.2, and 1 in order to produce data with a portion of the values being tied. When computing the

Mann-Whitney test statistic components of the JT test statistics, in the event of ties when evaluating all possible

pairs of observations between two samples, a value of 0.5 is assigned for the indicator function. For discussion of

this strategy when dealing with rank-based procedures, see Lehmann [26]. The simulated Type I error rates and

powers based on 20,000 iterations are given in Table 6. In the presence of tie, the two-stage JT designs based on

Monte Carlo exact methods still provide excellent Type I error control and power properties. Similar results are

obtained for k = 4 in Table 7.

Like other nonparametric approaches, the power of our proposed two-stage design depends on the distribution

used and the specified alternative. Although the power of test is a function of the distribution form, the Type I
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error rate of the test will be maintained regardless. We conducted a Monte Carlo simulation with 20,000 iterations

based on uniform populations with the same mean and standard deviation as the normal distributions specified

when obtaining the design parameters. The results showed that the proposed two-stage test still maintains

excellent Type I error control and power properties. For example, for the set of parameters (r1 = 7,m = 2, r =

52, N = 5) under the alternative θ1 = 0, θ2 = 0, θ3 = 3 (Table 3), the simulated Type I error rate and power

are 0.0481 and 0.8437, respectively, with normal populations, and 0.0480 and 0.8281, respectively, with uniform

populations.

4 An example

To illustrate the proposed two stage designs based on Monte Carlo exact methods, we revisit the example discussed

earlier in the paper. As discussed in Dmitrienko et al. [3], we consider the design of a 4-arm trial of patients with

hypercholesterolemia with the objective of assessment of the relationship between a new cholesterol-lowering drug

and response. Three doses of the experimental drug are to be included in addition to a group receiving placebo.

This clinical trial is to be based on a continuous primary endpoint, the reduction in low-density lipoprotein

cholesterol after a 12-week treatment, and it is hypothesized that the underlying dose response relationship will

be linear with θ1 = 0 mg/dL, θ2 = 7 mg/dL, θ3 = 14 mg/dL, θ4 = 21 mg/dL, where θ1 is the placebo effect,

and θ2, θ3 and θ4 represent the drug effect in the low, medium, and high dose groups, respectively. The common

standard deviation (SD) of LDL cholesterol change is expected to be between 20 mg/dL and 25 mg/dL. For a

given 5% significance level and 90% power, the one- and two-stage designs were calculated based on the Monte

Carlo exact methods proposed in this paper for a range of standard deviation values; see Table 8.

Focusing on the case of a standard deviation of 20, for example, the one stage design requires 64 subjects,

while the ESS for the minimax and optimal designs under the null are 44.7 and 41.5, respectively. The minimax

design is determined to have m = 8 and n = 7 per arm as the first and second stage sample sizes. If the first

stage statistic JT1 ≤ r1 = 195, the trial stops and fails to reject the null hypothesis, otherwise the trial continues

to the second stage. After the trial is finished, the final conclusion is determined by the second stage statistics

JT2. If JT2 ≤ r = 795, we fail to reject H0; otherwise we conclude that there exists a dose response relationship.
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5 Discussion

In this article we presented two-stage k-sample designs based on the JT test statistic by adopting Simon’s minimax

and optimal design criteria. Although Hewett and Spurrier proposed a two-stage procedure and derived the

asymptotic limiting distribution of the first and second stage test statistics, tests based on a Monte Carlo exact

approach are more desirable for smaller sample sizes as used in early drug development trials. Our results indicate

that two-stage designs can save sample size considerably compared to one-stage designs with the same Type I

error rate and power constraints.

Two-stage designs are often preferred due to the ability to stop the procedure early in the absence of activity

resulting in sample size savings. Although designs which stop early for efficacy may be considered using similar

methods as we have used in this article, more often than not investigators choose not to take this approach to

intervention evaluation due to the fact that the additional information obtained in the second stage may be used

to achieve greater precision in the estimation of effects. We have also not considered designs with three or more

stages [27] due to the administrative complexities they introduce into the process, as well as the lack of additional

savings in total sample sizes as seen by others with similar designs in the binary endpoint context.

Although the designs have been shown to be robust in the scenarios considered in the note, one weakness of

the proposed approach is the inability to directly accommodate the presence of ties in the data. Research into

methods which more efficiently accommodate ties in the data are currently being undertaken. We have written

an R package to calculate two-stage k-sample designs based on Monte Carlo exact methods for user defined

parameters which will be available to readers upon request. Two-stage analogs of Cochran’s Q test, Friedman’s

test, Page’s test, and the Kruskal-Wallis test are also under investigation.
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Table 1: Relative frequency of rejecting the null of bivariate normality at nominal levels of 0.1, 0.05, and 0.01

for two-stage 3-sample JT test.

N λ = 1
4 λ = 2

4 λ = 3
4

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

4 0.073 0.037 0.004 0.099 0.046 0.006 0.108 0.042 0.006

8 0.096 0.044 0.005 0.102 0.046 0.007 0.103 0.048 0.006

12 0.100 0.047 0.008 0.103 0.050 0.009 0.102 0.046 0.008

16 0.105 0.053 0.010 0.101 0.050 0.008 0.100 0.049 0.009

20 0.103 0.051 0.009 0.100 0.049 0.008 0.102 0.051 0.010

24 0.101 0.048 0.009 0.101 0.053 0.011 0.101 0.049 0.009

28 0.106 0.052 0.009 0.101 0.050 0.011 0.107 0.052 0.009

Table 2: Minimax and optimal designs with k = 3 for 5% Type I error and 80% power.

θ1 θ2 θ3 Design r1 m r N TIE Power ESS PET

0 1 2 exact one-stage 53 5 0.0479 0.8746 15

exact minimax 7 2 52 5 0.0481 0.8437 8.6 0.7096

exact optimal 7 2 52 5 0.0481 0.8437 8.6 0.7096

asy minimax 7 2 53 5 0.0415 0.8271 8.6 0.7047

asy optimal 7 2 53 5 0.0415 0.8271 8.6 0.7047

0 0 3 exact one-stage 35 4 0.0448 0.8595 12

exact minimax 1 1 35 4 0.0414 0.8448 7.4 0.5095

exact optimal 1 1 35 4 0.0414 0.8448 7.4 0.5095

asy minimax 7 2 35 4 0.0422 0.8487 7.7 0.7150

asy optimal 7 2 35 4 0.0422 0.8487 7.7 0.7150

0 2 2 exact one-stage 53 5 0.0429 0.8041 15

exact minimax 17 3 52 5 0.0493 0.8047 10.2 0.7970

exact optimal 7 2 73 6 0.0462 0.8276 9.5 0.7144

asy minimax 7 2 74 6 0.0394 0.8202 9.5 0.7117

asy optimal 7 2 74 6 0.0394 0.8202 9.5 0.7117

0 2 3 exact one-stage 21 3 0.0384 0.8627 9

exact minimax 1 1 21 3 0.0378 0.8571 6 0.4957

exact optimal 1 1 21 3 0.0378 0.8571 6 0.4957

asy minimax 8 2 21 3 0.0351 0.8483 6.5 0.8355

asy optimal 8 2 21 3 0.0351 0.8483 6.5 0.8355
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Table 3: Minimax and optimal designs with k = 3 for 5% Type I error and 90% power.

θ1 θ2 θ3 Design r1 m r N TIE Power ESS PET

0 1 2 exact one-stage 74 6 0.0489 0.9385 18

exact minimax 6 2 73 6 0.0492 0.9102 11.2 0.5706

exact optimal 6 2 73 6 0.0492 0.9102 11.2 0.5706

asy minimax 16 3 74 6 0.0410 0.9027 11.3 0.7396

asy optimal 16 3 74 6 0.0410 0.9027 11.3 0.7396

0 0 3 exact one-stage 53 5 0.0447 0.9494 15

exact minimax 7 2 52 5 0.0454 0.9503 8.6 0.7128

exact optimal 7 2 52 5 0.0454 0.9503 8.6 0.7128

asy minimax 7 2 53 5 0.0357 0.9312 8.6 0.7055

asy optimal 7 2 53 5 0.0357 0.9312 8.6 0.7055

0 2 2 exact one-stage 99 7 0.0461 0.9342 21

exact minimax 16 3 97 7 0.0475 0.9071 12.2 0.7460

exact optimal 16 3 97 7 0.0475 0.9071 12.2 0.7460

asy minimax 16 3 98 7 0.0414 0.8979 12.2 0.7361

asy optimal 16 3 98 7 0.0414 0.8979 12.2 0.7361

0 2 3 exact one-stage 35 4 0.0470 0.9721 12

exact minimax 8 2 34 4 0.0431 0.9247 7.0 0.8337

exact optimal 8 2 34 4 0.0431 0.9247 7.0 0.8337

asy minimax 8 2 35 4 0.0347 0.9199 7.0 0.8266

asy optimal 8 2 35 4 0.0347 0.9199 7.0 0.8266
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Table 4: Minimax and optimal designs with k = 4 for 5% Type I error and 80% power.

θ1 θ2 θ3 θ4 Design r1 m r N TIE Power ESS PET

0 0.5 1 1.5 exact one-stage 188 7 0.0463 0.8702 28

exact minimax 28 3 140 6 0.0460 0.8008 17.0 0.5798

exact optimal 13 2 184 7 0.0470 0.8102 15.1 0.6470

asy minimax 28 3 140 6 0.0460 0.8008 17.0 0.5798

asy optimal 13 2 185 7 0.0431 0.8045 15.1 0.6470

0 0 0 2 exact one-stage 140 6 0.0457 0.8206 24

exact minimax 31 3 138 6 0.0487 0.8144 15.2 0.7335

exact optimal 13 2 183 7 0.0499 0.8347 15.1 0.6453

asy minimax 31 3 139 6 0.0451 0.8023 15.2 0.7335

asy optimal 13 2 185 7 0.0438 0.8215 15.1 0.6453

0 2 2 2 exact one-stage 140 6 0.0469 0.8206 24

exact minimax 12 2 139 6 0.0477 0.8085 15.4 0.5405

exact optimal 13 2 184 7 0.0477 0.8343 15.1 0.6456

asy minimax 30 3 140 6 0.0440 0.8004 15.8 0.6794

asy optimal 13 2 185 7 0.0444 0.8272 15.1 0.6456

0 0 1.5 1.5 exact one-stage 99 5 0.0480 0.8496 20

exact minimax 14 2 97 5 0.0486 0.8041 11.2 0.7337

exact optimal 14 2 97 5 0.0486 0.8041 11.2 0.7337

asy minimax 13 2 99 5 0.0448 0.8137 12.2 0.6500

asy optimal 13 2 99 5 0.0448 0.8137 12.2 0.6500
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Table 5: Minimax and optimal designs with k = 4 for 5% Type I error and 90% power.

θ1 θ2 θ3 θ4 Design r1 m r N TIE Power ESS PET

0 0.5 1 1.5 exact one-stage 241 8 0.0486 0.9072 32

exact minimax 50 4 240 8 0.0488 0.9023 22.5 0.5929

exact optimal 56 4 360 10 0.0488 0.9000 21.2 0.7839

asy minimax 49 4 241 8 0.0461 0.9002 23.1 0.5572

asy optimal 54 4 299 9 0.0472 0.9038 21.4 0.7283

0 0 0 2 exact one-stage 241 8 0.0476 0.9204 32

exact minimax 29 3 239 8 0.0476 0.9053 19.3 0.6352

exact optimal 29 3 239 8 0.0476 0.9053 19.3 0.6352

asy minimax 29 3 239 8 0.0476 0.9053 19.3 0.6352

asy optimal 29 3 239 8 0.0476 0.9053 19.3 0.6352

0 2 2 2 exact one-stage 187 7 0.0479 0.9428 28

exact minimax 12 2 237 8 0.0496 0.9005 18.6 0.5579

exact optimal 12 2 237 8 0.0496 0.9005 18.6 0.5579

asy minimax 29 3 239 8 0.0452 0.9101 19.1 0.6468

asy optimal 29 3 239 8 0.0452 0.9101 19.1 0.6468

0 0 1.5 1.5 exact one-stage 242 8 0.0461 0.9161 32

exact minimax 31 3 184 7 0.0494 0.9099 16.3 0.7322

exact optimal 31 3 184 7 0.0494 0.9099 16.3 0.7322

asy minimax 31 3 185 7 0.0464 0.9074 16.3 0.7322

asy optimal 31 3 185 7 0.0464 0.9074 16.3 0.7322
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Table 6: Type I error and power of designs with k = 3 in the presence of tie; 5% Type I error and 80% power.

No ties round to

The alternative (θ1, θ2, θ3) 0.01 0.1 0.2 1

(0, 1, 2)

Proportion of tie under the null 0.00 0.04 0.32 0.53 0.93

Proportion of tie under the alternative 0.00 0.03 0.25 0.44 0.90

Actual TIE 0.05 0.05 0.05 0.05 0.04

Power 0.84 0.84 0.85 0.86 0.84

(0, 0, 3)

Proportion of tie under the null 0.00 0.03 0.27 0.45 0.90

Proportion of tie under the alternative 0.00 0.02 0.16 0.30 0.81

Actual TIE 0.04 0.04 0.04 0.04 0.03

Power 0.85 0.85 0.86 0.87 0.87

(0, 2, 2)

Proportion of tie under the null 0.00 0.05 0.37 0.60 0.94

Proportion of tie under the alternative 0.00 0.03 0.28 0.48 0.92

Actual TIE 0.05 0.04 0.05 0.05 0.04

Power 0.83 0.83 0.84 0.85 0.83

(0, 2, 3)

Proportion of tie under the null 0.00 0.02 0.20 0.36 0.85

Proportion of tie under the alternative 0.00 0.01 0.12 0.23 0.72

Actual TIE 0.04 0.04 0.04 0.04 0.03

Power 0.85 0.86 0.87 0.87 0.86
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Table 7: Type I error and power of designs with k = 4 in the presence of tie; 5% Type I error and 80% power.

No ties round to

The alternative (θ1, θ2, θ3, θ4) 0.01 0.1 0.2 1

(0, 0.5, 1, 1.5)

Proportion of tie under the null 0.00 0.07 0.52 0.74 0.97

Proportion of tie under the alternative 0.00 0.06 0.47 0.70 0.96

Actual TIE 0.05 0.05 0.05 0.05 0.04

Power 0.80 0.81 0.82 0.82 0.79

(0, 0, 0, 2)

Proportion of tie under the null 0.00 0.07 0.52 0.74 0.97

Proportion of tie under the alternative 0.00 0.06 0.42 0.65 0.96

Actual TIE 0.05 0.05 0.05 0.05 0.05

Power 0.84 0.85 0.85 0.85 0.84

(0, 2, 2, 2)

Proportion of tie under the null 0.00 0.07 0.51 0.74 0.97

Proportion of tie under the alternative 0.00 0.06 0.43 0.65 0.96

Actual TIE 0.05 0.05 0.05 0.05 0.04

Power 0.84 0.84 0.85 0.85 0.84

(0, 0, 1.5, 1.5)

Proportion of tie under the null 0.00 0.05 0.40 0.63 0.95

Proportion of tie under the alternative 0.00 0.04 0.33 0.55 0.94

Actual TIE 0.05 0.05 0.05 0.05 0.04

Power 0.80 0.80 0.81 0.81 0.78
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Table 8: Minimax and optimal designs with k = 4 for 5% Type I error and 90% power.

SD Design r1 m r N TIE Power ESS PET

20 exact one-stage 901 16 0.0496 0.9193 64

exact minimax 195 8 795 15 0.0498 0.9003 44.7 0.5470

exact optimal 161 7 1245 19 0.0499 0.9005 41.5 0.7192

21 exact one-stage 1017 17 0.0490 0.9064 68

exact minimax 198 8 1012 17 0.0495 0.9000 46.7 0.5917

exact optimal 158 7 1247 19 0.0500 0.9012 43.4 0.6786

22 exact one-stage 1261 19 0.0497 0.9124 76

exact minimax 378 11 1134 18 0.0500 0.9001 54.7 0.6196

exact optimal 207 8 1802 23 0.0496 0.9016 49.4 0.7092

23 exact one-stage 1529 21 0.0498 0.9129 84

exact minimax 599 14 1392 20 0.0492 0.9000 66.4 0.5683

exact optimal 324 10 1802 23 0.0499 0.9007 53.8 0.7342

24 exact one-stage 1672 22 0.0491 0.9078 88

exact minimax 536 13 1664 22 0.0496 0.9004 63.4 0.6830

exact optimal 255 9 1963 24 0.0499 0.9027 57.9 0.6343

25 exact one-stage 1976 24 0.0492 0.9121 96

exact minimax 440 12 1815 23 0.0499 0.9000 67.4 0.5589

exact optimal 312 10 2133 25 0.0495 0.9002 62.8 0.6199
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Figure 1: Contour plots for the bivariate normal distribution (solid black line) and finite sample (dashed blue

line) joint distribution of two-stage 3-sample JT test statistics . The first, second and third columns are for

contour plots with different maximum sample sizes for λ = 1/4, 2/4, 3/4, respectively.
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