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Some Exact and Approximations for the
Distribution of the Realized False Discovery

Rate
by David Gold and Jeff Miecznikowski

Here, we derive the distribution of the realized false discovery rate (rFDR),
for Benjamini and Hochberg’s (1995) procedure, given a general distribution
of test statistics.

The following notation is refered to

1. a the desired FDR

2. test statistics, X iid π0F0(X) + π1F1(X), X = (X1, ..., Xm)′ mixture
of the CDF’s F0, the null distribution, and F1 the alternative, with
mixture weights π0 + π1 = 1. We are mainly interested in the case of a
t-test, where F is a t distribution with v degrees of freedom and F1 is
a (possibly) mixture of non-central t’s, with v degrees of freedom and
noncentrality parameter η.

3. two-sided p-values pi = 2(1 − F0(|Xi|)), i = 1, ...,m with distribution
P (p ≤ c) = π0P0(p ≤ c) + π1P1(p ≤ c)

4. ordered p-values p(1), ..., p(m)

5. cj = aj/m for j = 1, ...,m

1 Density of the Ordered p-value chosen

Define the sets:

Aj = {p(j) ≤ aj/m, p(j+1) > a(j + 1)/m, p(j+2) > a(j + 2)/m, ..., p(m) > a}

Bj = {p(j) > aj/m, p(j+1) > a(j + 1)/m, ..., p(m) > a}

Cj = {p(j+1) > a(j + 1)/m, p(j+2) > a(j + 2)/m, ..., p(m) > a}

Then P (Aj) = P (Cj) − P (Bj). Note that for sufficiently large m, large
π1, and entropy between P0 and P1, the approximation

P (Aj) ≈ P ({p(j) ≤ aj/m, p(j+1) > a(j + 1)/m})

is efficient.
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2 Distribution of Order Statistics

The joint distribution of two order statistics is derived in Casella and Berger.

P (p(i1) ≤ u1, p(i2) ≤ u2)

define

U1 =
∑

I(pi ≤ u1)

U2 =
∑

I(u1 < pi ≤ u2)

P (p(i1) ≤ u1, p(i2) ≤ u2) = P (i1 ≤ U1 < i2, i2 ≤ U1 + U2 ≤ n) + P (U1 ≥ i2)

=

i2−1
∑

s1=i1

m−s1
∑

s2=i2−s1

P (U1 = s1, U2 = s2) + P (U1 ≥ i2)

for the general case, where p1, ..., pm are not necessarily independent or iden-
tically distributed,

P (U1 = s1, U2 = s2) =
∑

q∈Q

∫ u1

0

· · ·

∫ u1

0

∫ u2

u1

· · ·

∫ u2

u1

∫ ∞

u2

· · ·

∫ ∞

u2

Ppq1
,...,pqm

(pq1
, ..., pqm

)dpq1
· · · dpqm

for the set Q = {q : (q1, ..., qm) are permutations of (1, ...,m)}, and reducing
in the iid case to,

P (U1 = s1, U2 = s2) =
m!

s1!s2!(m − s1 − s2)!
[P (p ≤ u1)]

s1 [P (p ≤ u2) − P (p ≤ u1)]
s2 ×

[1 − P (p ≤ u2)]
m−s1−s2

The joint CDF of k order statistics is derived in Glueck et. al (2008) for
the non-identically distributed case, in particular with two sub-populations.
In order to calculate the probability of Bj, or that k = m−j−1 of the largest
order statistics are greater than constants c1, c2, ..., ck, following the logic in
Glueck et al. and some of their notation, for p1, ..., pm iid F , the joint CDF
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of the order statistics, (p(j1), ..., p(jk)),

P (∩k
s=1{p(js) ≤ cs}) = P (∩k

s=1{ at least js of pi’s ≤ cs})

= P (∩k
s=1{Is ≥ js})

=
∑

i∈I

P (∩k
s=1{Is = is})

=
∑

i∈I

P (∩k+1
s=1{is − is−1 of pi’s ∈ (cs−1, cs]})

=
∑

i∈I

m!
k+1
∏

s=1

[P (p ≤ cs) − P (p ≤ cs−1)]
(is−is−1)

(is − is−1)!

given Is =
∑m

i=1 I(pi ≤ cs), so that I1 ≤ · · · ≤ Ik, leading to the index set

I = {i : 0 = i0 ≤ i1 ≤ · · · ≤ ik ≤ ik+1 = m, is ≥ js all s ∈ [1, k]}

We, however, are interested in the joint probability

P (∩k
s=1{p(js) > cs}) = P (∩k

s=1{at most js − 1 of pi’s ≤ cj})

= P (∩k
s=1{Is < js})

=
∑

i∈I

P (∩k
s=1{Is = is})

=
∑

i∈I

P (∩k+1
s=1{is − is−1 of pi’s ∈ (cs−1, cs]})

=
∑

i∈I

m!
k+1
∏

s=1

[P (p ≤ cs) − P (p ≤ cs−1)]
(is−is−1)

(is − is−1)!

I = {i : 0 = i0 ≤ i1 ≤ · · · ≤ ik ≤ ik+1 = m, is < js all s ∈ [1, k]}

note that for 2-sided p-values, the P (p ≤ cs) = P (X ≤ −Xcs
)+P (X ≥ Xcs

)
, where and P (X ≤ −Xcs

) = F (−Xcs
), etc., and Xcs

= −F−1
0 (.5cs).

The results in Glueck can be extended for a multivariate distribution
P (∩k+1

s=1{is − is−1 of pi’s ∈ (cs−1, cs]}) =

∑

q∈Q

∫ c1

c0

· · ·

∫ c1

c0

∫ c2

c1

· · ·

∫ c2

c1

∫ ck+1

ck

· · ·

∫ ck+1

ck

Ppq1
,...,pqm

(pq1
, ..., pqm

)dpq1
· · · dpqm
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There are i1 integrals from (−∞, c1), (i2 − i1) from (c1, c2), ..., and m − ik
integrals from (ck,∞). In order to compute the respective n-dim integral over
2-sided p-values, for each permutation, there are 2m possible ways to integrate
over the distribution of test statistics, over positive and negative domains,
respectively. Suppose for example that X ∼ f0 and X ∼ f1 are independent,
and that within each sub-population, the covariance matrix is block diagonal,
with B0 and B1 blocks, repsectively. This leads to considerable reductions
in computation, i.e. the product of B0- and B1-dim integrals, rather than
one m-dim integral, assuming the order of integration is inter-changable.
Permuations within-block are not necessary to compute, where variables are
exchangable.

3 Density of the p-value threshold

P (τ) = P (0) +
m
∑

j=1

P (τ |j)P (Aj)

where P (0) is the probability that no tests are rejected, and

P (τ |j) = P (p(j)|Aj)

=

∫ 1

a(j+1)/m

· · ·

∫ 1

a

P (p(j), p(j+1), ..., p(m)|Aj)dp(j+1) · · · dp(m)

or,

P (τ |j) =
∂

∂τ
P (p(j) ≤ τ |Aj)

=
∂

∂τ
P (p(j) ≤ τ, p(j+1) > a(j + 1)/m, ..., p(m) > a)/P (Aj)

if τ ≤ aj/m, and 0 otherwise. For the bivariate approximation, let

Ãj = {p(j) ≤ aj/m, p(j+1) > a(j + 1)/m}.
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P (τ |j) ≈
∂

∂τ
P (p(j) ≤ τ |Ãj)

=
∂

∂τ
P (p(j) ≤ τ, p(j+1) > a(j + 1)/m)/P (Ãj)

=
∂

∂τ
P (p(j) ≤ τ)/P (Ãj) −

∂

∂τ
P (p(j) ≤ τ, p(j+1) ≤ a(j + 1)/m)/P (Ãj)

if τ < aj/m and 0 otherwise. Further, for the iid case,

∂

∂τ
P (p(j) ≤ τ) = j

(

m

j

)

P (p = τ)[P (p ≤ τ)]j−1[1 − P (p ≤ τ)]m−j

and

∂

∂τ
P (p(j) ≤ τ, p(j+1) ≤ a(j + 1)/m) =

j+1−1
∑

s1=j

m−s1
∑

s2=j+1−s1

∂

∂τ
P (U1 = s1, U2 = s2) +

∂

∂τ
P (U1 ≥ j + 1)

where, the partial of P (U1 ≥ j + 1) w.r.t τ is found as above, as

(j + 1)

(

m

j + 1

)

P (p = τ)[P (p ≤ τ)](j+1)−1[1 − P (p ≤ τ)]m−(j+1)

and

∂

∂τ
P (U1 = s1, U2 = s2) =

∂

∂τ

m!

s1!s2!(m − s1 − s2)!
[P (p ≤ τ)]s1 [P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2 ×

[1 − P (p ≤ a(j + 1)/m)]m−s1−s2

=
m!

s1!s2!(m − s1 − s2)!
[1 − P (p ≤ a(j + 1)/m)]m−s1−s2 ×

[s1P (p ≤ τ)s1−1P (p = τ)[P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2 −

P (p ≤ τ)s1(s2)[P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2−1P (p = τ)]

Again, note P (p ≤ c) is found above.
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4 CDF of rFDR

rFDR =







w0

w0 + w1

if w0 + w1 > 0

0 if w0 + w1 = 0

where w0 is the count of false, and w1 true rejections, respectively. The CDF
is defined as

P (rFDR ≤ c|j) =
∑

w0,w1:

∑

rFDR≤c

P (w0, w1|m0,m1, F, j)P (m0,m1|m,F )

Stating the obvious,

m0 ∼ Binom(m,π0)

m1 = m − m0

We can find the conditional joint distribution

P (w0, w1|m0,m1, F, j) = P (w0, w1, j|m0,m1, F )/P (j|m0,m1, F )

as described at the end of Section 3, letting f be partitioned into two sub-
populations of size m0 and m1, requiring that w0 and w1 of the integration
limits be (0, c1) respectively by sub-population. Also, consider the results in
Glueck for two populations.

Then we have

P (rFDR ≤ c) =
∑

j

P (rFDR ≤ c|j)P (Aj)

mote that P (rFDR ≤ c|τ) can be approximated well, for large m, treating
w0, w1 as independent, e.g. P (w0|τ) ≈

∑w0

r0=0 Binom(r0,m, π0P0(p ≤ τ)).

P (rFDR ≤ c) =

∫ 1

0

P (rFDR ≤ c|τ)P (τ)dτ
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4.1 Independent Case

Under the integral, there is a double sum of independent terms, with each
depending on τ . Integrating each term and aggregating yields the result.
The sum is composed of the terms

P (rFDR ≤ c|τ)P (τ |j)

=
∑

w0,w1:

∑

rFDR≤c

w0
∑

r0=1

(

m

r0

)

(π0τ)r0(1 − π0τ)m−r0 ·

w1
∑

r1=1

(

m

r1

)

(π1τ)r1(1 − π1F1(τ))m−r1 ·

[

∂

∂τ
P (p(j) ≤ τ)/P (Ãj) −

∂

∂τ
P (p(j) ≤ τ, p(j+1) ≤ a(j + 1)/m)/P (Ãj)

]

Then for any r0, r1, in the above,

= E1 ·

[

E2 −

[

E3 +

j+1−1
∑

s1=j

m−s1
∑

s2=j+1−s1

E4(s1, s2)(E5(s1, s2) − E6(s1, s2))

]]

/E6

where

E1 =

(

m

r0

)

(π0τ)r0(1 − π0τ)m−r0

(

m

r1

)

(π1τ)r1(1 − π1P1(p ≤ τ))m−r1

E2 = j

(

m

j

)

P (p = τ)[P (p ≤ τ)]j−1[1 − P (p ≤ τ)]n−j

E3 = (j + 1)

(

m

j + 1

)

P (p = τ)[P (p ≤ τ)](j+1)−1[1 − P (p ≤ τ)]n−(j+1)

E4 =
m!

s1!s2!(m − s1 − s2)!
[1 − P (p ≤ a(j + 1)/m)]m−s1−s2

E5 = s1P (p ≤ τ)s1−1P (p = τ)[P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2−s1

E6 = P (p ≤ τ)s1(s2 − s1)[P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2−s1−1P (p ≤ τ)

E7 = P (Ãj)

where f, F are the pdf and cdf of the p-values, respectively. the integrals
that need to be performed are proportional to
∫ cj

0

τ r0+r1(1 − π0τ)m−r0(1 − π1P1(p ≤ τ))m−r1P (p = τ)[P (p ≤ τ)]j−1[1 − P (p ≤ τ)]m−jdτ
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∫ cj

0
τ r0+r1(1 − π0τ)m−r0(1 − π1P1(p ≤ τ))m−r1P (p = τ)s1−1 ×

P (p = τ)[P (p ≤ a(j + 1)/m) − P (p = τ)]s2−s1dτ

∫ cj

0
τ r0+r1(1 − π0τ)m−r0(1 − π1P1(p ≤ τ))m−r1P (p ≤ τ)s1(s2 − s1) ×

[P (p ≤ a(j + 1)/m) − P (p ≤ τ)]s2−s1−1P (p = τ)dτ

4.2 Correlation Case

Correlation introduces complexities, that are beyond our capacity, with cur-
rent state of the art computing. It is unpractical and unrealistic to expect
that we will generate results for the general correlated case. However, for
restricted and special cases, results can be achieved quickly. One such case
is the block diagonal correlation matrix, of blocks of size B, identically dis-
tributted in a block, and further assuming that variables following either
component distribution f0 or f1 are independent. For the approximation,
relying on the set Ã, rather than the full set A, we need perform calculations
for the joint density of two order statistics. There are four combinations of
two cases that we must consider, for two variables that are indepedent or
dependent, and belonging to components f0 or f1, respectively, and weight
results accordingly. For the independent variables, we take previous results.
For dependent variables, we compute, for each component weighting accord-
ingly,

P (U1 = s1, U2 = s2) =

B!

∫ u1

0

· · ·

∫ u1

0

∫ u2

u1

· · ·

∫ u2

u1

∫ ∞

u2

· · ·

∫ ∞

u2

Pp1,...,pB
(p1, ..., pB)dpq1

· · · dpqm

where B! is the number of ways to permute B variables. If the block sizes
vary, then we may compute over each size, and weight accordingly. If allow
variables from each component in a block, then we must weight accordingly,
with the correct number of permutations, which must be mixed over the
correct binomial distribution, given the population rates. All of these con-
siderations are for the sake of computational speed.
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5 SIMULATIONS

To Be Determined
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