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Abstract

Quantitative trait loci (QTL) mapping relates portions of the gene to a phenotypic trait

and can be used to explain genetic variance. The accuracy of QTL mapping is greatly

affected by linkage maps which in turn are affected by factors like viability and misclas-

sification in markers. Markers are usually misclassified due to human errors in failing to

identify the phenotypes correctly or due to the failure of a gene to produce its expected

consequences. Misclassification of markers results in discrepancy or a biased estimate of

the gene loci associate with a trait. In this paper we have described a statistical method

incorporating misclassified markers for linkage analysis. Statistical properties on applying

the method was examined using a real example and from simulation studies for a One-Gene

and a Two-Gene model. The results showed the recombination fraction to be affected by the

degree of misclassification. Understanding misclassification and incorporating it in linkage

analysis may help in a more accurate QTL mapping.

Keywords: misclassification, QTL mapping , linkage analysis.

Introduction

Misclassification is one of the main sources of disturbance in linkage experiments. A

typical occurence of misclassification is when an organism, known from its antecedents to

be carrying a dominant gene A and to be of genotype Aa, fails to exhibit the dominant

character and is misclassified as the recessive aa. A similar situation can also arise with

recessive characters. Thus an organism homozygous for the recessive gene a may fail to

show the recessive character, and so be wrongly classified as a dominant. This happens

only in a certain proportion of cases. Bailey (1961) discussed several models for analyzing

misclassified markers in a great detail. Effect such as misclassification can be incorporated

into linkage analysis using modified methods.

In this article we describe a method for estimating the recombination fraction between

markers subject to misclassification by introducing into the statistical analysis additional pa-

rameters to be estimated. The method incorporates maximum likelihood and EM algorithm
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to estimate the parameters. Linkage analysis is widely studied using the F2 or backcross

pedigree since both recombinant and nonrecombinant gamete types can be counted. When

two homozygous individuals are crossed, it results in a heterozygous F1 offspring. This F1

progeny, when backcrossed to each of their parents generate two backcrosses while crossing

with each other produces the F2 generation. In order to understand the influence of misclas-

sification on linkage analysis, simulation studies are conducted for both the backcross and

F2 population.

Analysis of linkage is performed using two or more loci. The statistical approach for

estimating and testing the recombinant fraction between two different markers is known

as two-point analysis whereas the analysis of linkage involving more than two markers is

commonly referred to as multiple point linkage analysis. Though the two-point analysis is

most commonly used, multiple point analysis is seen to have a greater advantage concerning

efficiency and power. It also increases the precision of the estimates of the recombination

fractions when markers are not fully informative (Thompson 1984; Wu et al. 2002) and

also provides a way of determining the optimal order of different markers. But ease of

implementation and less computation time dictates the use of two-point analysis in our

study.

Our simulations deal with a model in which only one of the two markers A and B subject

to linkage analysis is affected by misclassification. The new method is also compared using

a real example for the more general case in which both markers subject to linkage analysis

are affected by misclassification.

One-gene Model

In practice, it is possible to misclassify one genotype as the other due to human errors. For

example, in a double backcross, there may be a proportion of λ of allele A that is misclassified

as a (irrespective of whether they are associated with B or b). The appropriate expected

frequencies and observed numbers of genotypes or gametes in a backcross population are

shown below:
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Gamete Expected Observed
AB 1

2
(1− r)(1− λ) n1

Ab 1
2
r(1− λ) n2

aB 1
2
[r + λ(1− r)] n3

ab 1
2
[(1− r) + λr] n4

Total 1 n

The expectations are derived because a proportion λ of each of the first two gamete

classes involving A has been transferred to the corresponding one involving a, but with the

same B or b classification.

The maximum likelihood estimation of the two parameters r and λ is straightforward.

We have

r̂ =
n2(n1 + n3)

n2(n1 + n3) + n1(n2 + n4)
,

λ̂ =
n3n4 − n1n2

(n1 + n3)(n2 + n4)
.

The sampling variances of these estimators are:

var(r̂) =
2r(1− r)

n

[
1

1− λ
− 2r(1− r)

]
,

var(λ̂) =
2(1− λ)2

n

[
λ

1− λ
+ 2r(1− r)

]
.

Although A is misclassified as a, it is possible to have the reverse misclassification, i.e.,

a → A. The formulae for this alternative pattern can be derived by suitably changing the

observational symbols n1, n2, n3 and n4.

When misclassification occurs in the formation of genotypes in the F2, similar formulas

can be derived to explore its influences on the estimates of the recombination fraction. In so

doing, we assume that such misclassification arises from the ambiguity of individual alleles.

Thus, the above formulation for the backcross can be extended to model misclassification

in the F2. The expected frequencies of the F2 genotypes after gene A is misclassified are

expressed as

BB Bb bb

AA
Aa
aa

 1
4
(1− λ)2(1− r)2 1

2
(1− λ)2r(1− r) 1

4
(1− λ)2r2

1
2
[(1− λ)(1− r)(r + λ(1− r))] 1

2
(1− λ)[r2 + (1− r)2 + 2λr(1− r)] 1

2
[(1− λ)r(1− r + λr)]

1
4
[r + λ(1− r)]2 1

2
[λr2 + λ(1− r)2 + (1 + λ2)r(1− r)] 1

4
[(1− r) + λr]2

 . (1)
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We derive the EM algorithm to estimate the recombination fraction r. It is not difficult

to find the expected numbers of recombinants within each cell in the above matrix (1),

expressed as

BB Bb bb
AA
Aa
aa

 0 1 2
φ1 2φ2 φ3

2φ4 φ5 φ6

 ,
where

φ1 =
r(1− r)

r(1− r) + λ(1− r)2
, (2)

φ2 =
r2 + λr(1− r)

r2 + (1− r)2 + 2λr(1− r)
, (3)

φ3 = 1 +
λr2

r(1− r) + λr2
, (4)

φ4 =
r

r + λ(1− r)
, (5)

φ5 =
2λr2 + (1 + λ2)r(1− r)

λr2 + λ(1− r)2 + (1 + λ2)r(1− r)
, (6)

φ6 =
2λr

(1− r) + λr
. (7)

The recombination fraction can be estimated using equation

r̂ =
1

2n
(n21 + 2n20 + φ1n12 + 2φ2n11 + φ3n10 + 2φ4n02 + φ5n01 + φ6n00). (8)

In the E step, the expected numbers of recombinants for each genotype are calculated using

equations (2) – (7). These expected numbers are used to update the estimate of r with

equation (8) in the M step. These two steps are iterated until r converges to a stable value.

The MLE of λ in the F2 is given by solving the third-order polynomial equation

n1

1− λ
=

n2

λ+ r
1−r

+
n3

λ+ 1−r
r

+
n11

λ+ r2+(1−r)2
2r(1−r)

. (9)
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Two-gene Model

When two genes are both misclassified, we should introduce an additional proportion for

allele B misclassified as b. Let the misclassified proportions be λ1 and λ2 for markers A and

B, respectively. Assuming that these two proportions are independent, we have the expected

numbers of each of the four backcross genotypes, along with their observations, as follows

Gamete Expected Observed
AB 1

2
(1− λ1)(1− λ2)(1− r) n1

Ab 1
2
(1− λ1)[r + λ2(1− r)] n2

aB 1
2
(1− λ2)[r + λ1(1− r)] n3

ab 1
2
[r(λ1 + λ2) + (1− r)(1 + λ1λ2)] n4

Total 1 n

The MLEs of the recombination fraction and the proportions of misclassification can be

derived as

r̂ = 1− n1n

2(n1 + n2)(n1 + n3)
,

λ̂1 =
(n3 + n4)− (n1 + n2)

n
,

λ̂2 =
(n2 + n4)− (n1 + n3)

n
.

The sampling variances of the MLEs of r, λ1 and λ2 is

var(r̂) =
nn1[(n(n2

1 + n2n3)− n1(n1 + n2)(n1 + n3)]

4(n1 + n2)3(n1 + n3)3
,

var(λ̂1) =
1− λ12

n
,

var(λ̂2) =
1− λ22

n
.

It is difficult to estimate the recombination fraction when both markers are misclassified

in the F2. With the assumption that misclassification arises from the ambiguity of individual

alleles, we derive the expected frequencies of the F2 genotypes after both genes A and B are

misclassified, expressed as
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Genes Expected Frequencies Obs.
AA BB (1− λ1)2(1− λ2)2(1− r)2/4 n22

AA Bb (1− λ1)2(1− λ2)(1− r)(r + λ2(1− r))/2 n21

AA bb (1− λ1)2(r + λ2(1− r))2/4 n20

Aa BB (1− λ1)(1− λ2)2(1− r)(r + λ1(1− r))/2 n12

Aa Bb (1− λ1)(1− λ2)[2r(1− r)(λ1 + λ2) + r2 + (1− r)2(2λ1λ2 + 1)] n11

Aa bb (1− λ1)(r + λ2(1− r))((1− r)(1 + λ1λ2) + (λ1 + λ2)r)/2 n10

aa BB (1− λ2)2(r + λ1(1− r))2/4 n02

aa Bb ((1− r)(1 + λ1λ2) + (λ1 + λ2)r)(r + λ1(1− r))(1− λ2)/2 n01

aa bb ((1− r)(1 + λ1λ2) + (λ1 + λ2)r)
2/4 n00

(10)

The expected numbers of recombinants within each cell in the above table (10) are

expressed as

BB Bb bb
AA
Aa
aa

 0 φ1 2φ2

φ3 2φ4 φ5

2φ6 φ7 φ8

 ,
where

φ1 =
r(1− r)

r(1− r) + λ2(1− r)2
, (11)

φ2 =
r

r + λ2(1− r)
, (12)

φ3 =
r(1− r)

r(1− r) + λ1(1− r)2
, (13)

φ4 =
r(1− r)(λ1 + λ2) + r2

2r(1− r)(λ1 + λ2) + r2 + (1− r)2(2λ1λ2 + 1)
, (14)

φ5 =
2r2(λ1 + λ2) + (λ22 + 2λ1λ2 + 1)r(1− r)

[(1− r)(1 + λ1λ2) + (λ1 + λ2)r](r + λ2(1− r))
, (15)

φ6 =
r

r + λ1(1− r)
, (16)

φ7 =
2r2(λ1 + λ2) + (λ21 + 2λ1λ2 + 1)r(1− r)

[(1− r)(1 + λ1λ2) + (λ1 + λ2)r](r + λ1(1− r))
, (17)

φ8 =
2(λ1 + λ2)r

(1− r)(1 + λ1λ2) + (λ1 + λ2)r
. (18)

The recombination fraction can be estimated using equation
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r̂ =
1

2n
(φ1n21 + 2φ2n20 + φ3n12 + 2φ4n11 + φ5n10 + 2φ6n02 + φ7n01 + φ8n00). (19)

The EM algorithm is formulated to estimate r. In the E step, the expected numbers of

recombinants for each genotype are calculated using equations (11) – (18). These expected

numbers are used to update the estimate of r with equation (19) in the M step. These two

steps are iterated until r converges to a stable value.

The MLEs of λ1 and λ2 in the F2 are given by solving the third-order polynomial equations

n1

1− λ1
=

n2

λ1 + r
1−r

+
n3

λ1 + 1−r+λ2r
(1−r)λ2+r

+
n11

λ1 + r2+(1−r)2+2λ2r(1−r)
2r(1−r)+2λ2(1−r)2

,

m1

1− λ2
=

m2

λ2 + r
1−r

+
n3

λ2 + 1−r+λ1r
(1−r)λ1+r

+
n11

λ2 + r2+(1−r)2+2λ1r(1−r)
2r(1−r)+2λ1(1−r)2

,

where

n1 = 2(n22 + n21 + n20) + n12 + n11 + n10,

n2 = n12 + 2n02 + n01,

n3 = n10 + 2n00 + n01,

m1 = 2(n22 + n12 + n02) + n21 + n11 + n01,

m2 = n21 + 2n20 + n10.

The sampling variances of the MLEs of r, λ1, and λ2 are

var(r̂) =

{(1− r)[24(1 + λ21λ
2
2 + λ22 − 2λ22λ1 − 2λ1 − 2λ2 + λ21 + 4λ1λ2 − 2λ21λ2)r

4

+(100λ2 − 56λ22 + 100λ1 − 56λ21 − 240λ1λ2 − 44− 84λ21λ
2
2 + 140λ21λ2 + 140λ22λ1)r

3

+(−144λ22λ1 + 42λ21 + 42λ22 + 110λ21λ
2
2 − 144λ21λ2 + 34− 76λ2 + 212λ1λ2 − 76λ1)r

2

+(59λ22λ1 − 12 + 59λ21λ2 − 64λ21λ
2
2 + 27λ1 − 11λ21 − 82λ1λ2 − 11λ22 + 27λ2)r

+(2 + λ22 − 7λ22λ1 − 7λ21λ2 − 3λ1 + 14λ21λ
2
2 − 3λ2 + 14λ1λ2 + λ21)]}/

{2n(1− λ2)(1− λ1)[6(λ1λ2 + 1− λ1 − λ2)r2 + 2(3λ1 − 5λ1λ2 − 3 + 3λ2)r

+4λ1λ2 − λ1 − λ2 + 2]},

var(λ̂1) =
1− λ21

2n
,

var(λ̂2) =
1− λ22

2n
.
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Simulations

The influence of marker misclassification on the estimate of the recombination fraction is

investigated through simulation studies. Two markers are simulated for both the backcross

and F2 with different degrees of marker misclassification (λ1, λ2). The sample sizes consid-

ered are 80 and 200, and there are degrees of linkage (r = 0.05 and 0.35). The simulated

data are analyzed by both the model (1) that incorporates marker misclassification and the

model (2) that does not.

When λ1 = λ2 = 0 (i.e., there is no marker misclassification), models 1 and 2 provide

similarly good results (Tables 1 and 2). When one of the markers is misclassified to some

extent, model 1 quickly ill-behaves, and its estimate is very biased, especially for a tight

linkage. For example, when λ2 = 0.1, model 1 estimates the true r = 0.05 as over 0.09. This

is not improved when the size of the sample is increased. Model 1 can generally provide

good estimates of r even when both markers are misclassified. The estimation accuracy of

r by model 1 can be dramatically increased with increasing sample size. Because model 2

has fewer parameters to be estimated than model 1, the former displays superior estimation

precision over the latter. But this advantage of model 1 is not useful given its large biased

estimate. The estimation precision of model 1 is increased with increasing sample size.

The backcross and F2 display similar trends for parameter estimation. But it is observed

that the F2 (Table 2) is better in terms of estimation accuracy and precision than the back-

cross (Table 1). This may be because the F2 contains a larger amount of information than

the backcross.

A working example

To demonstrate the benefits of incorporating misclassified markers for QTL analysis, we

applied the method developed to a real data of backcross population in rice (n=123) and F2

population in mice. For the rice data, we consider a two-point analysis of 10 markers on rice

chromosome 1. The rice marker data consists of a total of 175 polymorphic markers including

146 RFLPs, 8 isozymes, 14 RAPDs and 12 cloned genes. (Huang et al. 1997). We consid-
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ered a Two-Gene model where both genes are misclassified using the primary assumption

that the misclassified proportions are independent. To demonstrate the effect of misclassi-

fied markers on linkage analysis, we obtained an estimate of the recombination fraction and

the misclassified proportions along with their standard errors under two models, one that

incorporated misclassified markers into the analysis and one that did not. The quantitative

trait loci maps were generated for both cases and the differences noted. Reconstruction of

the linkage maps with misclassified markers gives us a visual representation of how the QTL

maps change on considering misclassification among markers.

For the mice data, we consider a two-point analysis of 6 markers on mice chromosome

1. Cheverud et al.(1996) constructed a linkage map using 75 microsatellite markers in a

population of 535 F2 progeny derived from two strains, the Large(LG/J) and Small(SM/J).

The F2 progeny were measured for body mass at ten weekly intervals starting at age 7 days.

The raw weights were corrected for the effects of each covariate due to dam, litter size at

birth, and parity but not for the effect due to sex.

In the F2 population when both markers are misclassified we would have to use the iter-

ative EM algorithm to obtain an estimate of the recombination fraction and to obtain the

estimate of the degrees of misclassification, a third order polynomial equation would have

to be solved. For the backcross population in rice, it is not very difficult to estimate the

parameters and their standard errors. The estimate of the recombination fraction and the

degrees of misclassification can be obtained from the maximum likelihood method. From

the simulations we can note that the model that does not incorporate misclassification tends

to overestimate or underestimate the recombination fraction and hence the linkage map ob-

tained by accounting for misclassification tends to be much shorter or longer.

But on applying the method to the rice data, except for a few, nearly all estimates of

recombination fraction incorporating misclassification seem to equal or be much larger than

the estimates from the traditional model. This may be due to extreme imbalance in the

numbers of genotype observed especially in the last three makers. This may also be due to

a low sample size, which from the simulation results can be seen to affect the estimation

precision. Due to this, the linkage map using the new method for the rice data tends to
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have distances greater than the linkage map that does consider misclassified markers. The

method fails to work well when the observed number of any specific genotype occur in a

much greater proportion than the other.

Table 3 and Table 4 contains the estimate of the recombination fraction for the rice and

mice data respectively without considering misclassification (r̂0), the estimate of the recom-

bination fraction after controlling for misclassification (r̂1) and the estimate of the coefficient

of marker misclassification (λ̂1 and λ̂2).

Discussion

QTL mapping is essential in identifying the location of genes and in genetic study. Many

statistical methods have been described for linkage analysis, but the analysis depends a lot

on whether the data is affected by misclassification of certain phenotypes. Statistical meth-

ods described till now for linkage analysis can be used only for markers whose segregation

follows the Mendelian ratio (1:1 for backcross or 1:2:1 for F2). Care should be taken when

using traditional methods for estimating the recombination fraction between markers since

in practical molecular experiments, the influence of misclassified markers is not taken into

consideration. The existence of misclassified markers has been ignored in the estimation of

the recombination fraction between markers and construction of QTL maps and this leads to

a biased estimate of the recombination fraction and results in discrepancies in QTL detection

and mapping.

Genotyping errors occur when the genotype determined after molecular analysis does not

correspond to the real genotype of the individual under consideration (Bonin et al. 2004).

Misclassification of markers occur mainly due to variation in DNA sequence, low quantity or

quality of DNA, biochemical artefacts and human error (Pompanon et al.). Various studies

have been conducted evaluating the effect of genotyping errors of markers in the construction

of genetic linkage maps (See Shields et al. 1991, Hackett and Broadfoot 2003, Buetow 1991

to name a few for more details). Hackett and Broadfoot note how even a low frequency of

typing errors have a substantial impact on the order and length of a linkage map. To deal
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with misclassification errors, Cartwright et al. extends the traditional likelihood model used

for genetic mapping to include the possibility of genotyping errors where each individual

marker is assigned an error rate. Lincoln and Lander overcame the disadvantages caused

due to misclassified markers by incorporating the possibility of error into the usual likelihood

model for linkage analysis.

Since marker segregation is disturbed by misclassified markers, these effects have to be

incorporated into linkage analysis using modified methods. In this paper, we have developed

a method to estimate the recombination fraction by including extra parameters to incor-

porate misclassification using the maximum likelihood approach and EM algorithm. Extra

parameters are included in the method depending on whether misclassification occurs in just

one gene or in both genes. For a One-Gene model, λ can be defined as the proportion of allele

A that is accidentally classified as a while for a Two-Gene model we have two parameters

λ1 and λ2 representing the misclassified proportions for markers A and B.

To compare the new method with the traditional one, a simulation study is conducted

for both backcross and F2 populations. To understand the effect of misclassification on the

recombination fraction, the simulation study has also considered different degrees of marker

misclassification. The simulated results show that the new method succeeds in accurately

estimating the recombination fraction even when both markers are misclassified. The study

also establishes the importance of a large sample size in increasing estimation precision.

The new method is also applied to the real backcross population rice dataset and the

F2 population mice data. In the rice dataset, one hundred and twenty-three DH plants de-

rived from two inbred lines, semi-dwarf IR64 and tall Azucena were genotyped for a total

of 175 polymorphic markers (Huang et al. 1997). In Huang’s paper a two-point analysis

was performed to estimate pair wise recombination fractions for these 175 markers. Based

on a cluster analysis of the 175 by 175 matrix for recombination fractions, Huang et al.

sorted these markers into 12 different groups each representing a rice chromosome. Here

for illustration, we have only considered the first ten markers on rice chromosome 1. We

have considered the Two-Gene model where both markers are misclassified with the assump-

tion that misclassification arises from the ambiguity of individual alleles. In the mice data,
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Large(LG/J) and Small(SM/J) inbred mouse strains were chosen of which ten SM/J males

were mated with 10 LG/J females producing 41 F1 progeny (Chevrud et al. 1996). These

F1 offsprings were then crossed with each other to produce 535 F2 offsprings. Seventy five

microsatellite loci were identified using the interval mapping methods described by Lander

and Botstein (1989) and a genetic map was constructed. For purposes of this work, we have

only considered a two-point analysis of 6 markers on chromosome 1.

To obtain the most probable order, we used the Sum of Adjacent Recombination Fre-

quencies (SAR). SAR scores are calculated by summing recombination frequency estimates

of neighboring intervals in a contiguous sequence of intervals (a locus order) where the most

probable order will have the shortest map (lowest SAR score). For the rice data, the best

order of these 10 markers was found to be RG472, RG246, K5, U10, RG532, W1, RG173,

Amy1B, RZ276 and RG146. The genetic distances between all adjacent markers were es-

timated and the corresponding genetic distances were calculated using the Haldane map

function (Haldane 1919). Considered to be the simplest second to the Morgan map function,

it assumes that crossovers occur at random and independently of each other. The Haldane

map function given by r = 1
2
[1 − Prob(X = 0)] = 1

2
(1 − e−2d) had the disadvantage that it

may not be accurate at small distances. But empirical observations show that the probability

of having two crossovers occur in close proximity toe ach other is often less than predicted

by the Haldane map funciton. A 10 by 10 matrix of estimates of r0, r1, λ1 and λ2 along with

their standard errors are given in Table 3. The same technique is applied to analyze the F2

population and the results are as in Table 4.

Figure 1 and Figure 2 gives the linkage map for the backcross and F2 data respectively

with the genetic distances and marker names at the left and right sides of the chromosome.

We can see that the linkage map has changed considerably after incorporating misclassifi-

cation. For the rice data, it can be observed that the order of 10 markers change along

with the distance between them. The recombination fraction between markers considering

misclassification is seen to be really close to 0.5 for the last three markers. This could be an

indication to show that these markers may not belong to chromosome 1 and that it could be

a part of another chromosome. Regarding the mice data, the best order of the 6 markers on

chromosome 1 remained unchanged when compared with the model that did not consider
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misclassification though the distances between the markers were seen to differ.

In the simulation, the traditional method seems to be overestimating the recombination

fraction, and hence the linkage maps tend to be longer than the new method. But in the

working example the method does not seem to work very well. This may be due to the

imbalance in the observed genotypes or due to the small sample size. The method depends

on the assumption that the misclassified proportions in a Two-Gene model are independent.

The method fails to work for the rice data when the observed number of any specific geno-

type occur in a much greater proportion than the other.

This technique can be be applied to datasets after we first test if the markers follow

mendelian segregation. Depending on the test, we can decide if a two-gene or a one-gene

misclassification model should be applied.
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Table 1: Linkage Analysis for Misclassified Markers (Backcross, 1000 simulations for each
case)

(λ1, λ2, r) r̂ ± SE λ̂1 ± SE λ̂2 ± SE r̂0 ± SE
n=80

(0.0, 0.0, 0.05) 0.040± 0.104 0.000± 0.110 −0.000± 0.110 0.051± 0.026
(0.0, 0.0, 0.35) 0.345± 0.061 0.006± 0.112 0.005± 0.112 0.349± 0.053
(0.0, 0.1, 0.05) 0.034± 0.106 0.005± 0.111 0.106± 0.111 0.095± 0.033
(0.0, 0.1, 0.35) 0.351± 0.064 −0.002± 0.111 0.098± 0.105 0.367± 0.053
(0.1, 0.2, 0.05) 0.043± 0.101 0.097± 0.107 0.197± 0.107 0.166± 0.040
(0.1, 0.2, 0.35) 0.346± 0.085 0.103± 0.114 0.204± 0.112 0.381± 0.055
(0.2, 0.2, 0.05) 0.038± 0.116 0.204± 0.108 0.200± 0.109 0.192± 0.043
(0.2, 0.2, 0.35) 0.345± 0.091 0.200± 0.103 0.203± 0.110 0.383± 0.054
(0.2, 0.3, 0.05) 0.041± 0.127 0.202± 0.113 0.299± 0.106 0.219± 0.049
(0.2, 0.3, 0.35) 0.344± 0.097 0.200± 0.109 0.301± 0.102 0.384± 0.053

n=200
(0.0, 0.0, 0.05) 0.046± 0.065 0.001± 0.069 −0.001± 0.071 0.050± 0.015
(0.0, 0.0, 0.35) 0.348± 0.038 0.002± 0.072 0.001± 0.068 0.350± 0.034
(0.0, 0.1, 0.05) 0.046± 0.064 0.000± 0.068 0.100± 0.069 0.095± 0.020
(0.0, 0.1, 0.35) 0.350± 0.043 −0.001± 0.072 0.101± 0.073 0.366± 0.035
(0.1, 0.2, 0.05) 0.047± 0.069 0.101± 0.070 0.198± 0.070 0.166± 0.027
(0.1, 0.2, 0.35) 0.349± 0.049 0.101± 0.068 0.199± 0.073 0.381± 0.034
(0.2, 0.2, 0.05) 0.048± 0.070 0.198± 0.069 0.196± 0.069 0.192± 0.027
(0.2, 0.2, 0.35) 0.349± 0.053 0.200± 0.068 0.201± 0.071 0.384± 0.033
(0.2, 0.3, 0.05) 0.045± 0.076 0.198± 0.071 0.299± 0.068 0.217± 0.029
(0.2, 0.3, 0.35) 0.348± 0.063 0.200± 0.071 0.302± 0.067 0.386± 0.035
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Table 2: Linkage Analysis for Misclassified Markers (F2, 1000 simulations for each case)

(λ1, λ2, r) r̂ ± SE λ̂1 ± SE λ̂2 ± SE r̂0 ± SE
n=80

(0.0, 0.0, 0.05) 0.047± 0.075 −0.001± 0.080 −0.006± 0.132 0.052± 0.016
(0.0, 0.0, 0.35) 0.351± 0.050 −0.001± 0.078 0.001± 0.078 0.353± 0.047
(0.0, 0.1, 0.05) 0.042± 0.075 −0.044± 1.351 0.099± 0.089 0.096± 0.025
(0.0, 0.1, 0.35) 0.349± 0.058 0.001± 0.081 0.101± 0.078 0.367± 0.049
(0.1, 0.2, 0.05) 0.045± 0.082 0.094± 0.200 0.199± 0.079 0.168± 0.033
(0.1, 0.2, 0.35) 0.345± 0.069 0.101± 0.074 0.198± 0.077 0.376± 0.047
(0.2, 0.2, 0.05) 0.047± 0.087 0.199± 0.080 0.199± 0.078 0.193± 0.035
(0.2, 0.2, 0.35) 0.344± 0.076 0.199± 0.077 0.204± 0.074 0.372± 0.045
(0.2, 0.3, 0.05) 0.049± 0.091 0.197± 0.076 0.295± 0.076 0.217± 0.038
(0.2, 0.3, 0.35) 0.334± 0.083 0.202± 0.079 0.299± 0.071 0.366± 0.043

n=200
(0.0, 0.0, 0.05) 0.047± 0.049 −0.001± 0.054 0.001± 0.054 0.050± 0.012
(0.0, 0.0, 0.35) 0.349± 0.035 −0.001± 0.050 −0.003± 0.052 0.349± 0.032
(0.0, 0.1, 0.05) 0.050± 0.045 −0.002± 0.049 0.096± 0.049 0.096± 0.016
(0.0, 0.1, 0.35) 0.351± 0.037 −0.002± 0.050 0.100± 0.051 0.367± 0.032
(0.1, 0.2, 0.05) 0.047± 0.052 0.101± 0.050 0.200± 0.049 0.167± 0.021
(0.1, 0.2, 0.35) 0.348± 0.047 0.101± 0.050 0.203± 0.050 0.377± 0.032
(0.2, 0.2, 0.05) 0.047± 0.054 0.200± 0.050 0.200± 0.049 0.190± 0.022
(0.2, 0.2, 0.35) 0.348± 0.051 0.201± 0.049 0.199± 0.045 0.374± 0.030
(0.2, 0.3, 0.05) 0.049± 0.056 0.200± 0.048 0.301± 0.049 0.218± 0.023
(0.2, 0.3, 0.35) 0.348± 0.057 0.197± 0.049 0.298± 0.049 0.373± 0.030

18



Marker RG472 RG246 K5 U10 RG532 W1 RG173 Amy1B RZ276 RG146

RG472

0.17±0.04 0.28±0.04 0.32±0.05 0.29±0.04 0.43±0.05 0.43±0.05 0.48±0.05 0.5±0.05 0.44±0.05
0.16±0.00 0.3±0.00 0.32±0.00 0.31±0.00 0.43±0.00 0.44±0.00 0.48±0.00 0.49±0.00 0.46±0.00
0.06±0.1 0.06±0.1 0.08±0.11 0.07±0.1 0.09±0.1 0.06±0.1 0.05±0.1 0.06±0.1 0.04±0.1
−0.03±0.1 −0.22±0.1 −0.18±0.11 −0.24±0.1 −0.43±0.09 −0.65±0.07 −0.8±0.06 −0.72±0.07 −0.69±0.07

RG246

0.17±0.04 0.14±0.03 0.19±0.04 0.17±0.04 0.31±0.04 0.37±0.05 0.46±0.05 0.46±0.05 0.44±0.05
0.16±0.00 0.25±0.00 0.25±0.00 0.26±0.00 0.37±0.00 0.44±0.00 0.5±0.00 0.49±0.00 0.48±0.00
−0.03±0.1 −0.09±0.1 −0.02±0.11 −0.07±0.1 −0.03±0.09 −0.07±0.1 −0.07±0.09 −0.05±0.09 −0.06±0.1
0.06±0.1 −0.26±0.09 −0.18±0.1 −0.25±0.09 −0.46±0.08 −0.67±0.07 −0.79±0.06 −0.7±0.07 −0.69±0.07

K5

0.28±0.04 0.14±0.03 0.05±0.02 0.02±0.01 0.18±0.04 0.26±0.04 0.38±0.05 0.38±0.05 0.35±0.05
0.3±0.00 0.25±0.00 0.18±0.02 0.2±Inf 0.35±0.00 0.43±0.00 0.49±0.00 0.48±0.00 0.47±0.00
−0.22±0.1 −0.26±0.09 −0.15±0.11 −0.2±0.1 −0.22±0.1 −0.26±0.1 −0.23±0.09 −0.22±0.1 −0.22±0.1
0.06±0.1 −0.09±0.1 −0.2±0.11 −0.24±0.1 −0.47±0.09 −0.71±0.07 −0.79±0.06 −0.75±0.06 −0.72±0.07

U10

0.32±0.05 0.19±0.04 0.05±0.02 0.06±0.03 0.13±0.04 0.24±0.05 0.39±0.05 0.4±0.05 0.36±0.05
0.32±0.00 0.25±0.00 0.18±0.02 0.16±0.01 0.29±0.00 0.4±0.00 0.47±0.00 0.48±0.00 0.46±0.00
−0.18±0.11 −0.18±0.1 −0.2±0.11 −0.14±0.11 −0.19±0.11 −0.2±0.11 −0.16±0.1 −0.16±0.1 −0.16±0.11
0.08±0.11 −0.02±0.11 −0.15±0.11 −0.12±0.11 −0.35±0.1 −0.62±0.08 −0.76±0.07 −0.69±0.08 −0.66±0.08

RG532

0.29±0.04 0.17±0.04 0.02±0.01 0.06±0.03 0.15±0.03 0.26±0.04 0.35±0.04 0.36±0.05 0.34±0.05
0.31±0.00 0.26±0.00 0.2±Inf 0.16±0.01 0.33±0.00 0.42±0.00 0.47±0.00 0.47±0.00 0.46±0.00
−0.24±0.1 −0.25±0.09 −0.24±0.1 −0.12±0.11 −0.22±0.09 −0.26±0.09 −0.22±0.09 −0.21±0.09 −0.23±0.09
0.07±0.1 −0.07±0.1 −0.2±0.1 −0.14±0.11 −0.42±0.09 −0.66±0.07 −0.75±0.06 −0.71±0.07 −0.68±0.07

W1

0.43±0.05 0.31±0.04 0.18±0.04 0.13±0.04 0.15±0.03 0.11±0.03 0.24±0.04 0.26±0.04 0.24±0.04
0.43±0.00 0.37±0.00 0.35±0.00 0.29±0.00 0.33±0.00 0.41±0.00 0.46±0.00 0.46±0.00 0.45±0.00
−0.43±0.09 −0.46±0.08 −0.47±0.09 −0.35±0.1 −0.42±0.09 −0.49±0.08 −0.43±0.08 −0.41±0.09 −0.43±0.09
0.09±0.1 −0.03±0.09 −0.22±0.1 −0.19±0.11 −0.22±0.09 −0.68±0.07 −0.77±0.06 −0.69±0.07 −0.69±0.07

RG173

0.43±0.05 0.37±0.05 0.26±0.04 0.24±0.05 0.26±0.04 0.11±0.03 0.13±0.03 0.16±0.03 0.14±0.03
0.44±0.00 0.44±0.00 0.43±0.00 0.4±0.00 0.42±0.00 0.41±0.00 0.46±0.00 0.46±0.00 0.46±0.00
−0.65±0.07 −0.67±0.07 −0.71±0.07 −0.62±0.08 −0.66±0.07 −0.68±0.07 −0.67±0.07 −0.67±0.07 −0.65±0.07
0.06±0.1 −0.07±0.1 −0.26±0.1 −0.2±0.11 −0.26±0.09 −0.49±0.08 −0.78±0.06 −0.72±0.07 −0.71±0.07

Amy1B

0.48±0.05 0.46±0.05 0.38±0.05 0.39±0.05 0.35±0.04 0.24±0.04 0.13±0.03 0.04±0.02 0.04±0.02
0.48±0.00 0.5±0.00 0.49±0.00 0.47±0.00 0.47±0.00 0.46±0.00 0.46±0.00 0.43±Inf 0.44±Inf
−0.8±0.06 −0.79±0.06 −0.79±0.06 −0.76±0.07 −0.75±0.06 −0.77±0.06 −0.78±0.06 −0.77±0.06 −0.77±0.06
0.05±0.1 −0.07±0.09 −0.23±0.09 −0.16±0.1 −0.22±0.09 −0.43±0.08 −0.67±0.07 −0.68±0.07 −0.7±0.07

RZ276

0.5±0.05 0.46±0.05 0.38±0.05 0.4±0.05 0.36±0.05 0.26±0.04 0.16±0.03 0.04±0.02 0.06±0.02
0.49±0.00 0.49±0.00 0.48±0.00 0.48±0.00 0.47±0.00 0.46±0.00 0.46±0.00 0.43±Inf 0.43±0.00
−0.72±0.07 −0.7±0.07 −0.75±0.06 −0.69±0.08 −0.71±0.07 −0.69±0.07 −0.72±0.07 −0.68±0.07 −0.7±0.07
0.06±0.1 −0.05±0.09 −0.22±0.1 −0.16±0.1 −0.21±0.09 −0.41±0.09 −0.67±0.07 −0.77±0.06 −0.68±0.07

RG146

0.44±0.05 0.44±0.05 0.35±0.05 0.36±0.05 0.34±0.05 0.24±0.04 0.14±0.03 0.04±0.02 0.06±0.02
0.46±0.00 0.48±0.00 0.47±0.00 0.46±0.00 0.46±0.00 0.45±0.00 0.46±0.00 0.44±Inf 0.43±0.00
−0.69±0.07 −0.69±0.07 −0.72±0.07 −0.66±0.08 −0.68±0.07 −0.69±0.07 −0.71±0.07 −0.7±0.07 −0.68±0.07
0.04±0.1 −0.06±0.1 −0.22±0.1 −0.16±0.11 −0.23±0.09 −0.43±0.09 −0.65±0.07 −0.77±0.06 −0.7±0.07

Table 3: The MLEs of the recombination fraction between two misclassified markers in
the backcross progeny of the rice data. Each cell contains the estimate of the recombina-
tion fraction without considering misclassification (r̂0), the estimate of the recombination
fraction after controlling for misclassification (r̂1) and the estimate of the degree of marker
misclassification (λ̂1 and λ̂2).
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Marker D1Mit3 D1Mit20 D1Mit7 D1Mit11 D1Mit14 D1Mit17

D1Mit3

0.0752±0.0088 0.2982±0.0178 0.3751±0.0211 0.4587±0.0219 0.5±0.0223
0.0169±0.0311 0.273±0.0226 0.3635±0.024 0.4567±0.0232 0.499±0.0235
0.0454±0.0321 0.0444±0.031 0.0571±0.0325 0.043±0.0312 0.0596±0.0315
0.0825±0.032 0.0792±0.031 0.0444±0.0325 0.0117±0.0312 −0.0159±0.0315

D1Mit20

0.0752±0.0088 0.27±0.0172 0.3483±0.0206 0.4438±0.0223 0.5065±0.0226
0.0169±0.0312 0.2347±0.0238 0.3286±0.0248 0.4388±0.0243 0.5064±0.0246
0.0825±0.032 0.0789±0.0317 0.0943±0.033 0.0761±0.032 0.0839±0.0319
0.0454±0.0321 0.0729±0.0317 0.0351±0.0331 0.0021±0.0321 −0.0117±0.032

D1Mit7

0.2982±0.0178 0.27±0.0172 0.1018±0.0103 0.2983±0.0178 0.4723±0.022
0.273±0.0228 0.2347±0.0238 0.0478±0.0296 0.2782±0.0225 0.4687±0.0238
0.0792±0.031 0.0729±0.0317 0.083±0.0321 0.077±0.0309 0.0801±0.0311
0.0444±0.031 0.0789±0.0317 0.0436±0.0322 0.0154±0.031 −0.0176±0.0312

D1Mit11

0.3751±0.0211 0.3483±0.0206 0.1018±0.0103 0.1982±0.0148 0.4358±0.0225
0.3635±0.0239 0.3286±0.0244 0.0478±0.0295 0.1744±0.0245 0.4332±0.0235
0.0444±0.0325 0.0351±0.0331 0.0436±0.0322 0.0527±0.0324 0.0403±0.0325
0.0571±0.0325 0.0943±0.033 0.083±0.0321 0.0232±0.0325 −0.0085±0.0325

D1Mit14

0.4587±0.0219 0.4438±0.0223 0.2983±0.0178 0.1982±0.0148 0.2857±0.0176
0.4567±0.0231 0.4388±0.0241 0.2782±0.0222 0.1744±0.0245 0.2858±0.0209
0.0117±0.0312 0.0021±0.0321 0.0154±0.031 0.0232±0.0325 0.0139±0.0315
0.043±0.0312 0.0761±0.032 0.077±0.0309 0.0527±0.0324 −0.0158±0.0315

D1Mit17

0.5±0.0223 0.5065±0.0226 0.4723±0.022 0.4358±0.0225 0.2857±0.0176
0.499±0.0234 0.5064±0.0243 0.4687±0.0235 0.4332±0.0234 0.2858±0.0209
−0.0159±0.0315 −0.0117±0.032 −0.0176±0.0312 −0.0085±0.0325 −0.0158±0.0315
0.0596±0.0315 0.0839±0.0319 0.0801±0.0311 0.0403±0.0325 0.0139±0.0315

Table 4: The MLEs of the recombination fraction between two misclassified markers in the
F2 progeny of the mice data. Each cell contains the estimate of the recombination fraction
without considering misclassification (r̂0), the estimate of the recombination fraction after
controlling for misclassification (r̂1) and the estimate of the degree of marker misclassification
(λ̂1 and λ̂2).
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LEGENDS

FIGURE 1 - QTL map for Backcross Rice data before and after considering misclassification

among markers.

FIGURE 2 - QTL map for F2 mice data before and after considering misclassification among

markers
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Figure 1: QTL map for Chromosome 1 for Backcross Rice data
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