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Abstract

Features common to Phase II clinical trials include limited knowledge of the experimental treatment being

evaluated, design components reflecting ethical considerations, and small to moderate sample sizes as a result

of resource constraints. It is for these reasons that there exist many two-stage designs proposed in the literature

for use in this context. The majority of these designs are for binary endpoints and based on exact probability

calculations, or are for continuous endpoints and rooted in asymptotic approximations to the null distribution.

We present exact two-stage Mann-Whitney designs in the context of Phase II clinical trials. In addition to

describing the designs, we present tables of decision rules under a variety of assumed realities for use in trial

planning.
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1 Introduction

One important goal of the Phase II clinical trial is to determine whether a new treatment has sufficient activity

for further investigation. If activity is identified in Phase II, the intervention typically proceeds to Phase III for

further evaluation. The primary endpoint for Phase II evaluation is disease- and treatment- type specific and

includes categorical and numeric outcomes. Design constraints and complications encountered in this context

include ethical concerns, resource limitations, and the use of surrogate endpoints.

Currently accepted Phase II trial designs in the area such as oncology include a wide range of single arm designs

with a focus on binary endpoints. Due to ethical concerns and resource management, common designs used in

Phase II trials include those which allow for early stoppage in the presence of excessive toxicity or lack of efficacy.

These designs often utilize historical data so to gage the efficacy of the experimental intervention. A single stage

design incorporating sequential early stopping rules for adverse events was proposed by Fleming [4]. Simon’s

optimal and minimax designs [20] have been widely applied in Phase II clinical trials and allow for early stoppage

for futility. Other two-stage designs which incorporated early stoppage for futility include those due to Gehan

[5], Green and Dahlberg [7], Chen and Ng [3], and Storer [24]. Designs which allow for stopping early for either

futility and/or efficacy are discussed by Kepner and Chang [12]. While frequentist design have predominated

Phase II clinical trials, Bayesian Phase II trials have become more visible after extensive development by Thall,

Simon and Estey [27], and Mayo and Gajewski [17]. A review of Phase II designs may be found in Mariani and

Marubini [16], Thall [26], and in the specific setting of clinical oncology in Green, Benedetti and Crowley [6].

When single arm Phase II studies are not appropriate, randomized designs may be considered; see Simon,

Wittes and Ellenberg [21] or Lee and Feng [13] for discussion on the merits of such an approach to intervention

evaluation. Taylor, Braun and Li [25] pointed out that a two-stage two-arm design for binary endpoints may

be preferable under the condition of uncertainty of the historical response rates. Due to the type of endpoint

and the sample size limitations experienced in the Phase II setting, many of the above mentioned designs used

in conjunction with binary endpoints are exact. Solutions for non-binary endpoints are currently restricted in

the literature to those which are mainly reliant on asymptotic approximations to the null distribution of the test

statistic.
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Mann and Whitney [15] presented the two-sample one-stage rank-sum test which is widely used in many areas

of application, including randomized Phase II trials, and its statistical properties are well studied. The usual

normal approximation may be used for larger sample sizes in that calculation of the exact distribution may be

computational difficult for even moderate sample size. Mann and Whitney computed the null distribution of

the test statistics based on sample sizes m and n, denoted Um,n, for sample sizes up to m = n = 8 by using

the recurrence relation tables. They pointed out that the distribution of Um,n is almost normal distributed for

large values of m and n. Kurt Hornik [9] recently developed a function for computing the distribution of the

Mann-Whitney statistic for given sample sizes for the statistical software R based on the algorithm presented by

Mann and Whitney. A faster algorithm for computation of the exact distribution of the Mann-Whitney statistic

Um,n under the null hypothesis was given by Castagliola [1]. He suggested use of the normal approximation

when m + n > 20. We note that for studies planned to detect larger effects, sample sizes would be small and

therefore the asymptotic approximation might not be adequately applied. Recently, Shuster et al. [19] proposed

a Mann-Whitney test for group sequential clinical trials with ordinal data. The test is based on use of asymptotic

results thereby making the design adequate in the Phase III context. A two-stage test based on sample sizes

m1, n1 in the first stage and another m2, n2 added at the second stage, has been proposed by Spurrier and

Hewett [23]. The asymptotic null distribution of first and second stage test statistics, denoted by Um1,n1 and

Um1,n1,m2,n2
, respectively, are derived and recommended for use in practice when the sample sizes are as small

as m1 = n1 = m2 = n2 = 9. Although an exact recurrence relation is discussed, the authors had not been able

to find an efficient method for computing the joint probability distribution of Um1,n1 and Um1,n1,m2,n2 under null

for small sample sizes at the time of publication. There is no published exact two-stage Mann-Whitney design

for Phase II clinical trials at this time.

In this paper, we consider parallel-arm two-stage exact designs for continuous endpoints [11]. We present

methodology for computation of the distribution of the Mann-Whitney statistics in section 2 and a probability

recurrence relation to get the exact two-stage Mann-Whitney probability distribution is reviewed. Section 3 is

given to the description of the proposed exact two-stage designs for different shift values of the two treatments

populations. Section 4 is given to a discussion.
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2 Two-stage procedure

The Mann-Whitney test provides a simple and effective method for comparing a new treatment with a standard-of-

care in regards to some continuous endpoint. Let the responses of subjects corresponding to the new intervention

be denoted by Y1, Y2, · · · , Yn and let X1, X2, · · · , Xm denote the responses for the control group. Furthermore,

let higher values of the response be an indication of greater health in the subject. In the randomization model

[14], the m+ n subjects are assigned to treatment at random. The observations are assumed to be deterministic

under the null, and a probabilistic basis is created by assigning subjects at random. The inference can not be

extended beyond the subjects at hand without further assumptions. Under the invoked population model, the

m + n subjects are assumed to be randomly drawn in some specified manner from populations of users of the

two treatments, n from the treatment and m from the control. The subjects are compared with the end goal

of making inferences regarding the populations. Either of the discussed models may be considered, but for trial

planning purposed the population model must be invoked. The null hypothesis of no treatment effect under the

population model can be stated as

H0 : F = G,

where F and G represent the cumulative distribution functions corresponding to the random variables X and Y ,

respectively. Generally, one purpose of a phase II trial is to determine whether or not the new treatment is more

efficiency. Therefore the alternative of interest is the case where the random variable Y is stochastically larger

than X, implying G(u) ≤ F (u) for all u with strict inequality for some point u.

2.1 One-Stage Mann-Whitney test

The test statistic of the Mann-Whitney test is formulated by considering them×n pairs (Xi, Yj), i = 1, 2, · · · ,m, j =

1, 2, · · · , n. Assuming no ties in the data, if the distribution from which the observations come are equal, we would

expect the number of pairs such that Xi > Yj to be approximately equal to the number of pairs where Xi < Yj .

Therefore, a measure of distributional differences and our test statistic is,

Um,n =

n∑
j=1

m∑
i=1

I(Xi < Yj),
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where

I(Xi < Yj) =


1, Xi < Yj ,

0, Xi ≥ Yj .

Larger values of the above defined test statistic would signify evidence in favor of the alternative. Under null

hypothesis, Mann and Whitney [15] showed the mean and variance of Um,n to be,

E(Um,n) =
mn

2

and

V ar(Um,n) =
mn(m+ n+ 1)

12
,

respectively. The Mann-Whitney test is well known to be equivalent to the Wilcoxon rank sum test [28] and

it may be seen that Um,n = Rm,n − n(n+ 1)/2, where Rm,n is the Wilcoxon rank sum test statistic. Due to

the rank based nature of the test, the null distribution only depends on the sample sizes making it convenient

for statistical practice. See Figure 1 for the probability distribution for U2,2 under the null hypothesis. We also

note a finite number of type I error rates is available when planning the trial due to the discreteness of the test

statistic.

Figure 1: Exact distribution of U2,2

2.2 Two-Stage Mann-Whitney test

In the two-stage Mann-Whitney procedure, we first obtain the samplesX1, X2, · · · , Xm1 from F and Y1, Y2, · · · , Yn1

from G, used in the calculation of the first stage test statistic Um1,n1
. In the second stage, m2 observations
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Xm1+1, Xm1+2, · · · , Xm1+m2 from F and n2 observations Yn1+1, Yn1+2, · · · , Yn1+n2 from G are collected. The

test statistics after the second stage,

Um1,n1,m2,n2 =

n1+n2∑
j=1

m1+m2∑
i=1

I(Xi < Yj),

which includes the subjects from both stages, is then used to make a final decision in regards to the hypotheses.

The statistical dependence of Um1,n1
and Um1,n1,m2,n2

is obvious and is illustrated through examination of the

distribution of U2,2,1,1 under null, see Figure 2. The distribution of Um1,n1
is that of the one-stage Mann-

Whitney test statistic U2,2, which has five possible outcomes with probability greater than zero. The conditional

distribution of Um1,n1,m2,n2
is reliant on the information from stage 1. Note the conditional distribution of

Um1,n1,m2,n2
shifts from left to right with the increase value of Um1,n1

. See Figure 3 for the unconditional

distribution of U2,2,1,1.

Stage 1

Stage 2

0| 2,21,1,2,2 ?UU

1| 2,21,1,2,2 ?UU

2| 2,21,1,2,2 ?UU

3| 2,21,1,2,2 ?UU

4| 2,21,1,2,2 ?UU

2,21,1,2,2 |UU

2,2U

Figure 2: Exact conditional distribution of U2,2,1,1

It has been shown in Spurrier and Hewett[23] that, under null hypothesis,

µ1 = E(Um1,n1) =
m1n1

2
,

σ2
1 = V ar(Um1,n1

) =
m1n1(m1 + n1 + 1)

12
,
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Figure 3: unconditional distribution of U2,2,1,1

µ2 = E(Um1,n1,m2,n2
) =

MN

2
,

and

σ2
2 = V ar(Um1,n1,m2,n2

) =
MN(M +N + 1)

12
,

where N = n1 + n2 and M = m1 + m2. The bivariate relationship between Um1,n1
and Um1,n1,m2,n2

may be

described by using the result,

ρ
Um1,n1 ,Um1,n1,m2,n2

=
[ m1n1(N + 1)

MN(m1 + n1 + 1)

] 1
2 ,

which demonstrates that the Pearson correlation decrease as the ratios m2/m1 or n2/n1 increase. The following

theorem is the basis for asymptotic approximation of the joint distribution of Um1,n1 and Um1,n1,m2,n2 .

Theorem 2.1. (Spurrier and Hewett [23]) If m1, n1,m2, n2 → ∞ such that m1

M+N → b1 and n1

M+N → b2, where

b1, b2 > 0 with b1 + b2 < 1, and m1

m2
= n1

n2
= a, for some a > 0, then the joint limiting distribution of V is bivariate

normal, where V = (V1, V2)
′
,

V1 =
Um1,n1

− µ1

σ1
,

and

V2 =
Um1,n1,m2,n2

− µ2

σ2
,

with mean vector µ = (0, 0)
′
and covariance matrix

∑
=

 1 (a+ 1)−1/2

(a+ 1)−1/2 1.

 .
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The above results was used by Spurrier and Hewett [23] to develop a two-stage procedure which allow early

acceptance of the new treatment under the alternative G(u) ≤ F (u) for all u with strict inequality for some point

u. They employ an upper boundary to stop the trial early when a significantly high efficacy is observed from

the first stage. Monte Carlo simulation demonstrated their two-stage Mann-Whitney test is reasonable when the

sample sizes as low as m1 = n1 = m2 = n2 = 9. Tables of critical values for in practice were provided in Spurrier

and Hewett [22]. They compared the two-stage and one-stage tests under a range of parametric families and

found that both maintain equivalent type I and II errors. In addition they demonstrated the two-stage tests can

save 10− 30% in expected sample sizes as compared to the one-stage tests for given type I and II error rates.

With small sample sizes, the asymptotic approximation is questionable and a reasonably efficient method to

calculate Pm1,n1,m2,n2(Um1,n1 , Um1,n1,m2,n2), the joint probability under null hypothesis, is needed. The largest

value of the pooled data,

Z = max(X1, X2, · · · , Xm1+m2
, Y1, Y2, · · · , Yn1+n2

),

belongs to one of the four samples of the two-stage design. If Z belongs to sample X, it does not contribute to the

observed values of Um1,n1 or Um1,n1,m2,n2 . If Z belongs to sample Y and stage 1, it contributes m1 and m1 +m2

to the observed values of Um1,n1
and Um1,n1,m2,n2

, respectively. If Z belongs to sample Y and stage 2, it does not

contribute to the observed values of Um1,n1
, but contributes m1 +m2 to Um1,n1,m2,n2

.

The probability under the null that Z comes from stage i of sample X(Y) is mi/(M +N)(ni/(M +N)). By

conditioning on the observation with the largest value in either sample and on whether this observation is in the

first or the second sample, we get the following recurrence relation:

Pm1,n1,m2,n2
(Um1,n1

, Um1,n1,m2,n2
) = m1

M+N Pm1−1,n1,m2,n2
(Um1,n1

, Um1,n1,m2,n2
)

+ n1

M+N Pm1,n1−1,m2,n2
(Um1,n1

−m1, Um1,n1,m2,n2
−M)

+ m2

M+N Pm1,n1,m2−1,n2(Um1,n1 , Um1,n1,m2,n2)

+ n2

M+N Pm1,n1,m2,n2−1(Um1,n1
, Um1,n1,m2,n2

−M),

where P0,0,0,0(0, 0) = 1, and Pm1,n1,m2,n2
(Um1,n1

, Um1,n1,m2,n2
) = 0 if any of the following occur:

1. m1 < 0 or n1 < 0 or m2 < 0 or n2 < 0 ,
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2. Um1,n1 < 0 or Um1,n1 > m1n1 or Um1,n1,m2,n2 < 0 or Um1,n1,m2,n2 > MN or Um1,n1 > Um1,n1,m2,n2 ,

3. m1 = 0 or n1 = 0, but Um1,n1
6= 0,

4. m2 = 0 or n2 = 0, but Um1,n1,m2,n2
6= Um1,n1

.

Although an algorithm had been proposed to obtain joint probabilities, Spurrier and Hewett [23] stated in their

paper, “The authors have been unable to find an efficient method for computing the joint probability distribution

of Um1,n1 and Up under H for small sample sizes.”With the improvement of computer technology it is now possible

to calculate the joint probability distribution of Um1,n1
and Um1,n1,m2,n2

for small to median sample sizes so to

implement exact two-stage designs.

3 Minimax and optimal two-stage Mann-Whitney exact designs

The proposed design is as follows. For simplicity, we assume that the sample sizes of the two groups are equal at

each stage, that is, m1 = n1 and m2 = n2, for a total sample size of S = 2n1 + 2n2. Although unbalance design

may also be considered, the balance design is that which is most common in practice. Corresponding critical

values at each stage are denoted as r1 and r. A total of n1 subjects are assigned to each treatment at stage 1; if

the statistic Un1,n1
less than or equal to r1, we terminate the trial and reject the new treatment. Otherwise, we

enter n2 additional patients to each treatment at the second stage; if the test statistic Un1,n1,n2,n2
is less than or

equal to r, the trial concludes that the new treatment lacks the efficacy to proceed to Phase III. Alternatively, if

Un1,n1,n2,n2
> r, we conclude that the treatment is promising and merits further testing. One may also employ an

upper boundary to stop the trial early when a significantly high efficacy is observed in stage 1 as considered by

Spurrier and Hewett [23], but we consider only early stopping in case of lack of efficacy as in Simon [20], Fleming

[4] and Jung et al. [10].

The probability of early termination (PET) is defined as the observed value of Un1,n1
falling in the stopping

region at stage 1, that is,

PET =

r1∑
i=0

Pn1,n1
(Un1,n1

= i).
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Using the previous presented theorem, the asymptotic PET can be written as

PET = Φ(
r1 − µ1

σ1
),

where Φ is the cumulative distribution function of standard normal. The expected sample size (ESS), which is a

function of the PET, is given as

ESS = 2n1 + (1− PET ) ∗ 2n2.

There are many solutions of n1, n2, r1 and r that satisfy α and power requirements. The minimax and optimal

designs by Simon [20] have both been widely used in the two-stage one-arm clinical trials based on binary

endpoints. We may also consider the optimal design in this context which is defined as the design with the

minimum ESS under the null. In addition, we also consider the minimax design which is the design which has

the minimum total sample size S under the null, and within this fixed sample size S, the minimum ESS. The

minimax design may be more desirable when the difference in expected sample sizes is small, patient accrual

is slow and there is a limited source of patients. Although the null distribution depends only on the sample

sizes, the non-null distribution of our test statistics depends on F and G. A number of underlying distributions

could be considered, but the normal distribution is a continuous probability distribution that often gives a good

description of data which cluster around the mean. Therefore, the underlying distributions are assumed to be

normal with common variance, and the distributions under the alternative are assumed to be differ only by a

shift value δ. We considered only median to larger shift values as is generally seen in phase II trials.

To investigate the performance of minimax and optimal exact two-stage design, Monte Carlo studies were

performed. For specified values of α, power and δ, we can determine the minimax and optimal designs by using

the exact or asymptotic distributions of V . For example, Figure 4 shows the plot of ESS against the maximum

sample size S for our proposed exact designs under α = 0.05, power=0.85 and alternative δ = 1.5. Table 1

provides the minimax and optimal designs by the exact and asymptotic methodologies under the alternative that

δ = 2, the ESS under the null, the PET for the stage 1, actual type I error, and actual power of the test. Table 2

and Table 3 provide the minimax and optimal designs for δ = 1.5 and δ = 1, respectively. Small values of δ would

correspond to relative greater sample sizes where the asymptotic approximation can be applied with adequately.

When comparing the minimax designs obtained using exact and asymptotic methodologies, the ESS difference
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Table 1: Minimax and Optimal Designs for δ = 2.

Reject Drug if U

α power Type Design ≤ r1/n1 ≤ r/n ESS PET TIE POWER

0.05 0.8 Asy Minimax 6 / 3 28 / 6 7.5 0.74 0.046 0.87

Optimal 6 / 3 28 / 6 7.5 0.74 0.046 0.87

Exact Minimax 0 / 1 20 / 5 6.0 0.50 0.042 0.82

Optimal 0 / 1 20 / 5 6.0 0.50 0.042 0.82

0.05 0.85 Asy Minimax 6 / 3 28 / 6 7.5 0.74 0.046 0.87

Optimal 6 / 3 28 / 6 7.5 0.74 0.046 0.87

Exact Minimax 5 / 3 20 / 5 7.4 0.65 0.047 0.87

Optimal 2 / 2 28 / 6 6.7 0.67 0.039 0.87

0.05 0.9 Asy Minimax 11 / 4 28 / 6 8.8 0.81 0.049 0.90

Optimal 6 / 3 47 / 8 8.6 0.74 0.044 0.90

Exact Minimax 5 / 3 28 / 6 8.1 0.65 0.044 0.91

Optimal 2 / 2 36 / 7 7.3 0.67 0.049 0.91

0.1 0.8 Asy Minimax 2 / 2 19 / 5 7.0 0.50 0.080 0.87

Optimal 7 / 3 23 / 6 6.8 0.86 0.091 0.80

Exact Minimax 0 / 1 12 / 4 5.0 0.50 0.088 0.85

Optimal 0 / 1 12 / 4 5.0 0.50 0.088 0.85

0.1 0.85 Asy Minimax 2 / 2 19 / 5 7.0 0.50 0.080 0.87

Optimal 2 / 2 19 / 5 7.0 0.50 0.080 0.87

Exact Minimax 2 / 2 12 / 4 5.3 0.67 0.088 0.86

Optimal 2 / 2 12 / 4 5.3 0.67 0.088 0.86

0.1 0.9 Asy Minimax 5 / 3 19 / 5 7.7 0.59 0.084 0.91

Optimal 6 / 3 25 / 6 7.5 0.74 0.097 0.91

Exact Minimax 5 / 3 19 / 5 7.4 0.65 0.073 0.91

Optimal 2 / 2 33 / 7 7.3 0.67 0.089 0.92

For each design, ESS and PET denote the expected sample size and the probability of

early termination under null hypotheses. n1,n are the sample sizes per treatment for

first stage and overall, respectively.
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Table 2: Minimax and Optimal Designs for δ = 1.5.

Reject Drug if U

α power Type Design ≤ r1/n1 ≤ r/n ESS PET TIE POWER

0.05 0.8 Asy Minimax 5 / 3 48 / 8 10.1 0.59 0.042 0.81

Optimal 11/ 4 58 / 9 9.9 0.81 0.044 0.80

Exact Minimax 4 / 3 37 / 7 10.0 0.50 0.047 0.81

Optimal 2/ 2 69 / 10 9.3 0.66 0.048 0.81

0.05 0.85 Asy Minimax 35 / 7 47 / 8 14.2 0.91 0.050 0.85

Optimal 10 / 4 71 / 10 11.4 0.72 0.045 0.86

Exact Minimax 9 / 4 47 / 8 10.7 0.66 0.049 0.86

Optimal 5 / 3 58 / 9 10.2 0.65 0.047 0.86

0.05 0.9 Asy Minimax 9 / 4 71 / 10 12.6 0.61 0.050 0.90

Optimal 9 / 4 71 / 10 12.6 0.61 0.050 0.90

Exact Minimax 15 / 5 71 / 10 12.7 0.73 0.046 0.90

Optimal 16 / 5 83 / 11 12.5 0.79 0.049 0.91

0.1 0.8 Asy Minimax 5 / 3 26 / 6 8.5 0.59 0.091 0.81

Optimal 5 / 3 26 / 6 8.5 0.59 0.091 0.81

Exact Minimax 5 / 3 26 / 6 8.1 0.65 0.080 0.82

Optimal 0 / 1 33 / 7 8.0 0.50 0.098 0.81

0.1 0.85 Asy Minimax 8 / 4 26 / 6 10.0 0.50 0.099 0.85

Optimal 5 / 3 34 / 7 9.3 0.59 0.096 0.85

Exact Minimax 4 / 3 26 / 6 9.0 0.50 0.087 0.85

Optimal 4 / 3 26 / 6 9.0 0.50 0.087 0.85

0.1 0.9 Asy Minimax 9 / 4 44 / 8 11.1 0.61 0.093 0.90

Optimal 9 / 4 44 / 8 11.1 0.61 0.093 0.90

Exact Minimax 8 / 4 34 / 7 10.7 0.56 0.100 0.90

Optimal 8 / 4 34 / 7 10.7 0.56 0.100 0.90

For each design, ESS and PET denote the expected sample size and the probability of

early termination under null hypotheses. n1,n are the sample sizes per treatment for

first stage and overall, respectively.
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Table 3: Minimax and Optimal Designs for δ = 1.

Reject Drug if U

α power Type Design ≤ r1/n1 ≤ r/n ESS PET TIE POWER

0.05 0.8 Asy Minimax 37 / 8 151 / 15 20.2 0.70 0.050 0.80

Optimal 21 / 6 189 / 17 18.9 0.68 0.050 0.81

Exact Minimax 20 / 6 150 / 15 18.3 0.65 0.050 0.80

Optimal 14 / 5 188 / 17 18.3 0.66 0.050 0.81

0.05 0.85 Asy Minimax 46 / 9 191 / 17 23.0 0.69 0.050 0.85

Optimal 29 / 7 280 / 21 21.9 0.72 0.050 0.85

Exact Minimax 26 / 7 191 / 17 22.0 0.60 0.048 0.85

Optimal 20 / 6 256 / 20 21.8 0.65 0.050 0.86

0.05 0.9 Asy Minimax 56 / 10 259 / 20 26.5 0.67 0.050 0.90

Optimal 47 / 9 334 / 23 25.9 0.72 0.050 0.90

Exact Minimax 52 / 10 236 / 19 27.7 0.57 0.050 0.90

Optimal 43 / 9 259 / 20 26.8 0.60 0.050 0.90

0.1 0.8 Asy Minimax 29 / 7 79 / 11 16.3 0.72 0.098 0.80

Optimal 14 / 5 107 / 13 16.0 0.62 0.099 0.81

Exact Minimax 13 / 5 79 / 11 15.0 0.58 0.096 0.80

Optimal 13 / 5 79 / 11 15.0 0.58 0.096 0.80

0.1 0.85 Asy Minimax 74 / 11 94 / 12 22.4 0.81 0.099 0.85

Optimal 28 / 7 124 / 14 18.6 0.67 0.097 0.85

Exact Minimax 35 / 8 94 / 12 18.9 0.64 0.095 0.85

Optimal 35 / 8 94 / 12 18.9 0.64 0.095 0.85

0.1 0.9 Asy Minimax 43 / 9 143 / 15 23.0 0.59 0.098 0.90

Optimal 35 / 8 160 / 16 22.0 0.62 0.099 0.90

Exact Minimax 42 / 9 143 / 15 23.2 0.57 0.097 0.90

Optimal 25 / 7 160 / 16 22.1 0.55 0.100 0.90

For each design, ESS and PET denote the expected sample size and the probability of

early termination under null hypotheses. n1,n are the sample sizes per treatment for first

stage and overall, respectively.
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Optimal

Minimax

Figure 4: Two-stage Mann-Whitney exact designs for α = 0.05, power=0.85, under alternative δ = 1.5

can be substantial. If we use the asymptotic method for obtaining the minimax design, n1 = 2 and n2 = 4 for

each treatment are called for so to satisfy the constraints α = 0.1 and power=0.8, and the ESS is 7 patients

for the design. The exact minimax design reduces the ESS from 7 to 5 with the same PET=0.5. Although

the total sample size may be equal when comparing the two methods obtained via minimax criteria, often the

exact minimax design realizes savings in the number of patients used for the first stage. In order to satisfy the

constraints α = 0.05 and power=0.85 under the alternative δ = 1.5 (Table 2), the total sample sizes for both

methods using the minimax criteria are 2× 8 = 16, and the same decision rule is used at the second stage. Note,

though the exact design reduces the first stage’s sample size from 2× 7 = 14 to 2× 4 = 8, and further reduces the

ESS from 14.2 to 10.7. The difference in the ESS between the minimax and optimal designs by exact calculation

is very small. However, for the asymptotic method, the differences can be larger. For small δ, the total sample

sizes are large, and computation of exact designs may be found to be computational infeasible. Rather than

computing exact probabilities under the null, each quantities may be computed via Monte Carlo methods.

In the one-stage Mann-Whitney test, Hollander and Wolfe [8, 18] showed that the variance of the Mann-

Whitney statistic becomes smaller in the presence of ties. The variance is affected by both the ties within and
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Table 4: Type I error control and power of the design in the presence of tie; α = 0.05,power=0.8 under the

alternative δ = 2.

no tie round to 0.01 round to 0.1 round to 0.2 round to 1

Percentage of tie under the null 0 0.03 0.22 0.40 0.87

Percentage of tie under the alternative 0 0.02 0.15 0.28 0.80

Actual α 0.042 0.0432 0.0440 0.0456 0.0414

Power 0.82 0.83 0.83 0.84 0.83

Table 5: Type I error control and power of the design in the presence of tie; α = 0.05,power=0.8 under the

alternative δ = 1.5.

no tie round to 0.01 round to 0.1 round to 0.2 round to 1

Percentage of tie under the null 0 0.05 0.41 0.63 0.95

Percentage of tie under the alternative 0 0.04 0.34 0.55 0.94

Actual α 0.048 0.047 0.052 0.050 0.046

Power 0.81 0.81 0.82 0.83 0.84

between groups. We investigated the influence of ties in the exact two-stage Mann-Whitney designs by a Monte

Carlo simulation for α = 0.05 and power= 0.8 with various shift value δ = 2, 1.5 and 1. We rounded simulated

observations from the normal distributions to nearest multiple of 0.01,0.1,0.2,and 1 in order to produce data with

a portion of the values being tied. The simulated type I error and power for δ = 2, 1.5 and 1 based on 20,000

simulations are given in table 4, 5, and 6, respectively. In the presence of tie, exact two-stage Mann-Whitney

designs still provide excellent type I error control and power properties.

Table 6: Type I error control and power of the design in the presence of tie; α = 0.05,power=0.8 under the

alternative δ = 1.

no tie round to 0.01 round to 0.1 round to 0.2 round to 1

Percentage of tie under the null 0 0.09 0.58 0.79 0.97

Percentage of tie under the alternative 0 0.08 0.54 0.76 0.97

Actual α 0.050 0.052 0.053 0.051 0.046

Power 0.80 0.81 0.81 0.82 0.79
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4 Discussion

In this article, we presented two-stage Phase II clinical trial designs for use with continuous endpoints. In Phase

II clinical trials, two-stage designs are often preferred due to the ability to stop the procedure early in the absence

of activity resulting in sample size savings. Although designs which stop early for efficacy may be considered

using similar methods as we have used in this article, more often than not investigators choose not to take this

approach to intervention evaluation due to the fact that the addition patient information obtained in stage 2 may

be used to achieve greater precision in the estimates of effect. We have also not considered designs with three

or more stages [2] due to the administrative complexities they introduce into the process, as well as the lack of

additional savings in total sample sizes as seen by others with similar designs in the binary endpoint context.

Although the design have been shown to be robust in the scenarios considered in the note, one weakness of the

proposed design is the inability to directly accommodate the presence of ties in the data. Research into methods

which more efficiently accommodate ties in the data are currently being undertaken.

We have written a R package to calculate the density and cumulative distribution function of the two-stage

Mann-Whitney test statistic for finite sample sizes. The program is available upon request. In this R package,

the exact two-stage designs for continuous endpoints are made available for user defined parameters.
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