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Summary.
A new method is proposed for estimating mean integrated squared error (MISE) for kernel
density estimators (KDEs) . Via the bootstrap we obtain exact estimators for the variance and
mean for the KDE and thus we can obtain estimators for MISE. By obtaining estimates for
MISE for any given bandwidth, it is possible to obtain an optimal bandwidth that minimizes the
estimate of MISE. We provide an overview of other methods to obtain optimal bandwidths and
offer a comparison of these methods via a simulation study. The simulation study compares,
asymptotic methods, cross-validation and several bootstrap methods over a wide range of
densities. In certain situations, our method of estimating an optimal bandwidth yields a smaller
MISE than competing methods to compute bandwidths. This procedure is illustrated by an
application to two data sets.
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1. Introduction

Let X1, · · · , Xn be independent data points from some distribution with cumulative density
function F (and probability density function f) with support over the entire real number

line. Let f(x) be the true density (or function) and let f̂(x) be an estimator of f(x). We
will define the kernel density estimator (KDE) as:

f̂(x;h) =
1

n

n
∑

i=1

1

h
K

(

x − Xi

h

)

. (1.1)

In general, K is the kernel function (e.g. normal density function), n is the number of
data points, and h is the bandwidth. A large body of research is devoted to choosing h,
essentially the amount of smoothing to apply. Usually, smoothing parameters can be chosen
via cross validation or by minimizing a measure of error. A good overview on kernel density
estimators is supplied by Silverman (1986); Scott (1992); Mugdadi and Ahmad (2004).
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To evaluate the kernel density estimators, we first define the error quantities under
consideration. Define the integrated squared error (ISE) as:

L(f, f̂) =

∫

(f(x) − f̂(x))2dx. (1.2)

The risk or mean integrated squared error (MISE) under squared error loss is given by:

MISE(f, f̂) = E
(

L(f, f̂)
)

, (1.3)

where the expectation, E, is taken with respect to the density, f . Note, because we can
switch the order of integration, we can re-express the MISE as

MISE(f, f̂) =

∫

E
(

(f(x) − f̂(x))2
)

dx =

∫

MSE(f(x), f̂(x)), (1.4)

where the MSE(f(x), f̂(x)) is the mean squared error when using f̂(x) to estimate f(x).
Notationally, given squared error loss, the standard decomposition for MSE is given by:

MSE(f(x), f̂(x)) = b2(x) + v(x), (1.5)

where the bias is given by b(x) = f(x)−E(f̂(x)) and the variance is given by v(x) = V (f̂(x)).
Generally, the optimal choice for the bandwidth h is defined as the value of h that minimizes
the MISE. The difficulty in practice is that f is usually unknown and so we must estimate
the error quantities and subsequently our definition for an “optimal” bandwidth is the value
of h that minimizes an estimate of the MISE.

Note, the optimal bandwidth that minimizes MISE, is equivalent to the bandwidth that
minimizes the expected value of the quantity:

J(f, f̂) =

∫

f̂2(x)dx − 2

∫

f̂(x)f(x)dx. (1.6)

Note that E
(

J(f, f̂)
)

and MISE differ by the constant term
∫

f2(x)dx.

Section 2 details currently available estimators for risk and proposes a new method to
obtain estimators for MISE. In Section 3 the estimators and the optimal bandwidths from
these estimators are compared via simulations. The methods are applied to a real dataset
in Section 4. The paper concludes with a discussion and conclusion.

2. Risk Estimators

2.1. Asymptotic Normal

The asymptotic value for h that minimizes the (asymptotic) MISE is given by:

h =

(

∫

K2(x)dx

n
(∫

K(x)x2dx
)2 ∫

(f ′′(x))
2
dx

)1/5

. (2.7)
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Assuming that f is the normal distribution, then the above form reduces to the estimator
han given by:

han = 1.06σn−1/5, (2.8)

where σ is the standard deviation of f ; See Scott (1992); Silverman (1986) for a complete
review. Hence, using a maximum likelihood estimator (s) to estimate σ, we have a simple
data based procedure for choosing the bandwidth. We refer to the bandwidth estimator
using s in place of σ in (2.8) as the asymptotic normal method.

2.2. Cross Validation

The application of cross validation methods has been proposed and studied by Rudemo
(1982); Bowman (1984); Hall (1983); Stone (1984). The cross validation estimator for

J(f, f̂) is given by:

Ĵ(f, f̂) =

∫

(

f̂(x)
)2

dx −
2

n

n
∑

i=1

f̂(−i)(Xi), (2.9)

where f̂(−i) is the estimator obtained after removing the ith observation from the sample.

Note f̂(x) may be any estimator of the density, e.g. the kernel density estimator or the em-
pirical density estimator. We refer to the cross-validation bandwidth as the the bandwidth
obtained by minimizing (2.9) when f̂(x) is the kernel density estimator defined in (1.1).

The discovery of the bootstrap described in Efron (1979) brought about a new series of
methods to obtain estimators for MISE and thus new methods to obtain bandwidths for
KDE. An overview of bootstrapping methods are supplied in Efron and Tibshirani (1997)
with applications to KDE in Shao and Tu (1995). The following set of estimators for MISE
are motivated via bootstrapping methods.

2.3. Taylor’s Method

Taylor’s method Taylor (1989) employs a bootstrap method where the data is resampled

from a smoothed distribution f̂(x). Taylor’s estimator for MSE is given by:

E∗

(

f̂∗(x;h) − f̂(x;h)
)2

= E∗

(

1

nh

n
∑

i=1

K

(

x − X∗

i

h

)

−
1

nh

n
∑

i=1

K

(

x − Xi

h

)

)2

(2.10)

where X∗

i are sampled from the smoothed distribution f̂(x;h) and E∗ is the expectation
with respect to the distribution of X∗

i .

As expressed in Taylor (1989), integrating the above expression leads to the MISE
estimator below:

E∗(R
∗) = 1

2n2h(2π)1/2
(
∑

i,j exp
(

−
(Xj−Xi)

2

8h2

)

− 4
31/2

∑

i,j exp
(

−
(Xj−Xi)

2

6h2

)

+ (2.11)

21/2
∑

i,j exp
(

−
(Xj−Xi)

2

4h2

)

+ n21/2). (2.12)

With certain conditions on f(x;h) and a minor modification of the above expression, E∗(R
∗)

is a consistent estimator of the MISE.
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2.4. Faraway and Jhun’s Method

The approach taken in Faraway and Jhun (1990) estimates the MISE by deconstructing
the MSE into the bias and variance components. The variance is estimated with a regular
bootstrap. The initial estimate of the density (required to estimate the bias) is obtained with
a bandwidth chosen by some other procedure (e.g. cross validation) where a resampling
procedure is performed on this initial estimate of the density. This smoothed bootstrap
procedure tends to improve upon that initial estimate of the density.

In short, construct an initial estimate of the density, f̂(x;h0), and then resample from
that distribution. For example, to each resampled X∗

j add a random amount h0ε where ε
is distributed with density K(·). The Faraway and Jhun expression for the variance based
on B bootstrapped resamples of the data is:

V ar(f̂(x;h)) = B−1
B
∑

j=1

∫

(f∗

j (x;h) − f̄∗

j (x;h))2dx, (2.13)

where f̄∗

j (x;h) = B−1
∑B

j=1 f∗

j (x;h). The bias is given by:

f̂(x;h0) − f̄∗

j (x;h). (2.14)

Thus the the Faraway and Jhun estimator for MISE is given by:

M̂ISE(h, h0) = B−1
B
∑

j=1

∫

(f∗

j (x;h) − f̂(x;h0))
2dx. (2.15)

The Faraway and Jhun optimal bandwidth is obtained by minimizing (2.15) over h.

2.5. Bootstrap MSE Method

In this note we proposed a new and novel exact bootstrap estimator for MISE which elim-
inates the error due to Monte Carlo resampling. In many instances, the Monte Carlo error
is non-negligible; e.g. see Ernst and Hutson (2003). For our new method, we recognize that
KDEs can be expressed as L-estimators. Then by utilizing the work in Hutson and Ernst
(2000), we can obtain exact estimators for the mean and variance of KDEs. Utilizing these
estimators for the mean and variance, we can obtain MISE estimates for KDEs and thus
obtain “optimal” bandwidths.

An L-estimator is an estimator that is equal to a linear combination of order statistics
of the measurements. The median, trimmed mean, and trimean are all examples of L-
estimators. Via the bootstrap, exact analytic expressions for the mean and variance for
any L-estimator are derived in Hutson and Ernst (2000). The expressions for the bootstrap
mean and variance follow from the direct calculation of the bootstrap mean and covariance
matrix of the set of order statistics. In order to apply these results, we must show that the
kernel density (or function) estimator fits the framework for an L-estimator.

Recall the form of the kernel estimator in (1.1), we can group terms such that:

f̂(x;h) =

n
∑

i=1

ciK

(

x − Xi

h

)

(2.16)
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where ci is equal to 1/nh. Now, define Yi = K
(

x−Xi

h

)

so that we have,

f̂(x;h) =

n
∑

i=1

ciYi (2.17)

by rearranging the indices in terms of order statistics, we have:

f̂(x;h) =

n
∑

j=1

cjYj:n (2.18)

where Y1:n ≤ Y2:n ≤ ... ≤ Yn:n are the order statistics corresponding to the sample Yi, i =
1, ..., n. Hutson and Ernst (2000) specify the form of an L-estimator as:

Tn =
n
∑

i=1

ciXi:n. (2.19)

Hence, the general form for our kernel estimator in (2.18) fits the framework for an L-
estimator.

With this framework for our kernel estimator, via the methods in Hutson and Ernst
(2000) we can now provide exact estimators for the mean and variance of the KDE. Specifi-
cally, let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics corresponding to our sample
X1, · · ·Xn. Consider an arbitrary random variable X ∼ F and define the sample quantile
function estimator as

Q̂X(u) = F̂−1(u) = X[nu]+1:n (2.20)

where 0 < u < 1 and [·] denotes the floor function. The goal is to develop expressions for

the exact bootstrap mean and variance for f̂(x;h).

From Hutson and Ernst (2000), the EQ̂X
(Yj:n) is given by the following lemma.

Lemma 2.1. The exact bootstrap estimate of µr:n = E(Yr:n), 1 ≤ r ≤ n, is

µ̂r:n = EQ̂T
(Yr:n) =

n
∑

j=1

wj(r)Yj:n, (2.21)

where

wj(r) = Br,n−r+1

(

j

n

)

− Br,n−r+1

(

j − 1

n

)

, (2.22)

and

Ba,b(x) =

∫ x

0

ta−1(1 − t)b−1dt (2.23)

is the incomplete beta function.

Proof: The proof is similar to the proof for Theorem 1 in Hutson and Ernst (2000).

Theorem 2.2. The exact bootstrap mean of the kernel density estimator f̂(x;h) is given
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by

µ̂f̂(x;h) = E(f̂(x;h)) =
1

nh

n
∑

j=1

µ̂j:n =
1

nh

n
∑

j=1

n
∑

i=1

wi(j)Yi:n, (2.24)

where the weights wi(j) are defined at (2.22).

Proof: Straightforward application of Lemma 2.1 and (2.18).

Before establishing the variance of f̂(x;h), the following lemmas are required for the
variance and covariance of Yi:n.

Lemma 2.3. The exact bootstrap estimate of σ2
r:n = Var(Yr:n) is given by

σ̂2
r:n = VarQ̂X

(Yr:n) =

n
∑

j=1

wj(r)(Yj:n − µ̂r:n)2, (2.25)

where wj(r) is given in (2.22) and µ̂r:n is given in (2.21) .

Proof: The proof is similar to that for Theorem 2.1 in Hutson and Ernst (2000).

Lemma 2.4. The exact bootstrap estimate of σrs:n = Cov(Yr:n, Ys:n) for r < s is given
by

σ̂rs:n = CovQ̂(Yr:n, Ys:n) =

n
∑

j=2

j−1
∑

i=1

wij(rs)(Yi:n − µ̂r:n)(Yj:n − µ̂s:n)

+

n
∑

j=1

vj(rs)(Yj:n − µ̂r:n)(Yj:n − µ̂s:n), (2.26)

where the weights are given by

wij(rs) =

∫ j/n

(j−1)/n

∫ i/n

(i−1)/n

frs(ur, us) dur dus (2.27)

vj(rs) =

∫ j/n

(j−1)/n

∫ us

(j−1)/n

frs(ur, us) dur dus, (2.28)

and

frs(ur, us) = nCrsu
r−1
r (us − ur)

s−r−1(1 − us)
n−s, (2.29)

is the joint distribution of two uniform order statistics Ur:n and Us:n with nCrs =
n!/[(r − 1)!(s − r − 1)!(n − s)!].

Proof: This is a re-expression of the results found in Hutson and Ernst (2000).

Thus the following theorem establishes the analytic expression for the variance of f̂(x;h).
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Theorem 2.5. The exact bootstrap estimator for the variance of the kernel density es-
timator is given by:

σ̂2
f̂(x)

=

(

1

nh

)2




n
∑

j=1

σ̂2
j:n + 2

n
∑

j<k

σ̂jk:n



 , (2.30)

where σ̂2
j:n and σ̂jk:n are given in (2.25) and (2.26), respectively.

Proof: Follows as an application of Lemmas 2.3 and 2.4 and (2.18).
Thus we have derived the bootstrap mean and variance for the kernel density estimator.

In order to estimate the MSE, we need to estimate the variance term and the bias term.
The variance follows directly from Theorem 2.5. From Theorem 2.2, we have an expression
for E(f̂(x)). Hence, to this point, still must estimate f(x) in order to estimate the bias
term.

There are several choices we can use to estimate f(x), and thus estimate the bias. The
choices we will consider are the empirical density estimator with a mass of 1/n at each data

point Xi. The cross validation kernel density estimator f̂(x;hcv) where hcv is obtained via
cross-validation with the kernel density estimator. We will also consider the KDE using the
asymptotic normal bandwidth described in Section 2.1. Using these estimators for f(x), we
obtain the following theorem for estimating MSE.

Theorem 2.6. The bootstrap estimator of the MSE for the kernel density estimator
f̂(x;h) is given by

M̂SE(f(x), f̂(x;h)) = σ̂2
f̂(x;h)

+
(

µ̂f̂(x;h) − f̂(x)
)2

, (2.31)

where f̂(x) is either the empirical density estimator, the KDE with bandwidth chosen by
the asymptotic normal method (Section 2.1), or the KDE with bandwidth chosen by cross
validation (Section 2.2).

Proof. Straightforward application of (1.5), (2.24), (2.30).

Using any of the estimators f̂(x) in Theorem 2.6 will yield an estimator for MISE:

M̂ISE =

∫

∞

−∞

σ̂2
f̂(x;h)

+
(

µ̂f̂(x;h) − f̂(x)
)2

dx. (2.32)

We refer to the estimator BT, as the MISE estimator using the empirical density esti-
mator for f(x), the estimator BT-AN as the MISE estimator using KDE with bandwidth
via the asymptotic normal method in (2.32), and BT-CV as the MISE estimator using KDE
with bandwidth via cross validation in (2.32).

3. Simulation

For computational simplicity we use the normal density function for our kernel. The ob-
jective of the simulation is to compare the different procedures for obtaining the KDE
bandwidth under different scenarios. The methods considered were the asymptotic normal
method (AN), the cross-validation method (CV), Taylor’s method (BT-CT), Faraway and
Jhun’s bootstrap method (BT-FJ) and our method(s), namely, BT, BT-AN, and BT-CV
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as defined in Section 2.5. We obtained the minima of the functions using standard numer-
ical integration functions in the R software language (R Development Core Team, 2008).
For each sample we calculated the MISE obtained using each method, together with the
minimum achievable MISE, corresponding to h1 where h1 minimizes the integrated squared
error:

ISE =

∫

(

f(x) − f̂(x)
)2

dx. (3.33)

The methods were assessed based on the ratios MISE(hi)/MISE(h1) and the results are
summarized via Tables 1-4. The chosen distributions are the normal, normal bimodal
mixture distribution, gamma, and standard lognormal. Each simulation was examined
for sample sizes of 25, 50, and 100. Note these simulations contain unimodal, bimodal,
symmetric and skew distributions.

4. Real Data Application

We consider the 63 observations of the annual snowfall amounts in Buffalo, New York as
observed from 1910/11 to 1972/73 (data in Table 5) ; see, for example, Parzen (1979).
The asymptotic rule in (2.8) and the cross-validation method yields the optimal bandwidth
of 10.97 and 9.18, respectively. Taylor’s exact smoothed bootstrap methods chooses a
bandwidth of 16.7. Faraway and Jhun’s method estimates the optimal bandwidth at 12 after
resampling 1000 times. The main disadvantage of the Monte Carlo methods is that each
computation yields different solutions. In this case, we recalculate the optimal bandwidth
100 times for the Faraway and Jhun method where the resulting bandwidths range from
11.74 to 12.30, centered at 12.06 with standard error 0.11. Our BT, BT-AN and BT-CV
estimators provide bandwidths of 1.66, 14.6, 13.03, respectively. The optimal bandwidth
from our BT estimator is the smallest among all methods mentioned in this note, thus
tending to undersmooth the curve. The bandwidth chosen by either BT-AN or BT-CV
yields similar density estimates with AN, CV, BT-CT, and BT-FJ (see Figure 1).

In addition, we also examined the dataset given in Table 6 for the determinations of the
parallax of the sun (in seconds of a degree) based on the 1761 transit of Venus as described
in Stigler (1977). Note that the cross-validation method does not work for this data, tending
to select the bandwidth as small as possible. As discussed in Taylor (1989), examples with
small sample sizes may occur where there is no global minimum which, according to Taylor,
“should make us cautious in our numerical routines.” We choose h = 1e − 04 artificially.
The failure of the CV, BT-FJ, and BT-CV methods results from the numerical problems
with the cross-validation method. Nevertheless, the asymptotic rule, Taylor’s method and
our BT and BT-AN methods select the optimal bandwidth at 0.43, 1.2, 0.1 and 0.55,
respectively (see Figure 2).

5. Discussion and Conclusion

As can be seen from Table 1, using our method (BT-AN) to estimate h compares favorably
with competing methods in terms of relative MISE. Generally speaking, our BT-AN and
BT-CV methods perform favorably over either Taylor’s method and Faraway and Jhun’s
method (Tables 1-4). From studying Tables 1-4, as expected the variance of h decreases
as the sample size increases. In general, the BT-AN and BT-CV provide bandwidths with
a small variance across all of the simulations. As may be expected (see Taylor (1989)),
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Standard lognormal densities are the most difficult to estimate optimal bandwidths. Among
our methods (BT, BT-AN, and BT-CV), the BT-AN method performs the best relative to
MISE, except for the seemingly more difficult lognormal cases, where BT-CV and BT both
perform better. The Faraway and Jhun method (BT-FJ) has the largest variance for h in
Tables 1-3, while it is fairly competitive for the lognormal densities. When comparing the
BT-CV with the CV method and the BT-AN method with the AN method we see that
the BT-CV method does better than the CV method except for the lognormal densities.
Meanwhile the BT-AN method outperforms the AN method on the normal and lognormal
distributions.

Note that using the empirical density function to estimate f in (2.31) will yield a con-
sistent estimator for MISE (with certain conditions on f). In other words, the empirical
density function f(x) is a consistent estimator of f(x), and since our mean and variance
estimators for the KDE are exact by the work in Hutson and Ernst (2000), we then have

that M̂ISE in (2.32) converges in probability to MISE.
For future work it is examining other choices than the normal density for the form of the

kernel, e.g. Epanechnikov kernel. In fact, the Epanechnikov kernel is optimal in the sense
of yielding the smallest asymptotic mean squared error (Wasserman, 2004). We expect
that the results when using the Epanechnikov kernel will not differ greatly than the results
presented here using the normal density as the kernel. Also, important to consider is the
use of other methods to estimate f in (2.31). We employed the empirical density function
and KDE where the bandwidth was chosen either by the asymptotic normal method or the
cross validation method. We plan to explore other more sophisticated methods to obtain an
estimate for f(x), e.g. an iterative scheme such as described in Faraway and Jhun (1990).
The extension of our method to produce confidence intervals for f is also worth exploring.
The confidence intervals will require using methods to estimate the variance of our MISE
estimates. We speculate that extending the work in Hutson and Ernst (2000) to compute
the variance of the estimates for the mean and variance of the L-estimator will allow us
to obtain confidence intervals for MISE and f . Of lesser importance, it would also be
interesting to explore the application to multivariate densities based on the work in Hutson
and Ernst (2000) and to examine the “optimal bandwidths” obtained under different loss
functions, e.g. the L1 norm.
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Table 1. N(0,1): The methods employed include the asymp-
totic choice (AN); the cross validation method (CV); our
method with empirical PDF (BT); Taylor’s smoothed bootstrap
method (BT-CT); Faraway and Jhun’s bootstrap method (BT-
FJ); our method with asymptotic choice for bandwidth choice
in KDE (BT-AN) and our method with cross validation band-
width for KDE (BT-CV). Average over 500 simulations, with
standard error in parentheses for a variety of different sam-
ple sizes (n). Relative efficiency is the MISE ratio compared
with the optimal bandwidth value. The average bandwidth with
standard error in parentheses is also shown for each of the
different methods.

Relative efficiency
n=25 n=50 n=100

AN 3.85(28.2) 2.14(7.9) 1.54(2.52)
CV 3.73(15.9) 2.55(7.55) 2.86(7.18)
BT 5.98(31.2) 3.52(11.6) 7.32(13.2)

BT-CT 21.9(63) 27.8(63) 1.56(0.972)
BT-FJ 3.02(9.58) 2.28(4.27) 2.45(4.39)

BT-AN 2.66(15.6) 1.78(3.8) 1.48(1)
BT-CV 2.89(9.22) 2.2(3.69) 2.27(3.5)

Bandwidth
n=25 n=50 n=100

AN 0.547(0.0826) 0.481(0.0488) 0.424(0.0296)
CV 0.633(0.198) 0.533(0.136) 0.434(0.13)
BT 0.397(0.118) 0.335(0.0641) 0.173(0.0883)

BT-CT 1.97(0) 1.96(0.0802) 0.577(0.0529)
BT-FJ 0.758(0.223) 0.634(0.149) 0.517(0.144)

BT-AN 0.722(0.122) 0.614(0.0691) 0.532(0.0434)
BT-CV 0.766(0.211) 0.641(0.138) 0.522(0.134)
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Table 2. 0.5N(0,1)+0.5N(3,1): The methods employed
include the asymptotic choice (AN); the cross validation
method (CV); our method with empirical PDF (BT); Tay-
lor’s smoothed bootstrap method (BT-CT); Faraway and
Jhun’s bootstrap method (BT-FJ); our method with asymp-
totic choice for bandwidth choice in KDE (BT-AN) and our
method with cross validation bandwidth for KDE (BT-CV).
Average over 500 simulations, with standard error in paren-
theses for a variety of different sample sizes (n). Relative
efficiency is the MISE ratio compared with the optimal band-
width value. The average bandwidth with standard error in
parentheses is also shown for each of the different meth-
ods.

Relative efficiency
n=25 n=50 n=100

AN 1.23(0.332) 1.23(0.332) 1.32(0.399)
CV 1.95(1.73) 1.94(1.72) 1.78(2.01)
BT 1.98(1.73) 1.98(1.72) 3.99(4.34)

BT-CT 2.58(1.94) 2.58(1.94) 2.99(2.35)
BT-FJ 1.79(1.11) 1.79(1.11) 1.68(1.31)

BT-AN 1.6(0.876) 1.6(0.876) 1.68(0.759)
BT-CV 1.73(1.04) 1.73(1.03) 1.61(1.11)

Bandwidth
n=25 n=50 n=100

AN 1(0.109) 1(0.11) 0.758(0.041)
CV 0.976(0.417) 0.977(0.417) 0.597(0.219)
BT 0.658(0.283) 0.658(0.283) 0.221(0.107)

BT-CT 2(0) 2(0.025) 1.23(0.119)
BT-FJ 1.22(0.483) 1.22(0.483) 0.742(0.261)

BT-AN 1.34(0.161) 1.34(0.161) 0.906(0.0638)
BT-CV 1.23(0.458) 1.23(0.457) 0.741(0.245)
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Table 3. Gamma(2,2): The methods employed include the
asymptotic choice (AN); the cross validation method (CV);
our method with empirical PDF (BT); Taylor’s smoothed
bootstrap method (BT-CT); Faraway and Jhun’s bootstrap
method (BT-FJ); our method with asymptotic choice for
bandwidth choice in KDE (BT-AN) and our method with
cross validation bandwidth for KDE (BT-CV). Average over
500 simulations, with standard error in parentheses for a
variety of different sample sizes (n). Relative efficiency
is the MISE ratio compared with the optimal bandwidth
value. The average bandwidth with standard error in
parentheses is also shown for each of the different meth-
ods.

Relative efficiency
n=25 n=50 n=100

AN 1.47(0.532) 1.59(0.58) 1.72(0.649)
CV 1.89(1.56) 1.71(1.08) 1.51(1.03)
BT 2.3(2.09) 2.04(1.34) 2.37(1.53)

BT-CT 2.05(0.92) 2.93(1.35) 2.22(0.943)
BT-FJ 1.74(1.01) 1.6(0.626) 1.48(0.654)

BT-AN 1.68(0.682) 1.93(0.792) 2.01(0.788)
BT-CV 1.7(0.936) 1.55(0.57) 1.44(0.561)

Bandwidth
n=25 n=50 n=100

AN 1.54(0.332) 1.35(0.207) 1.18(0.127)
CV 1.18(0.471) 0.907(0.328) 0.728(0.22)
BT 0.688(0.27) 0.543(0.184) 0.364(0.132)

BT-CT 2.02(0.0841) 1.99(0.0641) 1.37(0.128)
BT-FJ 1.41(0.492) 1.11(0.374) 0.896(0.249)

BT-AN 1.76(0.239) 1.55(0.201) 1.31(0.107)
BT-CV 1.42(0.472) 1.13(0.355) 0.908(0.234)
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Table 4. Standard lognormal: The methods employed
include the asymptotic choice (AN); the cross validation
method (CV); our method with empirical PDF (BT); Tay-
lor’s smoothed bootstrap method (BT-CT); Faraway and
Jhun’s bootstrap method (BT-FJ); our method with asymp-
totic choice for bandwidth choice in KDE (BT-AN) and our
method with cross validation bandwidth for KDE (BT-CV).
Average over 500 simulations, with standard error in paren-
theses for a variety of different sample sizes (n). Relative
efficiency is the MISE ratio compared with the optimal band-
width value. The average bandwidth with standard error in
parentheses is also shown for each of the different methods.

Relative efficiency
n=25 n=50 n=100

AN 2.56(1.27) 3.21(1.38) 5.73(2.89)
CV 1.16(0.192) 1.03(0.0658) 1.25(0.341)
BT 1.41(0.443) 1.03(0.0941) 1.21(0.318)

BT-CT 4.51(1.7) 6.21(1.82) 9.41(3.87)
BT-FJ 1.3(0.299) 1.2(0.124) 1.29(0.326)

BT-AN 2.7(1.24) 3.34(1.35) 5.81(2.73)
BT-CV 1.36(0.33) 1.25(0.16) 1.33(0.355)

Bandwidth
n=25 n=50 n=100

AN 1.02(0.475) 0.916(0.35) 0.871(0.299)
CV 0.395(0.119) 0.314(0.0367) 0.187(0.055)
BT 0.498(0.179) 0.31(0.0303) 0.185(0.0493)

BT-CT 2.02(0.116) 2.01(0.0587) 1.47(0.171)
BT-FJ 0.493(0.148) 0.376(0.0512) 0.233(0.063)

BT-AN 1.07(0.396) 0.951(0.32) 0.877(0.229)
BT-CV 0.52(0.145) 0.393(0.053) 0.251(0.0599)

Table 5. The amount of snowfall in Buffalo, New York, for each of 63 winters
from 1910/11 to 1972/73. See, for example, Parzen (1979) for more details.

Dataset (n = 63)

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5
25.0 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6
80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1 103.9
51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9
84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8
71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

Table 6. Short’s 1763 determinations of the
parallax of the sun (in seconds of a degree)
based on the 1761 transit of Venus (Stigler
1977).

Dataset (n = 18)

8.50 8.50 7.33 8.64 9.27 9.06
9.25 9.09 8.50 8.06 8.43 8.44
8.14 7.68 10.34 8.07 8.36 9.71
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Fig. 1. Kernel density estimation based on Buffalo snowfall data with different methods to obtain the
bandwidth.
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Fig. 2. Kernel density estimation based on Stigler (1977) data with different methods to obtain the
bandwidth.


