
Log-Epsilon-Skew Normal Distribution and

Applications

Terry L. Mashtare Jr.

Department of Biostatistics

University at Buffalo, 249 Farber Hall, 3435 Main Street, Buffalo, NY 14214-3000, U.S.A.

Alan D. Hutson

Department of Biostatistics

University at Buffalo, 249 Farber Hall, 3435 Main Street, Buffalo, NY 14214-3000, U.S.A.

Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, U.S.A.

Govind S. Mudholkar

Department of Statistics

University of Rochester, Rochester, NY 14627, U.S.A.

August 20, 2009

Abstract

In this note we introduce a new family of distributions called the log-

epsilon-skew-normal (LESN) distribution. This family of distributions can

trace its roots back to the epsilon-skew-normal (ESN) distribution developed

by Mudholkar and Hutson (2000). A key advantage of our model is that the
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well known lognormal distribution is a subclass of the LESN distribution. We

study its main properties, hazard function, moments, skewness and kurtosis

coefficients, and discuss maximum likelihood estimation of model parameters.

We summarize the results of a simulation study to examine the behavior of

the maximum likelihood estimates, and we illustrate the maximum likelihood

estimation of the LESN distribution parameters to a real world data set.

Keywords: Lognormal distribution, maximum likelihood estimation.

1 Introduction

In this note we introduce a new family of distributions called the log-epsilon-skew-

normal (LESN) distribution. This family of distributions can trace its roots back

to the epsilon-skew-normal (ESN) distribution developed by Mudholkar and Hutson

(2000) [14]. A key advantage of our model is that the well known lognormal distribu-

tion is a subclass of the LESN distribution. The usage of the lognormal distribution

spans across several fields such as astrophysics [10], environmental sciences [4], and

radiology [15]. Eckhard (2001) compared the use of the lognormal distribution across

several different science disciplines [7].

The lognormal distribution has a long and rich history. Galton (1879) suggested

the use of the lognormal distribution to analyze data for which the geometric mean

is better than the arthimatic mean for estimating central tendency [9]. McAlister

(1879) derived the lognormal distribution at Galton’s suggestion [13]. Finney (1941)

examined the moments, moment estimation, and efficiency of the estimation [8]. An-

other interesting result was put forth by Heyde (1963). He showed the lognormal

distribution is not uniquely determined by its moments [11]. It is known that the

moment generating function for the lognormal distribution does not exist [16]. How-

ever, it is well-known that the moments of the lognormal distribution can be derived
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from the moment generating function of the normal distribution.

In terms of background, Let T ∼ LN(µ, ¾). Then the probability distribution

function (pdf) and cumulative distribution function (cdf) for T are given by

fT (t) =
1

t
√
2¼¾

exp

(
−(log t− µ)2

2¾2

)
, (1.1)

and

FT (t) = Φ

(
log t− µ

¾

)
, (1.2)

respectively, where Φ(⋅) denotes the standard normal cdf.

In survival analysis, the lognormal distribution is used in accelerated failure time

(AFT) models [6]. The form of the lognormal hazard function is given by

ℎT (t) =

(
1

t
√
2¼¾

)
exp

(
− (log t−µ)2

2¾2

)

1− Φ
(
log t−µ

¾

) (1.3)

The lognormal hazard function is unimodal starting at zero and increasing to a

maximum, then decreases toward zero as t → ∞. Sweet (1990) gives mathematical

properties of the hazard rate for the lognormal distribution [17].

One competing approach towards generalizing the lognormal distribution would

be to utilize the skew normal distribution of Azzalini (1985,1986) [2, 3]. This ap-

proach has been utilized in practice by Chai and Bailey (2008) for the purpose of

modeling continuous data with a discrete component at zero [5]. However, the math-

ematical properties has not been developed.

In section 3, we introduce the LESN distribution and discuss its properties. In

section 4, we examine the maximum likelihood estimates of the LESN parameters.

In section 5 we summarize the results of a simulation study to examine the behav-

ior of the maximum likelihood estimates. In section 6, we illustrate the maximum

likelihood estimation of the LESN distribution parameters to a real world data set.
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2 Notation

In order to simplify our presentation of our demonstrations we first introduce some

notational devices. Towards this end let:

T, t LESN : random variable, value taken by T

µ, ¾, ²: ESN location, scale, and skewness parameters

Z1 =
log T−µ
¾(1−²)

and Z2 =
log T−µ
¾(1+²)

fZi
(⋅), FZi

(⋅), SZi
(⋅), ℎZi

: pdf, cdf, survival function, and hazard function for Zi,

i = 1, 2.

Á(⋅),Φ(⋅): pdf and cdf of a standard normal random variable.

3 The log-epsilon-skew-normal distribution

We utilize the ESN model as a starting point for our development of the LESN

distribution. Details of the epsilon-skew-normal (ESN) distribution [14], developed

by Mudholkar and Hutson (2000), are given in appendix A. Toward this end let T be a

random variable such that log(T ) ∼ ESN(µ, ¾, ²). It follows that T ∼ LESN(µ, ¾, ²).

The pdf, cdf, and the quantile function of the LESN distribution are given as follows:

fT (t) =

⎧
⎨
⎩

1
t
√
2¼¾

exp
(
− (log t−µ)2

2¾2(1−²)2

)
, if 0 < t < eµ,

1
t
√
2¼¾

exp
(
− (log t−µ)2

2¾2(1+²)2

)
, if t ≥ eµ,

(3.1)

FT (t) =

⎧
⎨
⎩
(1− ²)Φ

(
log t−µ
¾(1−²)

)
, if 0 < t < eµ,

−²+ (1 + ²)Φ
(

log t−µ
¾(1+²)

)
, if t ≥ eµ,

(3.2)

and,

QT (u) = exp[µ + ¾Q0(u)], (3.3)
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respectively, where −1 < ² < 1 and Q0(u) is given by equation (A.3). As can be seen

at ² = 0, equations (3.1) and (3.2) give equations (1.1) and (1.2).

3.1 Median and mode

It is straightforward to verify that the median of LESN(µ, ¾, ²) is

QT (1/2) =

⎧
⎨
⎩
exp

[
µ + ¾(1− ²)Φ−1

(
1

2(1−²)

)]
, if ² < 0

exp
[
µ + ¾(1 + ²)Φ−1

(
1/2+²
1+²

)]
, if ² ≥ 0.

(3.4)

Its mode is

eµ−¾2(1−²)2 . (3.5)

Figure 1 shows some typical LESN probability density functions with µ = 0. A

horizontal line is drawn at the splice point t = eµ = 1. We see that the LESN pdf is

unimodal, with the mode before the splice point t = 1. This compares to the result

at (3.5). We see a variety of shapes with high peaks for large ¾. This will be further

examined within the context of the hazard function given below.

3.2 Hazard Function

The hazard function for the LESN is given by the following function:

ℎT (t) =

⎧
⎨
⎩

( 1
t¾ )Á(

log t−µ
¾(1−²))

1−(1−²)Φ( log t−µ
¾(1−²))

, if 0 < t < eµ,

( 1
t¾ )Á(

log t−µ
¾(1+²) )

(1+²)[1−Φ( log t−µ
¾(1+²) )]

, if t ≥ eµ.

(3.6)

Using the notation given in section 2, we can rewrite ℎT (t) more compactly:

ℎT (t) =

⎧
⎨
⎩

(1−²)fZ1
(z1)

[SZ1
(z1)]+²FZ1

(z1)
, if 0 < t < eµ,

fZ2
(z2)

SZ2
(z2)

, if t ≥ eµ.

(3.7)
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Note that the hazard function for t ∈ [eµ,∞) corresponds to the hazard function

for a LN(µ, ¾(1+ ²)) random variable. However for t ∈ (0, eµ) the form of the hazard

function is more complicated. This yields some interesting results as developed below.

In order to investigate the possible hazard shapes we examine the derivative of

ℎT (t), denoted by ℎ′
T (t). It can be shown that

ℎ′
T (t) = ℎT (t)[ℎT (t)− g(t)], (3.8)

where

g(t) =

⎧
⎨
⎩

1
t

[
log t−µ

¾2(1−²)2
+ 1

]
, if 0 < t < eµ,

1
t

[
log t−µ

¾2(1+²)2
+ 1

]
, if t ≥ eµ.

(3.9)

Now through examination of ℎT (t) at (3.7) and ℎ′
T (t) we have the following are

properties of the LESN hazard function:

1.

ℎT (0) = 0. (3.10)

2.

ℎ′
T (0) = 0 (3.11)

3. For t ∈ (0, eµ), if ² < 0 then

ℎT (t) < ℎZ(t) (3.12)

where ℎZ(t) is the hazard function for LN(µ, ¾).

Similarly, if ² > 0 then

ℎT (t) > ℎZ(t) (3.13)

4.

lim
t→∞

ℎT (t) = 0 (3.14)
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5.

lim
t→∞

ℎ′
T (t) = 0 (3.15)

6.

ℎT (e
µ) =

2

eµ¾(1 + ²)
√
2¼

(3.16)

7. ℎ′
T (e

µ) exists and is given by

ℎ′
T (e

µ) =
2− ¾(1 + ²)

√
2¼

e2µ¼¾2(1 + ²)2
(3.17)

8. At t = eµ, ℎT (t) is increasing if

¾(1 + ²) <

√
2

¼
. (3.18)

9. At t = eµ, ℎT (t) is decreasing if

¾(1 + ²) >

√
2

¼
. (3.19)

10. t = eµ is a relative maximum of ℎT (t) if

¾(1 + ²) =

√
2

¼
. (3.20)

In summary, some of the properties above are self explainatory. In addition,

property 3 implies that for t ∈ (0, eµ), if ² < 0, then the hazard function for a LESN

random variable is bounded above by the hazard function for a LN random variable.

Similarly, if ² > 0, then the hazard function for a LESN random variable is bounded

below by the hazard function for a LN random variable. Property 6 implies that

ℎT (t) is continuous at the splice point t = eµ. Property 8 combined with equation

(3.7) imply that if ¾(1 + ²) <
√

2
¼
, then the hazard function has a relative max for

some t ∈ [eµ,∞). This is illustrated in Figure (2f). Similarly, property 9 combined

with equation (3.7) imply that if ¾(1+ ²) >
√

2
¼
, then the hazard function decreases

on t ∈ [eµ,∞).
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3.3 Derivations of properties of LESN hazard function

In general, it is well-known that we can write the hazard function and the derivative

of the hazard function for T as

ℎT (t) =
fT (t)

1− FT (t)
(3.21)

and

ℎ′
T (t) =

f ′
T (t)

1− FT (t)
+ [ℎT (t)]

2. (3.22)

We first examine the properties of the hazard function over the interval (0, eµ).

Utilizing (3.21) and (3.22), we have ℎT (0) = fT (0) = 0 and ℎ′
T (0) = f ′

T (0) = 0. This

proves properties 1 and 2.

If ² > 0, we have

(1− ²)fZ1(z1)

[SZ1(z1)] + ²FZ1(z1)
≤ (1− ²)fZ1(z1)

[SZ1(z1)]
<

fZ1(z1)

[SZ1(z1)]
. (3.23)

Similarly if ² < 0 we have

(1− ²)fZ1(z1)

[SZ1(z1)] + ²FZ1(z1)
≥ (1− ²)fZ1(z1)

[SZ1(z1)]
>

fZ1(z1)

[SZ1(z1)]
, (3.24)

Thus property 3 follows.

Properties 4 and 5 follow from the fact that ℎT (t) for t ∈ [eµ,∞) corresponds

to the hazard function for a LN(µ, ¾(1 + ²)) random variable. Sweet (1990) showed

that the hazard function for a lognormal random variable tends to 0 as t → ∞ [17].

Property 6 follows from substituting t = eµ in equation (3.6). Note that ℎT (t) is

continuous at t = eµ. Using equations (3.8) and (3.9) we have

lim
t→eµ−

ℎ′
T (t) = lim

t→eµ+
ℎ′
T (t) =

2− ¾(1 + ²)
√
2¼

e2µ¼¾2(1 + ²)2
, (3.25)

thus property 7 follows. Properties 8 – 10 follow directly from property 7.
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3.4 Moments

By definition, the r-th moment of T from an LESN(µ, ¾, ²) distribution is given by

¹′
r = E(T r) = E(er log T ) = E(erX) = MX(r) = eµrM(¾r), (3.26)

where MX(⋅) and M(⋅) are the moment generating functions for X ∼ ESN(µ, ¾, ²)

and ESN(0, 1, ²) random variables, respectively. Using equations (3.26) and (A.6),

we have

¹′
r = E(T r) = eµr{(1− ²)e(1−²)2¾2r2/2Φ[−(1− ²)¾r] + (1+ ²)e(1+²)2¾2r2/2Φ[(1+ ²)¾r]}.

(3.27)

For the purposes of organizing our expressions let ¿1 = e(1−²)2¾2
, ¿2 = e(1+²)2¾2

, º1 =

(1− ²)¾, and º2 = (1 + ²)¾. We can then rewrite the moment equation (3.27) as

¹′
r = eµr{¿ r2/21 (1− ²)Φ(−º1r) + ¿

r2/2
2 (1 + ²)Φ(º2r)}. (3.28)

Using equation (3.28), the first four central moments are then given by

¹′
1 = eµ{√¿1(1− ²)Φ(−º1) +

√
¿2(1 + ²)Φ(º2)}, (3.29)

¹′
2 = e2µ{¿ 21 (1− ²)Φ(−2º1) + ¿ 22 (1 + ²)Φ(2º2)}, (3.30)

¹′
3 = e3µ{¿ 9/21 (1− ²)Φ(−3º1) + ¿

9/2
2 (1 + ²)Φ(3º2)}, (3.31)

¹′
4 = e4µ{¿ 81 (1− ²)Φ(−4º1) + ¿ 82 (1 + ²)Φ(4º2)}. (3.32)

We note that the first four central moments ¹r = E[T − ¹′
1]

r can be calculated from

the first four central moments by

¹1 = ¹′
1, (3.33)

¹2 = ¹′
2 − ¹2

1, (3.34)

¹3 = ¹′
3 − 3¹1¹

′
2 + 2¹3

1, (3.35)

¹4 = ¹′
4 − 4¹1¹

′
3 + 6¹2

1¹
′
2 − 3¹4

1. (3.36)
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Furthermore, it follows that the coefficients of skewness and kurtosis are

√
¯1 =

√
¹3

¹3
2

and ¯2 =
¹4

¹2
2

. (3.37)

It should be noted the skewness and kurtosis for the lognormal distribution involves

only the parameter ¾. As compared to the lognormal, we note that
√
¯1 and ¯2

involve the parameters ¾ and ².

4 Maximum likelihood estimation

Let Y1, Y2, ⋅ ⋅ ⋅ , Yn denote i.i.d. Yi ∼ LESN(µ, ¾, ²). The loglikelihood for the i-th

observation is given by

lLESN(µ, ¾
2, ²∣yi) =

⎧
⎨
⎩
log yi − 1

2
log 2¼¾ − (log yi−µ)2

2¾2(1−²)2
, if log yi < µ,

log yi − 1
2
log 2¼¾ − (log yi−µ)2

2¾2(1+²)2
, if log yi ≥ µ,

(4.1)

Denote the loglikelihood for the i-th observation for the ESN(µ, ¾, ²) as lESN(µ, ¾
2, ²∣xi),

then lLESN(µ, ¾
2, ²∣yi) = log yi + lESN(µ, ¾

2, ²∣ log yi). We denote the maximum like-

lihood estimates of (µ, ¾2, ²) as (µ̂, ¾̂2, ²̂).

Let y(1) ≤ y(2) ≤ ⋅ ⋅ ⋅ ≤ y(n) denote the order statistic of a sample from the

LESN(µ, ¾, ²) population. Also denote y0 = 0 and yn+1 = ∞. We apply some of the

results from Mudholkar and Hutson (2000) to the LESN(µ, ¾, ²) distribution.

Lemma 4.1. There exists and integer k = k(y(1), . . . , y(n)), 0 ≤ k ≤ n, such that the

loglikelihood l(µ, ¾2, ²) can be expressed as

l(µ, ¾2, ²) =

⎧
⎨
⎩
−n

2
log 2¼¾ −∑n

i=1 log y(i) − 1
8¾2

∑n
i=1[(log y(i) − µ)2], if k = 0, n,

−n
2
log 2¼¾ −∑n

i=1 log y(i) − 1
2¾2 [

∑k
i=1

(log yi−µ)2

(1−²)2
+
∑n

i=k+1
(log yi−µ)2

(1+²)2
], if 1 ≤ k < n,

(4.2)
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Lemma 4.2. If k = 0 or k = n the maximum likelihood estimate (µ̂, ¾̂2, ²̂) is given

by

(µ̂, ¾̂2, ²̂) =

⎧
⎨
⎩
(log y(n), s

2
n,−1) if k = 0,

(log y(1), s
2
0, 1) if k = n,

(4.3)

where s20 =
∑n

i=2(log y(i) − log y(1))
2/(4n) and s2n =

∑n−1
i=1 (log y(i) − log y(n))

2/(4n).

Lemma 4.3. If 1 ≤ k < n then the local minima of

gj(y, µ) =
1

4

⎧
⎨
⎩

[
j∑

i=1

(log y(i) − µ)2

]1/3

+

[
n∑

i=j+1

(log y(i) − µ)2

]1/3
⎫
⎬
⎭

3

, (4.4)

j = 1, 2, . . . , n− 1, if any, determines the local maxima of the loglikelihood.

Lemma 4.4. Let µ0 denote a solution of

ℎ′
j(y, µ) = − 2

3

⎧
⎨
⎩

j∑
i=1

(log y(i) − µ)

[
j∑

i=1

(log y(i) − µ)2

]−2/3

+
n∑

i=j+1

(log y(i) − µ)

[
n∑

i=j+1

(log y(i) − µ)2

]−2/3
⎫
⎬
⎭ = 0,

(4.5)

j = 1, 2, . . . , n−1. Then the corresponding values ¾2 = ¾2
0 and ² = ²0 which maximize

the loglikelihood are given by

²0 =
[
∑n

i=j+1(log y(i) − µ0)
2]1/3 − [

∑j
i=1(log y(i) − µ0)

2]1/3

[
∑n

i=j+1(log y(i) − µ0)2]1/3 + [
∑j

i=1(log y(i) − µ0)2]1/3
, (4.6)

¾2
0 =

1

4n

⎧
⎨
⎩

[
j∑

i=1

(log y(i) − µ0)
2

]1/3

+

[
n∑

i=j+1

(log y(i) − µ0)
2

]1/3
⎫
⎬
⎭

3

(4.7)

Lemma 4.5. The global maximum of the loglikelihood is obtained by examining the

following local maxima for the set k = 0, k = n, and the set (µ0, ¾
2
0, ²0) given by
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Lemmas 4.2 and 4.4:

Max lk(µ0, ¾
2
0, ²0) =

⎧
⎨
⎩

−n
2
[1 + log s2n] if k = 0,

−n
2
[1 + log ¾2

0] if 1 ≤ k < n,

−n
2
[1 + log s20] if k = n,

(4.8)

where s20 and s21 are given by Lemma 4.2 and ¾2
0 is given by Lemma 4.4.

Theorem 4.6. As n → ∞, the maximum likelihood estimator
√
n(µ̂ml − µ, ¾̂2

ml −
¾2, ²̂ml − ²) is a centered trivariate normal distribution with variance-covariance ma-

trix

Σml =

⎛
⎜⎜⎜⎝

Iµµ = 3¼(1−²2)¾2

3¼−8
Iµ¾

2
= 0 Iµ² = −2

√
2¼(1−²2)¾
3¼−8

I¾
2¾2

= 2¾4 I¾
2² = 0

I²² = ¼(1−²2)
3¼−8

⎞
⎟⎟⎟⎠ . (4.9)

Theorem 4.7. If ² = ²0 then as n → ∞,
√
n(µ̂ml(²0)− µ, ¾̂2

ml(²0)− ¾2) is a centered

bivariate normal distribution with variance-covariance matrix
⎛
⎝ (1− ²20)¾

2 0

0 2¾4

⎞
⎠ . (4.10)

In the context of LESN modeling the parameter ²may be interpreted as a measure

of distance of the distribution from lognormality with respect to LESN alternatives.

Hence, the test

H0 : ² = 0

H1 : ² ∕= 0
(4.11)

may be used as a diagnostic tool with respect to the appropriateness of testing the

appropriateness of an underlying lognormal model versus a broad class of LESN

alternatives.
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5 Simulation

We conducted two simulation studies. The first study was to examine the behavior of

the maximum likelihood based estimates of the LESN parameters. The second part

of our study examined the lognormal versus LESN in terms of confidence intervals

for the population mean under various LESN parameterizations.

For the first part we let T ∼ LESN(0, 1, ²) with sample sizes n = 25, 50, 100, 200,

and 500. We utilized 10000 simulations under each scenario. We let ² range from

−0.75 to 0.75 by 0.25, which includes the special case of ² = 0 corresponding to the

lognormal distribution.

Tables 1 and 2 summarize the maximum likelihood parameter estimation of the

LESN model parameters µ, ¾, and ². We see there is finite bias in the parameter

estimates. As expected, the bias approaches zero and the variance of the parameter

estimates decrease as the sample size increases. Hence, via simulation we have that

the maximum likelihood estimates of the LESN parameters are well-behaved, thus

validating the results at (4.9).

for the second part, for each data set simulated, we estimated E(Y ) = eµ+¾2/2

for the lognormal and E(Y ) for LESN as given in equation (3.29). 95% confidence

intervals were computed for each sample using standard errors calculated via the

delta method. Using the true mean, we were able to obtain estimated coverage

probabilities of the confidence intervals. Results are summarized in tables 3 and 4.

We see that when simulating under the lognormal distribution (² = 0), both

models perform well with the coverage probabilities approaching 95% as the sample

size increases. Once ² ∕= 0, we see that the estimated coverage probabilities for the

lognormal fit deteriorate rapidly and tend toward 0 as the sample size increases.

More specifically, when ² = −0.25, which is near lognormal, the coverage probability

for the lognormal fit falls below 90% when n = 500. When ² = 0.25, the coverage
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probability for the lognormal fit is always below 90% and falls as low as 70%. The

coverage probability for the LESN is very well-behaved and approaches 95% when n

gets larger.

6 Example

For the purpose of illustration we look at the Mayo Clinic primary biliary cirrhosis

data that can be downloaded from http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets.

In particular, we examine 418 serum bilirubin (mg/dl) measurements. Some basic

statistics are reported in the next table

n x s
√
¯1

418 3.22 4.41 2.72

In the table that follows, maximum likelihood estimators are presented for log-

normal and LESN. It is interesting to note the p-value for testing equation 4.11 is

p < 0.0001. This suggests that the lognormal model may not be appropriate.

Parameters LESN Lognormal

µ −0.4169 0.5715

¾ 0.9273 1.0238

² 0.6713 –

mean 3.52 2.99

standard deviation 8.72 4.07

skewness 0.23 0.31

Figure (4a) depicts histogram of the serum bilirubin measurements and model

fitting for lognormal and LESN models. We see that the LESN model provides a

better fit. This is supported by figure (4b) which depicts a histogram of the natural

logarithm of the serum bilirubin measurements and model fitting for normal and

ESN models. Even after the log transformation, the data are clearly right skewed.
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Appendix A

Some basic properties of the ESN distribution, developed by Mudholkar and Hutson

(2000) [14] used in this note are below. The pdf, cdf, and qf of its canonical form

ESN(0, 1, ²) are respectively:

f0(x) =

⎧
⎨
⎩

1√
2¼

exp
(
− x2

2(1−²)2

)
, if x < 0,

1√
2¼

exp
(
− x2

2(1+²)2

)
, if x ≥ 0,

(A.1)

F0(x) =

⎧
⎨
⎩
(1− ²)Φ

(
x

1−²

)
, if x < 0,

−²+ (1 + ²)Φ
(

x
1+²

)
, if x ≥ 0,

(A.2)

and,

Q0(u) = F−1
0 (u) =

⎧
⎨
⎩
(1− ²)Φ−1

(
u

1−²

)
, if 0 < u < (1− ²)/2

(1 + ²)Φ−1
(
u+²
1+²

)
, if (1− ²)/2 ≤ u < 1,

(A.3)

where −1 < ² < 1, and Φ(x) denotes the standard normal c.d.f.

The general form for the p.d.f., denoted ESN(¹, ¾, ²), is f0(
x−¹
¾

)/¾, where f0(⋅) is
given by (A.1). Similarly, the general form for the c.d.f. of ESN(¹, ¾, ²) is F0(

x−¹
¾

),

where F0(⋅) is given by (A.2). Its quantile function, Q(u) = ¹ + ¾Q0(u), can be

used to generate samples from the ESN(¹, ¾, ²) population. Note the relationship

Q(1−²
2
) = ¹.

The mean of ESN(¹, ¾, ²)is given by

E(X) = ¹+
4¾²√
2¼

, (A.4)

and the variance is given by

Var(X) =
¾2

¼
[(3¼ − 8)²2 + ¼]. (A.5)

The moment generating function of the standard epsilon-skew-normal distribu-

tion ESN(0, 1, ²) is

M(t) = (1− ²)e(1−²)2t2/2Φ[−(1− ²)t] + (1 + ²)e(1+²)2t2/2Φ[(1 + ²)t]. (A.6)
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If X ∼ ESN(¹, ¾, ²) then MX(t) = e¹tM(¾t).
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Table 1: MLE of LESN model fit ² < 0

² n µ = 0 ¾ = 1 ²

25 −0.031± 0.45 0.932± 0.14 −0.797± 0.29

50 0.025± 0.31 0.967± 0.10 −0.797± 0.19

−0.75 100 0.027± 0.21 0.985± 0.07 −0.778± 0.13

200 0.016± 0.14 0.993± 0.05 −0.765± 0.08

500 0.005± 0.08 0.998± 0.03 −0.755± 0.05

25 0.015± 0.59 0.934± 0.14 −0.553± 0.39

50 0.039± 0.40 0.971± 0.10 −0.541± 0.25

−0.50 100 0.020± 0.26 0.986± 0.07 −0.519± 0.16

200 0.008± 0.17 0.994± 0.05 −0.508± 0.10

500 0.004± 0.10 0.997± 0.03 −0.503± 0.06

25 0.024± 0.68 0.938± 0.14 −0.285± 0.45

50 0.025± 0.44 0.972± 0.10 −0.273± 0.27

−0.25 100 0.009± 0.28 0.987± 0.07 −0.259± 0.16

200 0.003± 0.18 0.993± 0.05 −0.253± 0.11

500 0.000± 0.11 0.998± 0.03 −0.251± 0.07
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Figure 1: Some typical LESN probability density functions

(a) ¾ = 5 (b) ¾ = 3
2 (c) ¾ = 1

(d) ¾ = 1
2 (e) ¾ = 1

4 (f) ¾ = 1
8
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Figure 2: Some typical LESN hazard functions

(a) ¾ = 5 (b) ¾ = 3
2 (c) ¾ = 1

(d) ¾ = 1
2 (e) ¾ = 1

4 (f) ¾ = 1
8
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Figure 3: Some typical ESN(0, 1, ²) probability density functions.

(a) ² = 0 (b) ² = 0.25

(c) ² = 0.50 (d) ² = 0.75
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Figure 4: Histogram of Serum Bilirubin (mg/dl) data.

(a) Model fitting LESN (solid line) and log-

normal (dotted line)

(b) Model fitting ESN (solid line) and nor-

mal (dotted line)
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Table 2: MLE of LESN model fit ² ≥ 0

² n µ = 0 ¾ = 1 ²

25 0.003± 0.71 0.938± 0.14 −0.001± 0.47

50 0.004± 0.45 0.972± 0.10 0.000± 0.28

0 100 0.004± 0.28 0.988± 0.07 −0.002± 0.17

200 0.005± 0.19 0.994± 0.05 −0.003± 0.11

500 0.002± 0.12 0.997± 0.03 −0.001± 0.07

25 −0.032± 0.68 0.934± 0.14 0.291± 0.45

50 −0.029± 0.44 0.973± 0.10 0.275± 0.27

0.25 100 −0.005± 0.28 0.986± 0.07 0.257± 0.16

200 −0.001± 0.18 0.993± 0.05 0.253± 0.11

500 −0.002± 0.11 0.997± 0.03 0.252± 0.07

25 −0.028± 0.58 0.933± 0.14 0.564± 0.38

50 −0.048± 0.40 0.969± 0.10 0.547± 0.25

0.50 100 −0.025± 0.26 0.987± 0.07 0.521± 0.16

200 −0.005± 0.17 0.994± 0.05 0.506± 0.10

500 −0.001± 0.10 0.997± 0.03 0.502± 0.06

25 0.024± 0.44 0.930± 0.14 0.800± 0.28

50 −0.015± 0.31 0.966± 0.10 0.790± 0.19

0.75 100 −0.027± 0.21 0.986± 0.07 0.779± 0.13

200 −0.014± 0.14 0.992± 0.05 0.763± 0.08

500 −0.004± 0.08 0.997± 0.03 0.754± 0.05

23



Table 3: Estimates of Expected Value and Coverage Probabilities ² < 0

² n E(Y ) E(Y ) lognormal CP E(Y ) LESN CP

25 0.563± 0.12 99.2% 0.464± 0.07 86.2%

50 0.565± 0.08 99.6% 0.475± 0.05 89.6%

−0.75 100 0.479 0.566± 0.06 96.8% 0.479± 0.04 91.4%

200 0.566± 0.04 80.6% 0.479± 0.03 93.1%

500 0.566± 0.03 22.6% 0.479± 0.02 94.6%

25 0.784± 0.16 98.7% 0.698± 0.13 87.6%

50 0.785± 0.11 99.2% 0.703± 0.09 91.0%

−0.50 100 0.700 0.784± 0.08 98.0% 0.702± 0.06 92.8%

200 0.786± 0.06 91.1% 0.701± 0.04 94.2%

500 0.785± 0.04 58.8% 0.701± 0.03 94.4%

25 1.128± 0.25 96.5% 1.078± 0.24 89.1%

50 1.122± 0.17 97.9% 1.064± 0.16 92.1%

−0.25 100 1.057 1.122± 0.12 97.9% 1.060± 0.11 94.0%

200 1.123± 0.09 96.8% 1.058± 0.08 94.6%

500 1.123± 0.05 89.1% 1.058± 0.05 95.0%
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Table 4: Estimates of Expected Value and Coverage Probabilities ² ≥ 0

² n E(Y ) E(Y ) lognormal CP E(Y ) LESN CP

25 1.670± 0.42 91.2% 1.717± 0.50 88.1%

50 1.660± 0.29 93.2% 1.677± 0.32 92.2%

0 100 1.649 1.656± 0.21 94.0% 1.661± 0.22 93.1%

200 1.652± 0.14 94.7% 1.653± 0.15 94.1%

500 1.649± 0.09 95.0% 1.650± 0.09 94.7%

25 2.529± 0.74 82.7% 2.814± 1.05 86.7%

50 2.517± 0.51 84.0% 2.750± 0.70 90.5%

0.25 100 2.667 2.502± 0.36 82.5% 2.693± 0.45 92.4%

200 2.498± 0.25 79.0% 2.680± 0.31 93.7%

500 2.494± 0.16 70.0% 2.673± 0.20 94.4%

25 4.005± 1.40 73.7% 4.846± 2.35 86.2%

50 3.935± 0.95 71.3% 4.696± 1.50 89.5%

0.50 100 4.486 3.904± 0.64 66.0% 4.587± 0.98 92.2%

200 3.891± 0.45 55.4% 4.528± 0.65 93.6%

500 3.879± 0.29 30.4% 4.498± 0.41 94.2%

25 6.500± 2.78 63.7% 8.600± 5.47 84.0%

50 6.339± 1.79 59.1% 8.286± 3.27 88.7%

0.75 100 7.871 6.290± 1.21 50.2% 8.156± 2.12 91.8%

200 6.217± 0.83 32.4% 7.968± 1.42 93.1%

500 6.212± 0.53 8.7% 7.916± 0.88 94.2%
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