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Abstract

One of the main topics within the field of mathematical morphology is the detection of ob-
jects, e.g. spots in an image. In general, spot detection or bump hunting in high-dimensional
data is a well studied problem. Here, we propose a novel spot detection method based on
the smoothing decomposition, Data = Smooth + Rough (Velleman, 1980). By studying
the rough from a cross shaped smoother, we will show how to locate spots or “bumps” in
multi-dimensional images. The essential feature of our novel method is the shape of the
window. Usual practice is to choose a window which is (hyper-) cubical or (hyper-) spher-
ical. We have found that by choosing the window to be (hyper-)crossical (i.e. shaped like
a multi-dimensional cross), the resulting “rough” is also shaped like a cross centered on the
local maxima. We choose to use the median as the summary statistic over the pixels in the
smoothing window. Further, we show that the choice of a nonlinear summary statistic, such
as the median, is critical in the ability to distinguish the spots in the image. We demonstrate
a few properties of this procedure and apply it to a variety of images from various fields,
including genetic and proteomic data analysis. The supplemental materials provided contain
the supporting theory used for this manuscript.

Keywords: bump hunting, image analysis, spatial smoothing, feature detection, mathe-
matical morphology
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1 Introduction

The general subject of mathematical morphology (MM) began in the 1960s and encom-
passes methods from statistics, machine learning, topology, set theory, and computer science
(Serra, 1986; Soille, 2003; Maragos, 1987). It is the science of analyzing and processing
geometric structures in digital images. In MM, image processing techniques are applied to
digital images to search for geometric structures, e.g. local maxima. Examples of com-
mon MM functions include opening, closing, thinning, binning, thresholding, and watershed
techniques. A key component in MM is the structuring element, i.e. the shape used to
interrogate the image. The two main characteristics that describe the structuring element
are its shape and size. In digital images, the structuring element scans the image and alters
the pixels in its window content using basic operators similar to Minkowski addition. We
introduce and apply a “cross” structuring element in this paper.

The goal of processing images with MM methods can be to preserve the global features
of the image, preserve large smooth objects in an image, denoise images, and detect ob-
jects within an image. Situations where MM methods are employed for detection include
pedestrian detection (Gavrila et al., 2002), tumor mass detection (Tarassenko et al., 1995),
and facial feature detection (Saber and Murat Tekalp, 1998; Wang et al., 2002). In this
manuscript, we propose using a MM technique with a “cross” shaped structuring element in
conjunction with residual analysis to aid in spot finding in biological images.

Spot detection in multi-dimensional images is presently being performed in many differ-
ent applications ranging from astronomy to proteomics; see, for example, Agard et al. (1981),
Bertin and Arnouts (1996), Lindeberg (1998), Cutler et al. (2003), and Lalush (2003). The
previously mentioned papers employ MM techniques such as watershed methods, threshold-
ing operators, and wavelet reconstruction methods to find the spots present in an image. In
general, feature detection (which includes spot detection) has a growing body of research in
high-dimensional datasets; see, for example, Jain and Zongker (1997) and Guo et al. (2008).
Likewise, smoothing operators have a rich history throughout statistics and can be used in
a variety of ways (Velleman, 1980), including:

• data exploration (Tukey, 1977; Tukey and Mosteller, 1977)

• robust regression (Beaton and Tukey, 1974)

• sequences of regressions (Wainer and Thissen, 1975)

• robust seasonal adjustment (Diggle, 1990)

• signal and image processing (Justusson, 1981; Polzehl and Spokoiny, 2000)

• spatial smoothing (Tibshirani and Wang, 2007).

This paper combines aspects of feature detection and smoothing to develop a new spot
detection method for k-dimensional images. In our new method, a specialized median (re-
ferred to hereafter as an s-median) smoother is developed, where we focus on the residuals
(the rough) as a method of feature detection. Figure 1 is an example of our spot detection
method applied to an image consisting of four mountains shaped like Gaussian densities with
different variances.
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Residual plots, on the other hand, were developed as a diagnostic tool for checking
common assumptions associated with model fit such as symmetry, normality, additivity, and
variance stability; see, for example, Tukey (1977), Velleman and Hoaglin (1981), and Hoaglin
et al. (1991). We propose instead to utilize the residuals obtained from the s-median as a
means of feature detection in multi-dimensional datasets. Consider a k-dimensional (kD)
image represented by Ik(x), where x is a point location in the Cartesian coordinate system.
Let Rk,c denote the kD residual image obtained by using an s-median operator with “arms”
of length c. Possible window sizes are illustrated in Figure 2. Accordingly, R2,1 and R2,2

refer to residual images obtained by using a 3 × 3 window (i.e. the 5-pixel cross shown in
Figure 2(a)) or a 5×5 window (i.e. 9-pixel cross shown in Figure 2(b)), respectively. With
this notation, we can explore the R image to locate peaks (in 1D) or spots/bumps (in 2D
images), examine how the window size (structuring element) affects the Rk,c image, and
study how different-sized operators work in the presence of noise.

By introducing a window for smoothing (as illustrated in Figure 2) and utilizing the
decomposition, Rough = Data - Smooth (Velleman, 1980), we illustrate spot detection in an
image, along with the underlying theory that supports the success of this approach. The
paper is outlined as follows. Section 2 demonstrates this procedure for the case where the
image is noise-free. Section 3 extends these ideas to study the behavior of the s-median
operator in the presence of noise. We illustrate the spot detection method via biological
examples in Section 4, and give some final thoughts and discussion in Section 5.

2 The Noise-free Case

Consider a kD input image Ik, where Ik(x) denotes the image intensity at the (Cartesian) co-
ordinate x = (x1, x2, . . . , xk). Similarly, let Sk,c denote the s-median smoothed image, where
Sk,c(x) is the resulting s-median value at x (see Supplemental Materials for details regarding
s-median computation). We compute the residual image Rk,c via Rk,c(x) = Ik,c(x)−Sk,c(x).
The remainder of this paper characterizes R in terms of I and S.

2.1 One Mountain

Let I1 be a one-dimensional (1D) mountain, that is, a 1D sequence consisting of a sequence
of increasing values followed by decreasing values. Then, for any c, R1,c ≥ 0, and R1,c = 0
when the sequence contained in the window span is monotone. In particular, R1,c(x) > 0
if x is the location of the absolute maximum in the sequence. Extending this concept to
a k-dimensional mountain, then Rk,c ≥ 0 with a strict inequality occurring at the absolute
maximum.

Figure 3(a) is an example of a 1D mountain whose maximum intensity value is at x = 0.
Figure 3(b)-(c) show the associated residual images, R1,1 and R1,7, determined via a 3-pixel
(i.e. arm size 1) smoothing window, and a 15-pixel (i.e. arm size 7) smoothing window,
respectively. As a result, we see the impact that a varying window size can have on peak
detection for a 1D mountain. The peak location in Figure 3(b) is clearly more precise than
in Figure 3(c). In particular, because of the small window size associated with Figure 3(b),
the peak location is the only location with a nonzero residual value. Meanwhile, in Figure
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3(c), the larger window span allows for a greater number of cases where the window span
does not contain a monotone sequence within the window. Thus, the interval containing
nonzero residuals is [-3,3].

Analogously, we consider the 2D example shown in Figure 3(d), where (50,50) is the center
of the image and the location of the mountain’s peak. Figure 3(e)-(f) show the corresponding
R2,c images for s-medians of arm size 2 (i.e. c = 2, or a 5×5 cross smoother window consisting
of 9 pixels; see Figure 2(b)), and 7 (i.e. c = 7, or a 15 × 15 cross smoother), respectively.
The R2,c images each show a “cross” (or ′′+′′ shape) formed at the local maximum, but with
varying degrees of precision because of the chosen arm length associated with the s-median.
Nonetheless, we see that the cross is characteristic of a mountain or spot present in I2 and can
be used to locate spot centers in an image. More interesting examples will involve multiple
mountains within an image, as well as mountains in the presence of noise.

2.2 Multiple mountains

Considering multiple mountains requires the introduction of several more concepts and defi-
nitions to characterize their presence in an image. In one dimension, we will say that there are
multiple mountains present in a 1D image if the 1D sequence of values {I1(x)}, x = (1, ..., n)
has more than one subsequence consisting of a strictly increasing sequence followed by a
strictly decreasing sequence. Given the presence of multiple (say m) mountains, there exists
an absolute maximum and an absolute minimum in the sequence. There also exist, however,
m local maxima and m − 1 local minima between neighboring mountains. We restrict the
local minimum value to be unique, and do not allow for constant sequences within the 1D
sequence.

When we consider several mountains in two or more dimensions, it becomes difficult to
characterize this scenario with general propositions regarding R. Several factors contribute to
this problem, such as (1) the relative intensity of each mountain with respect to the others;
(2) the location of the absolute maximum in the image; and (3) the mountain’s support
(“area”), volume, and shape/profile. Hence, any proposition regarding spot detection in
multiple dimensions will require several restrictions and definitions regarding mountain shape
and size, thus limiting the practicality of the proposition.

Since our applications will involve detection of multiple spots in biological images, we will
present some specific examples showing the residual images obtained from images containing
multiple spots. In the single mountain examples (Figure 3), it is already clear that different
window sizes (i.e. different c values) impact the visibility and appearance of the cross in the
Rk,c image. One of the more interesting examples involves two nearby spots. Figure 4(a)
shows a perspective plot of two mountains of different intensities and standard deviations.
Here, the mountains are surrounded by largely flat regions, but the mountains are relatively
close with a saddle point between them. As the value of c increases, the corresponding R2,c

image changes from featuring two distinct crosses to showing only one cross. That is, as c
increases, the crosses that first appear as two distinct objects become merged into one cross
centered between the two spots. Figure 4(b)-(c) show the R2,c images obtained from two
different values of c applied to Figure 4(a).

From the example in Figure 4, the change in window size significantly affects spot de-
tection. When the window size (i.e. c) increases, the cross becomes wider. Ultimately, close
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spots become blended together with large values of c. In contrast, a small smoothing window
will produce a smaller width cross, thus allowing for the separation of two distinct peaks.
Figure 4 shows that it can be difficult to characterize the Rk,c images in the presence of
multiple mountains. Large values of c tend to oversmooth an image such that, for large c,
two mountains are likely to be “interpreted” as one large mass in the R image. Meanwhile,
small values of c preserve small mountains near each other that may, in fact, be spurious
depending on the nature of the noise (see Section 3). Although the Rk,c operator for nearby
mountains is difficult to characterize, it does allow for spot detection in images with multiple
spots.

All of the examples thus far have focused on noise-free images. The following examples,
however, explore an Rk,c image when noise is introduced in the raw image Ik. As expected,
it will make spot detection in Rk,c more difficult.

3 The Noisy Case

Thus far, we have examined the R image for noise-free images, I. In the 1D case, we see that
R1,c(x) > 0 for any c when x is the location of the absolute maximum, and R1,c = 0 when
the sequence contained in each dimension of the smoothing window is monotone. Further,
under certain circumstances associated with 1D images, R1,c(x) < 0 when x is the location
of a local minimum in our image. We can now extend these ideas to images in the presence
of noise. As usual, when studying noisy data, we must bear in mind the signal-to-noise ratio.

We begin with the 1D case, which presents some interesting results. Consider adding
independent and identically distributed (i.i.d.) Gaussian noise to the 1D monotonic sequence
{I(x)}, where x = (1, ..., n). Let I(i) = gi + Ni, where gi denotes the true signal at location
i, si equals the step size at i in the monotonic sequence such that gi + si = gi+1, and
Ni ∼ N(0, σ) ∀ i denotes normally distributed noise of mean zero and standard deviation
σ. We fix si = s for our examples such that the signal-to-noise ratio (s/σ) remains constant
within each simulation.

We will examine the case when R1,c(x) = 0 at an arbitrary location x. We know that
R1,c = 0 on a strictly increasing or decreasing sequence. In certain cases, a closed-form
solution exists to compute the probability that the R image is zero (Pr(R = 0)) over a
monotone sequence with i.i.d. noise. However, in most cases, it is not possible to compute
a closed-form solution for Pr(R = 0). Figure 5 shows the estimated Pr(R1,c = 0) over a
monotone sequence for different values of c in the 1D situation. Note that the x-axis is the
ratio of stepsize to standard deviation of the noise, and that each curve begins at 1/(2c+1)
and asymptotes at 1. The signal-to-noise ratio, s/σ, is the critical value in evaluating how
R1,c operates in a noisy environment. If the step size is 0, then each point in the window
is equally likely to be the median, hence Pr(R1,c = 0) = 1

2c+1
for any c when s = 0. As

the step size increases relative to the standard deviation of the noise, naturally for any c,
we expect the probability to converge to one (Pr(R1,c = 0) → 1). Hence, for noise-free
monotone images, we have that R1,c = 0 for all c.

In the presence of noise, however, the monotone signal becomes contaminated such that
Pr(R1,c = 0) decreases as c increases. Intuitively, as c increases, the number of points in the
smoothing window increases hence there are more “opportunities” for other points to be the
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median, thus making the residual nonzero at that location.
Given the local maximum at x = p in a noise-free 1D mountain, R1,c(p) > 0. In the

presence of noise, we can estimate (via simulation) the Pr(R1,c(p) > 0) when I(i) = gi + Ni

and

gi =

{

gi+1 − s, i < p
gi+1 + s, i ≥ p,

i.e., we can estimate the probability that the 1D residual image intensity value at the local
maximum location is positive. Figure 6(a) shows the estimated Pr(R1,c(p) > 0) at the
absolute maximum location p as a function of s/σ for different values of c in a 1D image.
Analogously, Figure 6(b) shows Pr(R2,c(p) > 0) for a maximum location p = (p1, p2) when I
is a 2D image. For all c, the simulation results show that Pr(Rk,c(p) > 0) → 1 monotonically
as the signal-to-noise ratio increases, k = 1, 2. Further, as shown in Figures 6(a)-(b), as c
increases, the rate in which Pr(Rk,c(p) > 0) converges to 1 also increases, k = 1, 2.

To further illustrate the importance of the size of the smoothing window in detecting
spots, Figure 7 shows the R image for Figure 1 when noise (of the type described above) is
added to the image. With a fixed smoothing window, as the standard deviation of the noise
increases, the ability to discern the cross decreases. Specifically at a standard deviation of
50, the crosses are nearly indistinguishable from noise for the top two mountains. Recall
that, with the noise-free single mountain example, we clearly detected a cross in the rough
operator image at the mountain’s maximum. Further, the size of the observed cross was
directly related to the operating window. As the window size increased, the size of the cross
increased as well. Consider adding noise to the mountain in Figure 3. Figure 8(a) shows a
single mountain with added i.i.d. N(0,σ = 200) noise at each pixel. Figures 8(b)-(c) show the
associated R2,c images for a c = 9 cross and a c = 27 cross, respectively. There are several
interesting features to note in this example. We see the respective crosses associated with
the smoothing window; however, when using the c = 9 arm, it is much harder to distinguish
the cross from the remaining picture. With the c = 27 arm, the cross is more apparent,
mainly due to the cross being wider than in Figure 8(b).

To confirm that large values of c more effectively find spots, Figures 9(a)-(c) show a
sequence of three spots in order of increasing size with normally distributed noise of mean 0
and standard deviation 48. Figures 9 (d)-(f) are the R2,2 images corresponding to Figures 9
(a)-(c), respectively. Figures 9 (g)-(i) are the R2,3 images corresponding to Figures 9 (a)-(c).
From the image, it is easier to detect larger spots in the presence of noise and in the presence
of noise, larger values of c are more effective for detecting spots.

Collectively, Figures 5-9 illustrate the tradeoff that must be considered when determining
the arm size for the s-median smoother. We see that large values of c are more likely to yield
positive residuals at the maximum in the I image; however, the residuals associated with
large values of c are also more likely to be nonzero in the presence of noise over monotonic
regions. In other words, for spot finding, large values of c will improve spot detection in noisy
images, however, it may cause two distinct spots to become one large spot in the presence of
noise. A balance between these two issues will be critical in choosing the optimal c value(s)
for peak or spot finding (see Section 5).
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4 Examples

The biological imaging domain is attractive for this spot detection method. Numerous bio-
logical applications involve spot or feature detection in images including mass spectrometry,
gel electrophoresis, and genetic microarrays. In mass spectrometry, the relevant data are
represented as spectra where the associated peaks in the intensity plots represent proteins
(or peptides) present in a sample. Obtaining the location and intensity of these peaks aides
in identifying sample proteins for further study consideration. Gel electrophoresis data are
represented in the form of 2D images comprised of protein spots. Again, investigators are
interested in detecting these features in order to isolate their location in the image and
potentially extract the associated protein sample for further analysis. Finally, microarray
data are represented as two-dimensional images of spots in a 2D matrix structure. Feature
detection is key in order for the genetic data to be properly summarized for future analy-
sis. Thus, feature detection in biological images is important since image and subsequent
analyses are critical for these technologies to have utility in diagnosing disease or assessing
putative biomarkers.

4.1 Mass Spectrometry

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-
MS) is a technology that can be used to profile protein markers from tissue or bodily fluids,
such as serum or plasma in order to compare biological samples from different patients or
different conditions. The output from a MALDI experiment consists of a measured intensity
for each mass-to-charge ratio (m/z) value; see Figure 10(a). The sets of expressed proteins
are identified within each spectrum in order to ultimately determine differentially expressed
proteins between conditions or samples. See Karas et al. (1990) for further details describing
the MALDI technology.

Our s-median derived R image can be used to detect peaks in MALDI based images and
thus locate peptides present in the sample. The MALDI spectrum for each sample consists
of a single vector, I, thus applying the s-median is equivalent to applying a running median
to the I image. Using a MALDI dataset obtained from the Proteomics Core Laboratory at
Roswell Park Cancer Institute, we can examine the results of applying the s-median to a
MALDI spectrum. For this data, we set the bandwidth (i.e. the value of c in R1,c) to 500
data points, which corresponds to approximately a 95 m/z bandwidth. Figure 10(b) shows
the resulting s-median image using the chosen bandwidth; Figure 10(c) shows the associated
R1,500 image. From examining the R image, we note that the spikes in the original spectrum
are preserved, thus aiding in the identification of the peak location. Further, we notice that
we also have “negative peaks” in the residual image. Further work will explore the utility of
these “negative peaks” in quantifying the peaks in a MALDI image.

4.2 Gel Electrophoresis

Another application of this spot detection technique is on images obtained from two dimen-
sional difference gel electrophoresis (2D-DIGE) experiments such as those described in Sellers
et al. (2007). For our 2D-DIGE examples, we will focus on images representing portions of
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the 2D gels examining morphogenesis in Drosophila obtained from the Minden laboratory at
Carnegie Mellon University (Gong et al., 2004; Mergliano and Minden, 2003). Studying the
protein spots in the images allows the researchers to obtain a protein expression signature
of the sample under a given condition or given time point. The images under study have
been normalized according to the model described in Sellers et al. (2007). The full images
are 1024 pixels × 1280 pixels and densely populated with protein spots, making it difficult
to observe individual protein spots in detail. We therefore focus on a 50 pixel × 50 pixel
sub-image to better understand the result of applying the s-median.

Figure 11(a) shows the protein gel sub-image selected for illustration, I, with the asso-
ciated perspective plot shown in Figure 11(b). Figure 11(c) displays the associated residual
image, R2,6. From Figure 11(c), we can see the crosses associated with the protein spots
shown in Figure 11(a). As well, we also see that each protein spot is outlined in black since,
in the noise-free case, the R image is negative at local minima in an image. We can use the
black outline as a boundary identification tool to determine spot size in order to more accu-
rately determine summary information and excise the protein sample(s) of interest from the
gel. In 2D-DIGE experiment, after quantification of the protein spots under different chan-
nels or conditions, similar to gene microarrays, the spot ratios are computed and compared
to assess the degree of differential expression.

4.3 Pin Microarrays

Genetic microarrays are a popular analysis tool to study genetic changes associated with
disease. The image obtained from a microarray experiment consists of a series of spots
indicating the measured fluorescence of a probe (or “gene”) deposited at that location. See
Schena et al. (1995) for a detailed description of the microarray technology, and Gentleman
(2005) for an overview of the methods used for microarray analysis. In this technology,
image analysis software is required to summarize the signal for a given spot on a chip.
In this situation, we can examine the R image obtained from a pin microarray image for
proper identification of spot locations and spots sizes to aid in spot quantitation and data
summarization.

Figure 12(a) shows an example of a microarray image obtained from a cell cycle yeast
experiment (Fink et al., 1998). Similar to the gel electrophoresis example, Figure 12(b)
examines a subsection of the microarray chip shown in Figure 12(a). Figure 12(c) shows
the associated residual image (R2,6) obtained from applying an s-median to Figure 12(b). A
closer inspection of Figure 12(c) reveals a black spot within the center of each microarray
probe. This is an interesting phenomenon attributed to the manufacturing of the microarray.
Occasionally, the impact of the pin onto the microarray chip displaces the probe material
and causes a “donut” shape probe hybridization profile. The hybridization spot has a “hole”
in the middle since there was little or no probe material deposited to hybridize. This effect
is not obvious in Figure 12(b) but is clearly distinguished in Figure 12(c)-(d). This kind of
information can be used to improve the estimation of spot intensity in the microarray image.
The spot intensity estimates are used as input for downstream processing, ultimately, yielding
the expression value for each probe representing the amount of hybridized genetic material.
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5 Discussion

The classic equation, rough = data − smooth, has been the standard paradigm within
statistics. In this paper, we demonstrate a new MM operator where the residual image
derived from a novel smoother can be used to locate spots or mountains in an image. Thus
this method combines the residual operator from statistics with the structuring element (cross
shape window) in the field of mathematical morphology. The method is fast to implement
and is not biased by the scale of the mountain, e.g. regardless of the mountain’s size and
height, its location will be detected via a cross in the associated R image. This aspect
alleviates the need to alter or change the grey scales in an image when searching for spots
of varying intensities.

As demonstrated, this method uses the s-median operator to smooth images. Other win-
dow operators can be considered, however they result in different residual image implications.
For example, if a mean cross smoother (i.e. “s-mean”) is used on the Gaussian mountain in
Figure 13(a) rather than a median smoother, the residual image does not reveal the shape
of the mountain; see, e.g., Figure 13(b). Further, the shape of the smoothing window is
also a critical component of consideration. Figure 13(c) displays the results when a median
smoother with a grid or “box” shaped window sequence is used. Here, we now obtain a
residual image that looks like a starburst instead of a cross. As a result, the spot center
is now potentially more difficult to identify. The shape of the smoothing window (cross vs.
box) and the summary statistic used (median vs. mean) thus affect the R image and the
ability to detect the mountains in an image.

The issue of rotational invariance is an important concept within mathematical morphol-
ogy operators used in image detection. Rotational invariance implies that the resultant image
does not change when arbitrary rotations are applied to its input argument. In general, our
spot finding method is rotational invariant for the Gaussian spots with zero correlation, e.g.,
spots of the type shown in Figure 1. Interestingly, if we induce any nonzero correlation in
the spot, the spot finding method is no longer rotationally invariant. Figure 14(a) displays
a bivariate normal density with a correlation of 0.50 between the two variables. Figure 14
(b) is the residual image from our proposed method. Meanwhile, Figure 14(c) is the result
when employing a rotated version (45 degrees) of the structuring element used in Figure
14(b). Similarly, Figure 14(d) is the rotated version (90 degree) of Figure 14(a) with the
corresponding R images shown in Figures 14(e) - (f). Our proposed spot finding method is
not rotational invariant since the images in Figure 14(b) and Figure 14(e) are clearly differ-
ent. Although our proposed method is not rotational invariant, it is possible to rotate our
structuring element (cross) to align with the major and minor axes of a correlated spot as in
Figures 14(c) and (f). Both versions of the residual images clearly show a cross shape and
provide utility in terms of locating the spots in the image. Future work will further explore
the characteristics of the cross in each residual image in order to detect spots in correlated
images. Note, however, in our biological applications (e.g. 2D-DIGE), it is reasonable to
assume that there is negligible correlation within a spot. For example in a DIGE image,
the spots are created by electrophoresis in two dimensions where the electrophoresis for each
dimension is performed separately.

When using the s-median operator for spot finding, the major consideration is the arm-
length size c associated with the smoothing window, or alternatively the number of pixels
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included in the smoothing window (structuring element). The s-median smoother naturally
removes noise from I, hence the size of the smoothing window essentially decides the amount
of smoothing to apply to the dataset. From Figures 4 and 9, the choice of c is critical, since
choosing c too large will oversmooth the image and blend spots together, while choosing c
too small will undersmooth the image and cause spurious spots due to noise to appear as real
spots. Since the choice of c is essentially choosing a smoothing parameter, there are several
available methods to consider when choosing an optimal value for c. The general methods
for smoothing parameters include cross validation method and bootstrap algorithms. Future
work will examine the data driven cross validation schemes for choosing an optimal value of
c for specific image applications.

In conclusion, this manuscript develops a new method for spot finding and illustrates the
technique’s great utility within several biological settings such as mass spectrometry spec-
tra, gel electrophoresis images, and microarray images. Further, this method can be easily
extended to mountains in k dimensions and has applications in other domains, including
economics, finance, astronomy, physics, chemistry, etc.
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Figure 1: Bump Hunting: (a) A 200 pixel × 200 pixel image consisting of four Gaussian spots

with different locations and scales. (b) The associated perspective plot. (c) The “rough” residual

image (R2,4 image) after running a specialized median smoother (s-median). Clearly a cross is

present at the location of the respective spot centers associated with the spots shown in (a).
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Figure 2: Examples of Window Shapes in 2D: Window shape, often called the structuring

element in morphology, refers to the pixels used to compute the median for smoothing. Note that,

in this figure, the window shapes are shaded in grey. (a) A 3×3 s-median cross window consisting

of 5 pixels. This s-median replaces the intensity of pixel 5 with the median intensity of the grey

pixels (2,4,5,6,8). (b) A 5×5 s-median cross window consisting of 9 pixels. This s-median replaces

the intensity of pixel 13 with the median intensity of the grey pixels (3,8,11,12,13,14,15,18,23).
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Figure 3: Rk,c for an image I of a single mountain: (a) An image of a 1D mountain

generated by I1(x) = −x2 + 400, where x consists of the integers between -20 and 20 (i.e. 41

points). (b) R1,1, i.e. the residual image associated with I1 when applying a smoothing window

of 3 points (c = 1). Note that all of the residuals equal 0 except for the residual intensity at

the center of the mountain. (c) R1,7, i.e. the residual image associated with I1 when applying a

smoothing window of 15 points (c = 7). The residuals are greater than 0 at the location of the top

of the mountain and several adjacent locations. (d) A 100 × 100 pixel image of a two-dimensional

mountain generated by I2(x) = 6500 ∗ exp
(

−
(x1−50)2+(x2−50)2

150

)

. (e) R2,2, i.e. the residual image

associated with I2 using a 5×5 s-median where the smoothing window consists of 9 pixels (c = 2).

The characteristic “cross” is clearly present in this image. (f) R2,7, i.e. the residual image associated

with I2 using a 15×15 s-median where the smoothing window contains 29 pixels (c = 7). Clearly

the “cross” is wider than that appearing in R2,2, but the arms are not as long.
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(b) (c)

Figure 4: Two Nearby Mountains: (a) Perspective plot showing two relatively close moun-

tains. (b) The R2,5 operator image associated with the image in (a). The two crosses indicate the

presence of two relative maxima in the image. (c) The R2,27 image obtained from the image in (a).

In this situation, the two mountains are “blurred” into one cross.
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Figure 5: Estimated Probability of R = 0: For different values of c, the size of the smoothing

window, the y axis is the estimated probability that the R image is zero over a monotone signal of

step size s contaminated with i.i.d. normally distributed noise with standard deviation σ. The x

axis is the signal-to-noise ratio.
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Figure 6: Estimated Probability of R > 0 at a local maximum in 1D and 2D:
(a) Pr(R1,c(p)) > 0, where p is the location of the absolute maximum in a 1D image. (b)

Pr(R2,c(p1, p2)) > 0 for a 2D image, where (p1, p2) represents the location of the absolute maximum

in the 2D image.
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Figure 7: Spot Finding as Noise Increases: (a) R2,9 image associated with Figure 1, where

i.i.d. normally distributed noise (with mean 0 and standard deviation 5, i.e. N(0,5)) was added at

each point. (b) R2,9 image when the noise in Figure 1 is N(0,σ = 15). (c) R2,9 image when the

noise in Figure 1 is N(0,σ = 50). As the standard deviation of the noise increases, the ability to

detect the cross at each spot decreases.
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Figure 8: Mountains with Noise Added: (a) A 100 × 100 image of a 2D mountain where

noise is normally distributed with mean of 0 and standard deviation of 200. (b) The associated

R2,9 image; the characteristic “cross” is very difficult to discern by eye. (c) The R2,27 image; the

characteristic “cross” is still difficult to detect because of the noise, however it is more detectable

than the cross in (b).
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Figure 9: Choice of Smoothing Operator: A series of Gaussian mountains of increasing

size and normally distributed noise of mean 0 and standard deviation of 48 are shown in (a), (b)

and (c). The residual images from applying an R2,2 operator to (a), (b), and (c) are shown in (d),

(e), and (f), respectively. The residual images from applying an R2,3 operator to (a), (b), and (c)

are shown in (g), (h), and (i), respectively. The spots are more easy to distinguish using the R2,3

operator (row 3) rather than the R2,2 operator (row 2).
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Figure 10: Mass Spectrometry: (a) MALDI spectrum based on a tumor sample. (b) S image

based on a smoothing window of 95 m/z. (c) Associated R image. Note that the R image contains

spikes at each local maximum in the original image I.
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Figure 11: 2D-DIGE Images: (a) Subset of 2D-DIGE image. This 50 pixel × 50 pixel image

is a subimage of the Drosophilia proteome gel, normalized according to the model in Sellers et al.

(2007). (b) The associated perspective plot for the data in (a). (c) The associated R2,6 image.

There are several “crosses” apparent, which indicate protein spots in the image. There is also

“speckled” black and white noise pattern present in the image with a black outline around several

of the spots.
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Figure 12: Gene Microarray: (a) Full image of a microarray chip containing roughly 4000

spots. (b) Microarray subimage showing roughly 25 spots. (c) R2,4 image corresponding to s-

median smoother applied to (b). Note the black pixels at the center of each spot indicate local

minima. Common phenomena of pin microarray images are local minima due to the lack of probe

material caused by the pin containing the probe material impacting against the glass slide. This

impact causes a “donut” pattern in the perspective plot of the microarray image. This “donut”

pattern is clearly recognized in (c). (d) A perspective plot of the data shown in (c) further detailing

the “donut” pattern.
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Figure 13: Other measures: The results from different variations on the s-median. (a) A

Gaussian spot image, I, of dimension 50 × 50. (b) The R2,2 image obtained from using an s-mean

rather than s-median on the image in (a). (c) Associated residual image obtained from (a) using

an s-median, where the window sequence is a 5 pixel × 5 pixel box shape containing all 25 pixels.

It is not immediately clear if there is a utility in this image.
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(d) (e) (f)

Figure 14: Rotational Invariance: (a) A scaled bivariate normal density with a correlation

of 0.50. (b) The resulting residual image using a R2,4 operator. (c) The resulting residual image

when the structuring element in the residual operator used in (b) is rotated 45 degreed to align

with the major axis of the spot in (a). (d) a 90 degree rotation of the spot in (a), i.e. a spot with

a correlation of -0.50. (e) The residual image using a R2,4 operator. The resulting residual image

when the structuring element used in (e) is rotated 45 degrees.
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SUPPLEMENTAL MATERIALS

Theory for spot finding Supporting theory for the spot finding method.
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Supplemental Material for Multidimensional Median

Filters for Finding Bumps

August 2009

Overview

The following sections detail the s-median computations for the 1D continuous function and

the 1D and 2D discrete functions.

S-median Computation on Continuous Functions

In this section, we develop the s-median smoother and thus the Rk,c image in the context

of continuous functions. The s-median is the median value corresponding to a spatially-

structured sample space. Thus, before calculating the s-median (or even the median), we

must characterize the distribution of the output values from a function when given a distri-

bution of input values. Note that, here, we assume the function to be continuous. Once we

obtain the distribution for the output values, then s-median estimation is straightforward

(i.e. computing Rk,c(x) = Ik(x) − Sk,c(x)).
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One-dimensional Continuous Functions

The distribution of the random variable G(X), and thus the median of G(X), is straightfor-

ward to compute when G is a monotone function over the sample space for X (Wasserman,

2004). Let ΦX(x) and φX(x) denote the cumulative density function (cdf) and probability

density function (pdf), respectively, for the arbitrary random variable X evaluated at the

point x; analogously, we denote the cdf and pdf for a random variable Y at point y. Let

G(x) : X → Y be a function that defines a mapping from the support set X (for the random

variable X) to the support set Y (for the random variable Y ). The goal is to obtain an

expression for ΦY (y) [and thus φY (y)] which then allows for a straightforward calculation of

MY , the median of Y (i.e. ΦY (MY ) = 0.5).

Monotone Case

Consider the case where the function Y = G(X) is strictly monotone on the interval (x0, xn).

Then, for G increasing,

ΦY (y) =







1 y ≥ G(xn)

G−1(y)−x0

xn−x0
G(x0) ≤ y ≤ G(xn)

0 y ≤ G(x0),

while, for G decreasing,

ΦY (y) =







1 y ≥ G(x0)

xn−G−1(y)
xn−x0

G(xn) ≤ y ≤ G(x0)

0 y ≤ G(xn).
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These computations allow us to determine ΦY (y), and thus take its derivative to obtain

φY (y). Strict monotonicity in G implies its invertibility, i.e. ΦY (y) = ΦX(G−1(y)) for any

y; in particular, by definition of MY , we have ΦY (MY ) = 1/2 = ΦX(G−1(MY )). Hence,

in the monotone case, MY ≡ G(MX), where MX denotes the median associated with the

random variable X, and ≡ denotes equivalence of the statistics as defined in Lehmann and

Casella (1998), p.36. Thus, the median for Y is equivalent to the function evaluated at the

median for X. The remainder of this section assumes that X follows a Uniform distribution

on (x0, xn) , i.e. X ∼ U(x0, xn). Hence, in the monotone case, MY ≡ G
(

xn+x0

2

)
. The next

section extends these ideas to consider a piecewise monotone function, G.

Piecewise monotone case

We define X = {x : φX(x) > 0} as an open interval (x0, xn) with n ∈ Z
+. Let Ai = (xi, xi+1),

i = 0, · · · , n − 1, be the smallest collection of disjoint open intervals such that G is strictly

monotone on each Ai. By definition, G is strictly monotone increasing on Ai if, for any two

values {x1, x2} ∈ Ai such that x1 < x2, G(x1) < G(x2) holds. Analogously, G is strictly

monotone decreasing if G(x1) > G(x2) for {x1, x2} ∈ Ai such that x1 < x2. Note that

continuity may not be enough for the {Ai} to be countable. Further, note that we assume

strict monotonicity in the function G. Similarly, we define the interval

Bi = G(Ai) =







(G(xi), G(xi+1)), for G increasing on Ai,

(G(xi+1), G(xi)), for G decreasing on Ai.

While the sequence {Ai} partitions X , {Bi} does not necessarily partition Y ; e.g., see Figure

1, where X = (−1, 2) and G(x) = x3 − x.
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Let Gi(x) = G(x)IAi
(x); i.e., Gi(x) denotes the Aith decomposition of G(x), and I

defines the indicator function of Ai by IAi
(x) = I(x ∈ Ai) = 1 (0) if x is in (not in) the

interval (xi, xi+1). By definition, Gi(x) is strictly monotone. Thus, for x ∈ X , we have

G(x) =
∑n−1

i=0 G(x)IAi
(x) =

∑n−1
i=1 Gi(x), implying that any function G can be decomposed

into the sum of its strictly monotone components, Gi. With this notation established, we

have the following for ΦY (y):

ΦY (y) ≡ Pr(Y ≤ y) = Pr(G(X) ≤ y)

=
n−1∑

i=0

Pr(G(X) ≤ y | X ∈ Ai)Pr(X ∈ Ai)

=
n−1∑

i=0

Pr(X ≤ G−1
i (y))Pr(X ∈ Ai)

=
n−1∑

i=0

ΦX(G−1
i (y)) ·

(
xi+1 − xi

xn − x0

)

,

where, for Gi increasing on Ai,

ΦX(G−1
i (y)) ≡ Pr(X ≤ G−1

i (y)) =







1 y ≥ G(xi+1)

G−1

i
(y)−xi

xi+1−xi
y ∈ (G(xi), G(xi+1))

0 y ≤ G(xi),

and, for Gi decreasing on Ai,

ΦX(G−1
i (y)) ≡ Pr(X ≤ G−1

i (y)) =







1 y ≤ G(xi+1)

G−1

i
(y)−xi

xi+1−xi
y ∈ (G(xi), G(xi+1))

0 y ≥ G(xi).
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For all but the most simple functions, there is no closed form solution by which to define

MY . The above equations, at least, provide an explicit equation by which to determine it.

Shifting the function

There are a few generalizations for the median in the 1D case where we consider vertical and

horizontal shifts of the function, G. For the following, we define Y = G(X).

Lemma 0.1. Let Y ′ = Y + C = G(X) + C. Then MY ′ ≡ MY + C, i.e. a vertical shift of

size C in the function G implies a vertical shift in MY by the same amount, C.

S-median Computation on Discrete Functions

Let G̃(X) denote a “discrete” function, i.e. G̃ denotes discrete/countable realizations from

the continuous function, G(X).

One-dimensional Discrete Functions

Let ΦX(x) and φX(x) denote the discrete cdf and probability mass function (pmf), respec-

tively, for the arbitrary random variable X evaluated at the point x. Let G̃(x) : X → Y

denote discrete/countable realizations from the continuous function G(X), i.e. G̃ is a func-

tion that defines a mapping from the support set X (of the discrete random variable X) to

the support set Y (for the discrete random variable Y ). We want to obtain an expression

for ΦY (y) to then calculate the s-median of Y .

In the discrete case, the calculation of the s-median will proceed by assuming a discrete

uniform distribution for X (i.e. X ∼ Discrete Uniform(N) as defined in Casella and Berger

5



(1990)), and then computing ΦY (y) based on the function, G̃(X). Thus, the machinery

developed in the section for continuous functions can be applied to compute MY .

We can analogously represent ΦY (y) using discrete random variables X and Y as we did

for the continuous case, namely

ΦY (y) =
n−1∑

i=0

Pr(X ≤ G̃−1
i (y))Pr(X ∈ Ai), (1)

where assuming X ∼ Discrete Uniform(N) implies that

Pr(X ≤ G̃−1
i (y)) =







0 G̃−1
i (y) < 1

bG̃−1

i
(y)c

N
1 ≤ G̃−1

i (y) ≤ N

1 G̃−1
i (y) ≥ N,

(2)

and Pr(X ∈ Ai) = dxie−bxi+1c
N

. , where “bc” denotes the floor function and “de” denotes the

ceiling function. For the special case of a strict monotone discrete function G̃ on the full

interval {1, · · · , N},

ΦY (y) =







0 G̃−1
i (y) ≤ 1

bG̃−1

i
(y)c

N
1 ≤ G̃−1

i (y) ≤ N

1 G̃−1
i (y) ≥ N ;

note that this relation does not depend on the direction of monotonicity for G̃. These

computations allow us to determine ΦY (y), and thus compute the s-median for Y (i.e. MY )

in 1D.
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Two-dimensional Discrete Functions

As in the continuous case, we must be precise in how we define the sample space Ω for X

and Y in order to compute the s-median for Z = G(X,Y ). For the 2D discrete case, we have

the following definition for the sample space:

Definition 0.2. Let X be a discrete uniform on (1, N), Y be discrete uniform on (1, N),

and (x∗, y∗) be a fixed point such that x∗ and y∗ ∈ {1, 2, ..., N}. Then let Ω be of the form:

Ω = {(x, y)|{(x∗, y) where y ∈ {1, 2, ..., N}} ∪ {(x, y∗) where x ∈ {1, 2, ..., N}}}

Figure 2 illustrates the associated sample space. With this definition, the derivation of

the s-median for Z follows analogously to the 2D continuous case (which is analogous to the

1D case).

Let G : X × Y → Z define a mapping from the support sets X and Y , of the random

variables X and Y respectively, to the support set Z, for the random variable Z.

We define the functions, Gx∗(y) = G(x∗, y) and Gy∗(x) = G(x, y∗), such that Gx∗(y) =

Gx∗(y)
∑k−1

j=0 IBj
(y) =

∑k−1
j=0 Gx∗(y)IBj

(y) ≡
∑k−1

j=0 Gx∗,j(y), and Gy∗(x) =
∑n−1

i=0 Gy∗(x)IAi
(x)

≡
∑n−1

i=0 Gy∗,i(x), where Ai = (xi, xi+1) is the smallest set of disjoint open intervals such that

Gy∗(x) is strictly monotone on each Ai, i = 0, · · · , n−1; and Bj = (xj, xj+1) is the smallest set

of disjoint open intervals such that Gx∗(y) is strictly monotone on each Bj, j = 0, · · · , k− 1.
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In this setting,

ΦZ(z) = Pr(G(X,Y ) ≤ z)

= Pr({Gy∗(X) ≤ z} ∪ {Gx∗(Y ) ≤ z})

= Pr(Gy∗(X) ≤ z) + Pr(Gx∗(Y ) ≤ z) − Pr({Gx∗(Y ) ≤ z} ∩ {Gy∗(X) ≤ z})
︸ ︷︷ ︸

=0

=
n−1∑

i=0

Pr(Gy∗(X) ≤ z | X ∈ Ai)Pr(X ∈ Ai) +

k−1∑

j=0

Pr(Gx∗(Y ) ≤ z | Y ∈ Bi)Pr(Y ∈ Bi)

=
n−1∑

i=0

Pr
(
X ≤ G−1

y∗,i(z)
)

︸ ︷︷ ︸

known

Pr(X ∈ Ai)
︸ ︷︷ ︸

known

+
k−1∑

j=0

Pr
(
Y ≤ G−1

x∗,j(z)
)

︸ ︷︷ ︸

known

Pr(Y ∈ Bj)
︸ ︷︷ ︸

known

defines the cdf of Z. Nicely, all of the above quantities can be computed since we specified the

distributions for X and Y . Note the zero quantity in the third line is due to the intersection

of the sets containing only the single point (x∗, y∗). The Pr(Y ∈ Bj) and Pr(X ∈ Ai)

depend on the length of Bj and Ai, respectively.
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Figure 1: Partition: G(x) = x3 − x, where X ∈ (−1, 2). The dashed horizontal lines denote the

{Ai} partition of the x axis, while the dashed vertical lines denote the {Bi} intervals on the y axis.
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Figure 2: 2D discrete sample space: The discrete uniform random variables in the 2D setting.

The center point is at the coordinates (x∗, y∗).
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