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1. SUMMARY

In a multiple testing setting, the investigator is faced with choosing what
error to control and what method to use in controlling that error. Consid-
erations include the assumptions that are made for each method and if the
assumptions are acceptable in that setting. Failure to acknowledge these
considerations can lead to drastically misleading results. Our recent study
showed that, in applications where reduced multiplicity is encountered, the
widely used Benjamini and Hochberg’s (BH) false discovery rate (FDR) anal-
ysis is less robust than approaches controlling the number of false positives.
In this manuscript we assess the current methods to control the probability
of committing a fixed number of false positives and provide a new method.
We provide theoretical proof that our proposed approach, KBIN, is more
powerful than alternative approaches. We also conduct simulations and real
data studies to evaluate the proposed finding. We expect that the KBIN
method has promising applications in biomarker settings where the goal is
to choose a set of significant biomarkers from among a panel of potential
putative biomarkers.
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2. INTRODUCTION

The early adjustments for multiple testing are attributed to Boole’s in-
equality which provides the proof for the “Bonferroni” method to control
error when testing N dependent or independent hypothesis on a given set of
data [1]. Incremental improvements to the Bonferroni method are provided
in [2, 3]. Until the early 1990s, many of the multiple testing procedures
described in [4, 5] were adequate given the nature of their application. How-
ever, with the advent of modern computing and high dimension datasets,
researchers needed more powerful methods to determine statistical signifi-
cance in large scale experiments. Thus, statistical multiple testing procedures
(MTPs) began to be reexamined to handle applications in high dimensional
datasets such as those obtained through high-throughput genomic technolo-
gies, e.g. microarray analysis for differentially expressed genes and mass
spectrometry to discover significant peptides between two conditions. These
new methods controlled more liberal error quantities than the traditional
family wise error rate (FWER).

In general, statistical methodologies in MTPs provide trade offs such as
increasing the power to detect subtle changes at the expense of increasing
the number of false positives. Common methods of controlling errors in an
MTP setting is to either control the expected proportion of falsely rejected
hypothesis (FDR) or control against the probability of committing a fixed
number of false positives (k-FWER). An important aspect to consider when
choosing an MTP procedure and controlling method is the number of tests
under consideration. In general, with thousands of tests, it is reasonable to
consider controlling the false discovery rate (FDR) using methods described
in [6, 7, 8]. However, our recent study found that in applications with less
than 1000 tests, FDR is less reliable than alternative approaches controlling
k-FWER [9].

By controlling k-FWER, the researcher has a reliable and easily inter-
pretable method of reporting results in a multiple testing situation. Methods
to control k-FWER are commonly done by making a slight adjustment on
the Bonferroni method which was designed to control the standard family
wise error rate (k = 1 in k-FWER). However, the available methods to con-
trol this quantity are often too conservative and lack the statistical power
to detect real significance. A k-FWER control method achieving improved
power is highly desired. In this manuscript, we propose a new method to
control k-FWER, called KBIN, which shows improved reliability over FDR

2



control methods. The theoretic framework of KBIN and its comparison with
other k-FWER control methods are presented in this manuscript. We demon-
strate that KBIN is more powerful than other k-FWER methods including
the adjustment to the Bonferroni method and the Holm method to control
k-FWER.

The remainder of this paper is organized as follows. In Section 3, we
briefly review the notation of k-FWER control and described the commonly
used approaches for k-FWER control. In Section 4 we describe a recently
proposed approach, KBIN, to re-address the k-FWER control and prove that
it is more powerful than alternative approaches. We demonstrate KBIN’s
performance in Sections 5 and 6 with extensive simulations and real data
studies. We conclude the article in Section 7 with some discussion.

3. k-FWER CONTROL METHODS

The k-FWER error control is a generalized version of the family wise error
rate (FWER). Control of FWER, is to control the probability that there are
1 or more false discoveries. Notationally, (according to [10]) α control of
FWER can be expressed as,

P(V ≥ 1) ≤ α

or equivalently,

P(V = 0) ≥ 1 − α

where V is the number of false discoveries and α is usually small, e.g.
0.05. More simply this can be expressed as FWER ≤ α. In k-FWER the
equation becomes,

P(V ≥ k) ≤ α

where k and α are usually determined prior to the analysis. Similar to
FWER, control of k-FWER can be expressed as k-FWER ≤ α. Note, this
formulation for k-FWER can be slightly impractical since researchers often
phrase their response in terms of “committing no more than X” errors which
means k is set to “X + 1”. Thus, occasionally, as in [11] k-FWER may be
expressed as P(V > k) ≤ α.

The following subsections detail several commonly used methods designed
to control the k-FWER.
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3.1. APPROACH BASED ON ADJUSTED BONFERRONI METHOD

The adjusted Bonferroni method to control k-FWER is a generalized
version of the Bonferroni correction which is designed to control FWER [10].
The Bonferroni correction is designed to control the FWER at level α by
doing each individual test at level α/N where N is the number of tests. The
adjustment given in [10] to control k-FWER at α is to perform each test at
level k α

N
. By doing each test at level k α

N
, this controls the probability against

k or more false positives to be no larger than α, that is,

P(V ≥ k) ≤ α

The proof is supplied in [10] and is a generalization of the proof for the
original Bonferroni method designed to control FWER.

3.2. APPROACH BASED ON HOLM METHOD

A further method to control k-FWER using the Holm procedure is given
in [10]. This method is based on the Holm method designed to control the
FWER [2]. The Holm method is considered a “step-down” procedure [12]
which, essentially, means the cutoff is based on considering the ranked vector
of p-values. The following procedure describes the Holm method to control
FWER. Let

α1 ≤ α2 ≤ . . . ,≤ αN (1)

be constants defined by αi = α/(N − i + 1) and let the ordered p-values be
denoted by p(1) ≤ · · · ≤ p(N) corresponding to hypotheses, H(1), · · · , H(N). If
p(1) > α1,then reject no null hypothesis. Otherwise, if

p(1) ≤ α1, . . . , p(r) ≤ αr, (2)

then reject hypothesis H(1), . . . , H(r) where the largest r satisfying (2) is used.
With this framework for FWER, the Holm method to control k-FWER is
done by redefining αi as

αi =

{

kα
N

, i ≤ k,
kα

N+k−i
, i > k.

4. THE PROPOSED KBIN METHOD

We propose a novel approach, KBIN, to control k-FWER at level α. With
N hypotheses under consideration and k being the number of acceptable false
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positives, the KBIN procedure works by rejecting all hypothesis less than pcut

where pcut is the supremum over the set of p’s that solve the equation below

F (k − 1|N, p) ≥ 1 − α (3)

where F is the cumulative density function for a Binomial distribution with
N trials and probability of success p. Note, α is usually chosen to be small,
e.g. 0.05. The proof for KBIN is based on an assumption for the distribution
of p-values in a multiple testing setting. Specifically, in a multiple testing pro-
cedure setting, it is common to assume that the distribution of the p values
follows a mixture distribution specified by f(x) = 1−π+πf1, for i = 1, ..., N ,
where 0 ≤ π ≤ min(f(x)) ≤ 1 and f1 is a well defined probability density
function (PDF). In this situation the second component f1 is assumed to be
concave [13, 14, 15], and the mixture weight π controls the percentage of
hypotheses that follow the alternative. This is the standard beta-uniform
(BUM) mixture distribution when performing N tests [14]. Note, in a mi-
croarray setting N could be the number of genes to be tested or the number of
gene pathways tested. In a gene pathway setting N could be several hundred
while in a gene setting, N could be several thousand.

Specifically we have the following theorem for KBIN,

Theorem 4.1. For testing N hypotheses, assume the p-values are indepen-
dent and identically distributed following the PDF

f(x|a, λ) = 1 − π + πf1(x)

where 0 ≤ π ≤ min(f(x)) ≤ 1 and f1(x) is a well defined PDF. Consider a
procedure that rejects any hypothesis, Hi, for which pi ≤ pcut where pcut is a
solution to

suppF (k − 1|N, p) ≥ 1 − α

where sup denotes the supremum over the interval [0, 1] and F is the cu-
mulative density function for a binomial random variable with size N and
probability of success p. Then this procedure controls k-FWER such that
P(V ≥ k) ≤ α where V is the number of false positives.

Proof Assume f(x|π) = 1− π + πf1(x) represents a mixture distribution of
two components, one arising from the null hypothesis and one arising from
the alternative component (f1). Thus V , the number of false positives, follows
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a binomial distribution with size N and probability of success (1 − π)pcut,
notationally, V ∼ Bin (N, (1 − π)pcut). Consider the random variable W
where W ∼ Bin(N, pcut). By design, W is stochastically greater than V , so
we have,

P(V ≥ k) ≤ P(W ≥ k)

= 1 − P(W ≤ k − 1)

= 1 − F (k − 1|N,Pcut)

≤ 1 − (1 − α)

= α

The use of the binomial distribution to control k-FWER is the reason for
calling this the “KBIN” method.

Figure 1 shows the KBIN p-value cut points as a function of k and α to
control k-FWER. For example, when N = 250 and the researcher wants to
protect against 5 or more false discoveries, the KBIN p-value cut point is
pcut = .007914 since

4
∑

x=0

P (X = x) = .95

where X ∼ Bin(250, .007914). Table 1 is a table of the p-value cut points
for a variety of k, α and N values. As expected, for a fixed N , the p-value
cut point increases as a function of either k or α, that is, as the researcher is
willing to accept more false positives or a higher probability of false positives,
the p-value cut point will be more liberal (larger). Figure 2 details some
of the theoretical aspects of the KBIN method as a function of N and V .
Interestingly, when controlling k-FWER at small values (< .1), the number
of false positives, rarely greatly exceeds k. For example, if k-FWER was
controlled by KBIN with k = 5 and α = 0.20, then V is rarely larger than 6
and never larger than 8 (see Figure 2 (b,d)). This is one of the nice features
of controlling k-FWER; when the number of false positives exceeds k, it is
rarely much larger than k.

Figure 3 shows the difference in p-value cut points between the KBIN
method and the adjusted Bonferroni method for k-FWER = 0.05. As N
increases, the difference in cut points between the two methods converge.
Roughly speaking, for more than 1000 tests, the difference between using
KBIN and the adjusted Bonferroni method is negligible. Coincidentally, in
situations with more than 1000 tests, it may be more reasonable for the
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researcher to consider controlling the false discovery rate (FDR) rather than
k-FWER.

Theorem 4.1 establishes that KBIN controls k-FWER at α. We can
further show that the KBIN method is more powerful than the adjusted
Bonferroni method when performing 2 or more tests. The theoretical proof
that KBIN is more powerful than the adjusted Bonferroni method to control
k-FWER is accomplished by establishing several necessary lemmas.

Lemma 4.2. The cumulative density function (CDF), F (k−1|N, ak/N), of
a binomial random count with N trials and success probability ak/N , is an
increasing function of N , for k = 1, and 0 < a < 1 with F (0|2, a

2
) > 1 − a.

Proof The CDF evaluated at 0 is
(

N

0

)

( a

N

)0 (

1 −
a

N

)N

=
(

1 −
a

N

)N

.

an increasing function of N . Further note that

F
(

0|2,
a

2

)

=

(

2

0

)

(a

2

)0 (

1 −
a

2

)2

=
(

1 −
a

2

)2

= 1 − a +
a2

4
> 1 − a

Lemma 4.3. The CDF F (k − 1|N, ak/N) is an increasing function in k,
given N ≥ max{2, k}.

Proof Intuitively, for any N ≥ k, as k increases, the probability of a success
increases, as well as the probability that a random count takes probability
less than k. To see this we re-express the CDF, letting k = x,

x−1
∑

j=0

(

N

j

)

(ax

N

)j (

1 −
ax

N

)N−j

=
(

1 −
ax

N

)N

(

1 +
ax

1 − ax
N

+
x−1
∑

i=2

(

N

i

)

(ax

N

)i (

1 −
ax

N

)

−i

)
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Letting k = x + 1, we have,

(

1 −
a(x + 1)

N

)N



1 +
a(x + 1)

1 − a(x+1)
N

+

(x+1)−1
∑

i=2

(

N

i

)(

a(x + 1)

N

)i(

1 −
a(x + 1)

N

)

−i



 .

Comparing the k = x and k = x + 1 expressions, term by term, we see that
each term is increasing, hence, the CDF F (k − 1|N, ak/N) is an increasing
function in k.

Lemma 4.4. The CDF F (k−1|N, ak/N) is a decreasing function of N , for
k = 2, and 0 < a < 1.

Proof Consider the CDF, re-expressed as

1
∑

j=0

(

N

j

)(

2a

N

)j (

1 −
2a

N

)N−j

=

(

1 −
2a

N

)N

+ 2a

(

1 −
2a

N

)N−1

=

(

1 −
2a

N

)N−1(

1 + 2a

(

1 −
1

N

))

.

The first multiplicative term above is decreasing, while the second growing
in N . The change in 2a(1 − 1/N) for an increment in N is a2/(N(N + 1)).
Note that

(

1 −
2a

N + 1

)N

−

(

1 −
2a

N

)N−1

>

(

1 −
2a

N

)N

−

(

1 −
2a

N

)N−1

.

The change in the expression on the left hand side of the inequality, with an
increment in N , is greater than

−
2a

N

(

1 −
2a

N

)N−1

.

Monotonic decay follows since,

1

N + 1
<

(

1 −
2a

N

)N−1

.
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Theorem 4.5. The k-BIN procedure is more powerful than the adjusted
Bonferroni method when N ≥ 2.

Proof We will proceed by showing that

limN→∞F (k − 1|N, ak/N) > 1 − a. (4)

for all (N, k) : N ≥ max{2, k}.
For fixed α, k,N , let the KBIN based p-cutoff be denoted as pKBIN . Then

Equation 4 implies that ak/N < pKBIN , since by definition,

F (k − 1|N, pKBIN ) = 1 − a.

From Lemmas 4.2, 4.3 and 4.4, it is sufficient to show that for k = 2, the
above result holds. We can re-express the limit in Equation 4 for k = 2 as

limN→∞F (k − 1|N, ak/N) = limN→∞

1
∑

j=0

(

N

j

)(

2a

N

)j (

1 −
2a

N

)N−j

= limN→∞

(

1 −
2a

N

)N

+ 2a

(

1 −
2a

N

)N−1

= (1 + 2a)e−2a

> 1 − a.

The last inequality is easily verified, checking that the minimum slope for
(1 + 2a)e−2a is -0.74, while both expressions, (1 + 2a)e−2a and 1 − a, equal
1 when evaluated at a = 0, and 0 and 3e−2, respectively, when evaluated at
a = 1.

5. SIMULATION STUDY

The BUM model is used in the simulations comparing KBIN, the ad-
justed Bonferroni method, and the Holm method. Two different simulation
settings are provided using the standard BUM model. In Simulation 1, we
let N = 250 and π = 0.20 and the distribution of p-values under the al-
ternative hypothesis follows a beta distribution with parameters 1/2 and 2.
For example, in a gene pathway test setting, this would correspond to the
case where many pathways are enriched, although, the differential effects in
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gene expression underlying enrichment are moderate. In Simulation 2, we
let π = 0.05 and the distribution of p-values for the alternative hypotheses
follows a beta distribution with parameters .1 and 10. For the gene pathway
example, this could correspond to the situation of a relatively few number
of enriched gene pathways, but with large effect sizes in differential gene ex-
pression underlying the enrichment.

The results from Simulation 1 and Simulation 2 are shown in Figures 4
and 5, respectively. For both simulations, we see that the KBIN method has
a larger true positive rate (TPR) compared to either the adjusted Bonferroni
method or the Holm method (upper panels in Figures 4 - 5). Also, for both
simulations, KBIN also has a larger false positive rate (FPR) than either the
adjusted Bonferroni method or the Holm method (see, e.g. the lower panels
in Figures 4 and 5). Table 2 shows the mean number of false discoveries for
both simulations under different settings for k and α. In all situations, the
KBIN method has the largest number of true discoveries and false discover-
ies, however, the mean number of false positives is always less than k. Thus,
when controlling k-FWER at stringent levels (e.g. α = 0.05), the researcher
can expect to have less than k false positives. Figures 6 - 7 display the esti-
mated value of k-FWER for each method in each of the simulations. In both
simulations, we see that the KBIN method is less conservative than either the
adjusted Bonferroni method or the Holm method. In other words, the KBIN
method is closer to exact control of k-FWER at α than either of the other
methods. Figures 6 - 7 illustrate the key point; both the adjusted Bonferroni
method and the Holm method are very conservative in controlling k-FWER,
while the KBIN method is more liberal when controlling k-FWER. There-
fore, KBIN is more powerful than competing methods, while still maintaining
control of k-FWER.

6. REAL DATA STUDY

From Theorem 4.5, the KBIN method is more powerful than the adjusted
Bonferroni method. Since Figure 3 shows the difference in power between
KBIN and the adjusted Bonferroni method to be negligible for N > 1000, we
choose examples with less than 1000 tests. We divide our examples based on
the number of hypotheses (N) tested. In Section 6.1 we consider examples
with less than 20 tests, Section 6.2 consists of an example containing 119
tests, while Section 6.3 consists of example with over 200 tests. In all situa-
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tions, the KBIN method yields more discoveries than the adjusted Bonferroni
method or the Holm method.

6.1. Small N

In the first example we consider the dataset used in [6]. This data ex-
amines the ability of thrombolysis with recombinant tissue type plasminogen
activator (rt-PA) and anisoylated pasminogen streptokinase activator (AP-
SAC) to reduce mortality in patients with myocardial infarction. As given in
[6], the p-values from 15 comparisons are listed and the results when control-
ling the false discovery rate (FDR) are reported. Using the reported p-values,
we can examine the results when controlling k-FWER rather than the FDR.
Setting k = 2 and α = 0.01, we have 4 discoveries with the KBIN method,
and 2 discoveries each with the adjusted Bonferroni method and the Holm
method. With the additional discoveries in the KBIN method, we can further
validate more hypothesis than specified by either the adjusted Bonferroni or
Holm method.

In the second example, we consider a hospital severity dataset provided in
[16]. This dataset provides a meta-analysis of the incidence of adverse drug
reactions (ADRs) in hospitalized patients from 39 perspective studies of US
hospitals. From this analysis, the overall incidence of serious ADRs was given
as 6.7 percent. Table 1 from [16] provides the summary data from 18 of the 39
perspective studies. Using a binomial test of proportions we can examine if
each individual dataset provides significant evidence of ADRs being different
than 6.7 percent. When controlling k-FWER at 0.05 with k = 2, we find 15
reported ADRs significantly different from 6.7 percent according to the KBIN
algorithm, 12 datasets from the adjusted Bonferroni method and 15 datasets
from the Holm method. The large number of datasets showing different
rates of ADRs demonstrates the relatively large amount of variability in this
meta-analysis.

6.2. Moderate N

In genetics, microRNAs (miRNAs) are a single strand of RNA molecules
of approximately 20 nucleotides in length. They can regulate gene expression
and, as such, have been examined as potential biomarkers for disease. A
recently published dataset in [17] explores the ability of a flow cytometry bead
based miRNA platform to classify basal versus luminal tumor subtypes in an
breast cancer dataset. Their dataset contains approximately 120 miRNAs
and was recently deposited in the Gene Expression Omnibus (GEO) online
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microarray repository [18]. From this dataset we can examine the number of
miRNA discoveries obtained by controlling k-FWER under various settings
for k and α. With 500 bootstraps, Figure 9 shows the mean number of
significant miRNAs that differentiate cancer tissue subtypes when controlling
k-FWER. In general, the KBIN method provides a larger mean number of
target miRNA’s that can differentiate between breast cancer subtypes.

6.3. Large N

In this example, we examine the number of significant genetic pathways
associated with smokers versus non smokers using gene expression microar-
rays. This dataset is provided in [19]. For background on the science and
nature of gene pathway analysis see [20, 21]. For this example, the path-
ways were obtained through the Kyoto Encyclopedia of Genes and Genomes
(KEGG). KEGG is one of the most complete and publicly available pathway
databases, whose latest release contains approximately 210 curated non re-
dundant pathways in humans [21]. The Gene Set Analysis (GSA) software
was employed as a measure of significance for each pathway where the p-value
for each pathway is determined through a permutation based approach.

Using 500 bootstrap version of the data in [22], we examined the (random)
number of pathways discovered as enriched when controlling k-FWER using
KBIN, the Adjusted Bonferroni and the Holm method. Figure 8 shows the
mean number of pathways discovered under typical choices for α and k. From
Figure 8, we conclude that the KBIN method tended to yield a larger mean
number of discovered pathways than either the adjusted Bonferroni method
or the adjusted Holm method. While all methods theoretically control k-
FWER, KBIN had a larger mean number of discoveries versus either the
adjusted Bonferroni method or Holm method.

7. DISCUSSION

In multiple testing situations, with greater than say, 1000 tests, it is
reasonable to control the FDR and the asymptotic arguments supporting the
methods designed to control FDR are reasonable. However, in situations with
less than 1000 tests, it may be reasonable to consider controlling k-FWER
and, in these situations, the available methods to control k-FWER are too
conservative. The current methods to control k-FWER include the adjusted
Bonferroni method, the Holm method, and also the relatively modern minP
and maxT methods. The adjusted Bonferroni method is considered a fixed
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algorithm where the p-value cut point is not data dependent. The Holm
method to determine the p-value cut point is data driven in the sense that the
N length vector of p-values is required in order to determine the significant
of an individual hypothesis. Recently two data driven methods, minP and
maxT, have been proposed to control k-FWER [23, 24, 25]. The methods
require a bootstrap step employed to estimate the null distribution [22]. The
methods are heavily data dependent because of the required bootstrap step.
This is in contrast to the KBIN method, the Adjusted Bonferroni method,
and the Holm method which merely requires the N -length vector of p-values.
For this reason, the minP and maxT methods are not considered in the data
applications or simulations in this manuscript.

A large body of research in the FDR literature involves estimating the
proportion of true null hypothesis among the N tests [7, 13, 8]. In general,
these methods “borrow” strength across the dataset or use data splitting
procedures (see, for example, [26]) to estimate the proportion of true null
hypothesis. These techniques can be used to improve the KBIN method.
Note, in the proof of Theorem 4.1, we employ a random variable that is
stochastically greater than V where V ∼ Bin(N, 1 − π)pcut. Using the tech-
niques to estimate the proportion of null hypothesis, we can estimate π and
thus develop more powerful p-value cut offs that will maintain control of
k-FWER.

This manuscript proposes using KBIN, a new more powerful method to
control k-FWER when the p-value distribution follows the BUM model. Of
course, regardless of the situation, rejecting any k − 1 will always control
k-FWER, but, at the very least, will be too optimistic and naive since we
assume that there are more real discoveries [10]. With the BUM model as
the distribution for p-values, KBIN is more powerful than either the adjusted
Bonferroni method or the Holm method for k-FWER. Advantages to using
the KBIN method to control k-FWER include simplicity and ease of inter-
pretation. Further, when control of k-FWER is violated, it is usually not an
extreme violation. From the simulation study, if the number of false positives
is controlled to be no more than 5, it never exceeds 10 false positives, and
typically 6 to 7 false positives are realized with an α = 0.20. This is assuring
to the researcher since, as shown in [9], in gene pathway testing with FDR
set to 0.10, the actual FDR may be as large as 0.40. Figure 3 hints at some
of the asymptotic comparisons between KBIN and the adjusted Bonferroni
method. As the number of tests increases to 1000 or more, the difference
in p-value cut points between KBIN and the adjusted Bonferroni method
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become negligible. However, in situations where there are 1000 tests or less,
the KBIN method gives a larger p-value cut point and thus is more pow-
erful than the adjusted Bonferroni method. Thus,we advocate using KBIN
in multiple testing settings where the researcher is interested in controlling
k-FWER. This situation has many applications in gene pathway analysis and
other potential biomarker correlation studies such as mice studies as well as
potential financial and public health situations.
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K = 5 K = 10

N=25 N=50 N=100 N=500 N=1000 N=25 N=50 N=100 N=500 N=1000
α = 0.01 0.054 0.026 0.013 0.003 0.001 0.185 0.087 0.042 0.008 0.004
α = 0.05 0.082 0.04 0.02 0.004 0.002 0.236 0.113 0.055 0.011 0.005
α = 0.10 0.101 0.049 0.025 0.005 0.002 0.265 0.128 0.063 0.012 0.006
α = 0.20 0.126 0.062 0.031 0.006 0.003 0.303 0.149 0.074 0.015 0.007

Table 1: KBIN Results: Table of p-value cut points for KBIN under a variety of different
values for N , α, K.

α 0.05 0.01 0.05 0.10 0.20 0.50

K 1 5 10 20 50 5

Sim 1
KBIN 0.04 1.59 4.41 10.77 31.94 1.04 1.59 1.96 2.48 3.76

Adj. Bonf 0.04 0.20 0.41 0.80 2.01 0.04 0.20 0.41 0.80 2.01

Sim 2
KBIN 0.04 1.89 5.23 12.82 37.99 1.24 1.89 2.34 2.97 4.45

Adj. Bonf 0.05 0.23 0.46 0.95 2.39 0.05 0.23 0.46 0.95 2.39

Table 2: Simulation Results: The mean number of false positives when k-FWER is
controlled at different values of K and α using KBIN and the Adjusted Bonferroni method.
Simulation 1 (Sim 1) has BUM parameters, π = .2, N = 250 with f1 = beta(1/2, 2) while
Simulation 2 (Sim 2) has BUM parameters π = 0.05, N = 250 with f1 = beta(.1, 10).
Roughly speaking, Sim 1 corresponds to a large number of discoveries but with small
effect sizes, while Sim 2 corresponds to a small number of discoveries but with large effect
sizes. In either case Adjusted Bonferroni is more conservative than KBIN and thus is less
powerful than KBIN when controlling k-FWER.
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Figure 1: KBIN Values: Contour plot showing α on the y-axis, the number of tests on
the x-axis and the contour lines show the p-value cutoffs for a KBIN procedure to control
k-FWER at level α.
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Figure 2: KBIN Simulations: (a) The KBIN p-value cut point values as a function
of the number of tests. As expected, as the number of tests increases the cut point
for the p-value decreases. As α increases, the p-value cut point also increases. (b)
The distribution for V when k is fixed for a variety of values for α. These curves
show that when the number of false positives exceeds k, it is rarely much larger.
(c) Curves showing the KBIN p-value cut point as a function of k, keeping α fixed
at 0.05. (d) The distribution curves for the number of false positives when α is
fixed at 0.05. Each curve corresponds to a different value of k.
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Figure 3: P Cut point Difference: The difference between the KBIN p-value cut
point and adjusted Bonferroni p-value cut point as a function of k when α is fixed
at 0.05. For the number of tests (N) greater than 5000, the difference between the
KBIN p-value cut point and the adjusted Bonferroni p-value cut point is negligible.
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Figure 4: k-FWER Simulation 1: The summary statistics for Simulation 1 consist-
ing of a large number of discoveries but with small effect sizes. The KBIN method
(KBIN) is compared against the adjusted Bonferroni method (Adj. Bonf) and the
Holm method (Holm). The mean true positive rate (TPR) is shown as a function
of k in the upper left panel, and as a function of α in the upper right panel. The
mean false positive rate (FPR) is shown as a function of k and α in the lower left
and lower right panels, respectively. As expected, the KBIN method has a higher
TPR at the expense of an increased FPR.
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Figure 5: k-FWER Simulation 2: The summary statistics for Simulation 2 consist-
ing of a small number of discoveries but with large effect sizes. The KBIN method
(KBIN) is compared against the adjusted Bonferroni method (Adj. Bonf) and the
Holm method (Holm). The mean true positive rate (TPR) is shown as a function
of k in the upper left panel, and as a function of α in the upper right panel. The
mean false positive rate (FPR) is shown as a function of k and α in the lower left
and lower right panels, respectively. As expected, the KBIN method has a higher
TPR at the expense of an increased FPR.
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Figure 6: Estimated control of k-FWER : (a) For Simulation 1, with α fixed,
the estimated k-FWER shown as a function of k. (b) For Simulation 2, with α
fixed, the estimated k-FWER shown as a function of k. Note, in these simulations,
k-FWER was theoretically controlled at 0.05 (red line). The adjusted Bonferroni
method (Adj. Bonf) and Holm method (Holm) are more conservative than KBIN
causing a decreased power when compared to KBIN.
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Figure 7: Estimated control of k-FWER: (a) For Simulation 1, with k fixed, the
estimated k-FWER shown as a function of α. (b) For Simulation 2, with k fixed,
the estimated k-FWER shown as a function of α. Exact control of k-FWER would
follow the red line. The KBIN method is more powerful than either the adjusted
Bonferroni method (Adj. Bonf) or the Holm method (Holm).
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Figure 8: Gene Pathway Analysis: Gene pathway analysis showing the mean num-
ber of pathways discovered as determined by a bootstrap analysis for the dataset
in [19]. The KBIN method (KBIN) provides a larger mean number of discoveries
than either the Holm method (Holm) or the adjusted Bonferroni method (Adj.
Bonf).
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Figure 9: Micro RNA Analysis: The mean number of micro RNAs discovered as
determined by a bootstrap analysis for the [17] dataset. The KBIN method (KBIN)
provides a larger mean number of discoveries than either the Holm method (Holm)
or the adjusted Bonferroni method (Adj. Bonf).
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