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Abstract

In this note we extend the well-known binormal model via implementation

of the epsilon-skew-normal (ESN) distribution developed by Mudholkar and

Hutson (2000). We derive the equation for the receiver operating characteris-

tic (ROC) curve assuming epsilon-skew-binormal (ESBN) model and examine

the behavior of the maximum likelihood estimates for estimating the ESBN

parameters. We then summarize the results of a simulation study to examine

the asymptotic properties of the maximum likelihood estimates in the ESBN

model and compare with the maximum likelihood estimates in the binormal
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model. We also summarize the results of a simulation study comparing the

two parametric models to the nonparametric ROC model. We then illustrate

the maximum likelihood estimation of the ESBN model using data involving

skeletal measurements in 507 physically active individuals.

Keywords: AUC, diagnostic testing, prediction.

1 Introduction

It is commonplace in medical studies to dichotomize a continuous predictor at a

cutoff c for the purpose of diagnosing disease (yes/no). A well known method for

summarizing the choice of c in terms of medical decision making is receiver operating

characteristic (ROC) analysis. ROC analysis has a long history and spans parametric

and non-parametric estimation methods; see [1] for some of the early references. In

the last few decades, ROC analysis has been a mainstay in diagnostic testing across

various medical decision making scenarios. Some of the more recent developments

include time-dependent ROC analysis [2], multireader ROC analysis [3], and Bayesian

bootstrap estimation of the ROC curve [4].

In general, each cutoff c produces a true positive fraction (TPF) and a false

positive fraction (FFP). The TPF, or sensitivity, is the probability that an individual

with the disease tests positive for the disease. The FPF is the probability that a

healthy individual tests positive for the disease. The FPF is 1 − specificity, where

specificity is the probability that a healthy individual tests negative for the disease.

The ROC curve is a plot over all values of c of TPF (sensitivity) versus FPF (1

− specificity). A popular summary measure of diagnostic accuracy for predicting

disease is the area under the ROC curve (AUC). Hanley (1982) has shown shown

that the AUC is the probability that a measurement for an individual with the disease
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individual exceeds the measurement for an individual without the disease [5].

A classic approach for estimating an ROC curve and the corresponding AUC is

the binormal model. There are hundreds of studies that have employed the binormal

model; e.g. for some recent medical studies that have utilized the binormal model

see [6, 7, 8]. It is well known that the binormal model is robust in terms of unbiased

estimates of the AUC. However, there can be substatial bias in the pointwise esti-

mates of the estimated ROC curve, which in turn will create inaccurate thresholds

for the final decision rule for diagnosing disease [9].

We propose the epsilon-skew-binormal (ESBN) model to provide a more robust

alternative to the binormal model in terms of overcoming its deficiencies and to

also provide a comparable alternative to nonparametric methods. The epsilon-skew-

normal (ESN) distribution was developed by Mudholkar and Hutson (2000) [10].

Furthermore, the binormal model assumptions may be examined due to the fact

that it is a special case of the ESBN model.

In section 2 we review the binormal model for estimating ROC curves as well as

the ESN distribution. In section 3 we derive the equation for the ROC curve assum-

ing ESBN model and examine the behavior of the maximum likelihood estimates for

estimating the ESBN parameters. In section 4 we then summarize the results of a

simulation study to examine the asymptotic properties of the maximum likelihood

estimates in the ESBN model and compare with the maximum likelihood estimates

in the binormal model. We also summarize the results of a simulation study com-

paring the two parametric models to the empirical ROC model. In section 5 we

then illustrate the maximum likelihood estimation of the ESBN model using data

involving skeletal measurements in 507 physically active individuals.
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2 Background

2.1 Binormal Model

Let Y be a continuous predictor for diagnosing disease in a given population. Let

Y0 and Y1 denote the measurements of the predictor Y for healthy and diseased

populations, respectively. Suppose Y0 ∼ N(µ0, σ
2
0) and Y1 ∼ N(µ1, σ

2
1), and µ1 > µ0.

For a given cutoff c, the FPF is given by:

FPF = P (Y0 > c) = 1− P (Y0 ≤ c) = 1− Φ

(
c− µ0

σ0

)
= Φ

(
µ0 − c

σ0

)
, (2.1)

where Φ(·) denotes the standard normal c.d.f. Solving for c, we get

c = µ0 − σ0Φ
−1(FPF ). (2.2)

Similarly, for a given cutoff c, the TPF is given by:

TPF = P (Y1 > c) = 1− P (Y1 ≤ c) = Φ

(
µ1 − c

σ1

)
. (2.3)

Substituting (2.2) into (2.3) we have:

TPF = Φ

[
(µ1 − µ0)

σ1

+
σ0

σ1

Φ−1(FPF )

]
. (2.4)

Thus, the equation of the binormal ROC curve is given by:

g(x; θ) = Φ[a + bΦ−1(x)], (2.5)

where θ = (µ0, σ0, µ1, σ1)
′, a = (µ1 − µ0)/σ1, and b = σ0/σ1.

For the binormal ROC curve, there is a closed form solution for the AUC [1],

given by

AUC = Φ

(
a√

1 + b2

)
, (2.6)

where −∞ < a < ∞ and b > 0. In addition, tp = g(p; θ), where tp represent the

TPF when the FPF rate is p. Using maximum likelihood estimates for θ, we can
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estimate the equation for the ROC curve as well as the AUC and tp for any chosen

FPF = p. Confidence intervals for the true AUC and tp can be found using the

delta method. Gönen [11] gives sample code on how this can be done using SAS

NLMIXED [12].

2.2 Epsilon-Skew-Normal (ESN) distribution

The ESN distribution, developed by Mudholkar and Hutson (2000) [10] has been

used for extending common regression problems [13]. The standardized model for

the ESN distribution ESN(0, 1, ε) is defined to be a unimodal distribution with the

mode at 0 and probability mass (1− ε)/2 below the mode. The probability density

function (p.d.f.), the distribution function (d.f.), and quantile function (q.f.) of its

canonical form ESN(0, 1, ε) are respectively:

f0(x) =





1√
2π

exp
(
− x2

2(1−ε)2

)
, if x < 0,

1√
2π

exp
(
− x2

2(1+ε)2

)
, if x ≥ 0,

(2.7)

F0(x) =





(1− ε)Φ
(

x
1−ε

)
, if x < 0,

−ε + (1 + ε)Φ
(

x
1+ε

)
, if x ≥ 0,

(2.8)

and,

Q0(u) = F−1
0 (u) =





(1− ε)Φ−1
(

u
1−ε

)
, if 0 < u < (1− ε)/2

(1 + ε)Φ−1
(

u+ε
1+ε

)
, if (1− ε)/2 ≤ u < 1,

(2.9)

where −1 < ε < 1, and Φ(x) denotes the standard normal c.d.f.

The standard epsilon-skew-normal distribution, ESN(0, 1, ε), is a mixture of two

half-normal distributions and reduces to the standard normal distribution when ε =

0. The distribution is skewed right for values of ε > 0 and skewed left for values

of ε < 0. The limiting cases of (2.7) as ε → ±1 are the well known half-normal

distributions. Figure 1 gives some typical ESN probability density functions.
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The p.d.f. f0(·) at (2.7) has derivatives of arbitrary orders. It is differentiable

once at the mode.

The general form for the p.d.f., denoted ESN(µ, σ, ε), is f0(
x−µ

σ
)/σ, where f0(·) is

given by (2.7). Similarly, the general form for the c.d.f. of ESN(µ, σ, ε) is F0(
x−µ

σ
),

where F0(·) is given by (2.8). Its quantile function, Q(u) = µ + σQ0(u), can be

used to generate samples from the ESN(µ, σ, ε) population. Note the relationship

Q(1−ε
2

) = µ.

The mean of ESN(µ, σ, ε)is given by

E(X) = µ +
4σε√
2π

, (2.10)

and the variance is given by

Var(X) =
σ2

π
[(3π − 8)ε2 + π]. (2.11)

Mudholkar and Hutson [10] provide methods for maximum likelihood estimation,

which we will utilize in later sections.

3 Epsilon-Skew-Binormal ROC Model

We now extend the binormal ROC model using the ESN distribution as the un-

derlying model for both healthy and diseased populations. As before, let Y be a

continuous predictor for diagnosing disease, and let Y0 and Y1 denote the measure-

ments of the predictor Y for healthy and diseased populations, respectively. Let

Y0 ∼ ESN(µ0, σ0, ε0) and Y1 ∼ ESN(µ1, σ1, ε1) and µ1 > µ0. Let Fε0 and Fε1 be

the c.d.f.’s for the ESN(0, 1, ε0) and ESN(0, 1, ε1) distributions, respectively. For a

given cutoff c, the FPF is given by

FPF = P (Y0 > c) = 1− P (Y0 ≤ c) = 1− Fε0

(
c− µ0

σ0

)
. (3.1)
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Solving for c we have

c = µ0 + σ0F
−1
ε0

(1− FPF ). (3.2)

Similarly, for a given cutoff c, the TPF is given by

TPF = P (Y1 > c) = 1− P (Y1 ≤ c) = 1− Fε1

(
c− µ1

σ1

)
. (3.3)

Substituting (3.2) into (3.3) we have

TPF = 1− Fε1

[
−(µ1 − µ0)

σ1

+
σ0

σ1

F−1
ε0

(1− FPF )

]
(3.4)

Thus the equation for the epsilon-skew-binormal ROC curve is given by

h(x; θ) = 1− Fε1

[−a + bF−1
ε0

(1− x)
]
, (3.5)

where θ = (µ0, σ0, ε0, µ1, σ1, ε1), a = µ1−µ0

σ1
, and b = σ0

σ1
.

To find the area under the ROC curve (AUC), we need to calculate P (Y1 > Y0).

Unlike in the case of normal distributions, linear combinations of ESN distributions

are not ESN. Hence, there is no closed form solution to the AUC in this case. Alter-

natively, AUC can be expressed as

AUC =

∫ 1

0

h(x; θ)dx. (3.6)

However, numerical approaches such as the trapezoidal rule [14] provide good approx-

imations for the AUC. We examined the relationship between AUC for the binormal

model and the AUC for the ESBN model using Taylor series expansion in Appendix

A. In addition, tp = h(p; θ). Given the maximum likelihood estimates for θ, we can

then estimate the equation for the ROC curve as well as the AUC and tp for any

chosen FPF = p.

Let θ̂ be the maximum likelihood estimator of θ. For maximum likelihood es-

timation, Mudholkar and Hutson [10] proved in Theorem 4.7 that as n → ∞, the
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maximum likelihood estimator
√

n(θ̂ − θ) is a centered multivariate normal distri-

bution with variance covariance matrix

Σ =


 I0 0

0 I1


 (3.7)

where

I0 =




Iµ0µ0 =
3π(1−ε20)σ2

0

3π−8
Iµ0σ2

0 = 0 Iµ0ε0 =
−2
√

2π(1−ε20)σ0

3π−8

Iσ2
0σ2

0 = 2σ4
0 Iσ2

0ε0 = 0

Iε0ε0 =
π(1−ε20)

3π−8


 , (3.8)

and

I1 =




Iµ1µ1 =
3π(1−ε21)σ2

1

3π−8
Iµ1σ2

1 = 0 Iµ1ε1 =
−2
√

2π(1−ε21)σ1

3π−8

Iσ2
1σ2

1 = 2σ4
1 Iσ2

1ε1 = 0

Iε1ε1 =
π(1−ε21)

3π−8


 . (3.9)

In the context of the ESBN modeling the parameters ε0 and ε1 may be interpreted

as a measure of distance of the distribution of the continuous predictor from normality

with respect to ESN alternative for individuals with negative and positive disease

status, respectively. Hence, the tests

H0 : ε0 = 0

H1 : ε0 6= 0
and

H0 : ε1 = 0

H1 : ε1 6= 0
(3.10)

may be used as a diagnostic tool with respect to the appropriateness of testing the

appropriateness of an underlying normal model versus a broad class of skew normal

alternatives.

3.1 Limiting Cases as ε → ±1

Lemma 4.2 in Muholkar and Hutson [10] gives the conditions in which the maximum

likelihood estimator for ε is ±1. We need to examine (3.5) in these cases. If ε̂0 = ±1
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we find that F−1
ε̂0

(1−x) is always defined for 0 < x < 1. However, −â+ b̂F−1
ε̂0

(1−x) is

not defined for x ≥ P (Y0 > µ̂1) when ε̂1 = 1 and for x < P (Y0 > µ̂1) when ε̂1 = −1.

It can be shown that in the case of ε̂1 = 1 that the equation for the ROC curve is

given by:

h(x; θ̂) =





2− 2Φ
(

1
2
[−â + b̂F−1

ε̂0
(1− x)]

)
, if x < P (Y0 > µ̂1),

1, if x ≥ P (Y0 > µ̂1),

(3.11)

and in the case of ε̂1 = −1,

h(x; θ̂) =





0, if x < P (Y0 > µ̂1),

1− 2Φ
(

1
2
[−â + b̂F−1

ε̂0
(1− x)]

)
, if x ≥ P (Y0 > µ̂1),

(3.12)

Expressions for h(x; θ̂) in equations (3.11) and (3.12) are based on the c.d.f for

the half-normal distributions.

3.2 Estimating AUC of the ESBN ROC Curve

As noted earlier there is not an analytic form for the AUC from the ESBN ROC

curve. Here we propose utilizing the trapezoid methods. Let θ̂ be the maximum

likelihood estimate for θ. Then

ÂUC =

∫ 1

0

h(x; θ̂)dx, (3.13)

which can be approximated by

ÂUCT =
1

B

[
1

2
+

B−1∑
i=1

h(i/B; θ̂)

]
, (3.14)

where B is the number of subintervals of [0, 1].
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Theorem 1. For large samples

ÂUCT ∼ AN(AUCT ,
1

B2
1′

B−1V 1B−1), (3.15)

where AUCT is ÂUCT evaluated at θ̂ = θ, 1B−1 is a (B − 1)× 1 vector of 1’s, and

V is the variance-covariance matrix of the h(i/B; θ̂), i = 1 . . . B − 1.

Proof. Proof. By Theorem 4.7 in Mudholkar and Hutson [10] we have θ̂ ∼ AN(θ, 1
n
Σ),

where Σ is given in equation (3.7). By Theorem A, section 3.3 in Serfling [15] we

have

h(i/B; θ̂) ∼ AN(h(i/B; θ),
1

n
[∇hi(θ)]′Σ[∇hi(θ)]), (3.16)

where ∇hi(θ) represents the 6×1 vector of partial derivatives of h(i/B; θ̂) evaluated

at θ. Let V is the variance-covariance matrix of the h(i/B; θ̂), i = 1 . . . B − 1, and

hθ̂ be the (B − 1)× 1 vector of the h(i/B; θ̂), i = 1 . . . B − 1. Then we have

ÂUCT =
1

B

[
1

2
+

B−1∑
i=1

h(i/B; θ̂)

]
,

=
1

2B
+

1

B
1′

B−1hθ̂.

Thus we have that ÂUCT is asymptotically normal with

E(ÂUCT ) = AUCT ,

and

Var(ÂUCT ) =
1

B2
1′

B−1V 1B−1.

Theorem 1 can then be used for estimating 100(1− α)% confidence intervals.

The general approach for determining starting values for the maximum likelihood

estimation method is to first fit the standard binormal model (ε0 = ε1 = 0). The

parameter estimates from the binormal model are then used as the starting values

for µ0, µ1, σ0 and σ1 with ε0 and ε1 set to zero as the starting values.
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4 Simulation

We conducted a simulation study in order to examine the behavior of the maxi-

mum likelihood based estimates of the AUC based on the binormal and ESBN ROC

curves and two possible prediction thresholds over a variety of model scenarios. Let

Y0 ∼ ESN(0, 1, ε0) and Y1 ∼ ESN(µ1, 1.5, ε1) with sample size n0 = n1 = 100,

respectively. We set µ1 = 1 and µ1 = 1.5 and let ε0 and ε1 range from −0.75 to 0.75

by 0.25 over all positive, negative, and zero combinations. In total there were 98

model combinations. We utilized 1000 simulations under each scenario to compute

the expected AUC, t0.05, and t0.10, where tp represent the true positive fraction when

the false positive fraction is p.

For the binormal model we calculated ÂUC = Φ

(
â√
1+b̂

)
, t̂0.05 = Φ

(
â + b̂Φ−1(0.05)

)
,

and t̂0.1 = Φ
(
â + b̂Φ−1(0.1)

)
. When fitting the ESBN model, we calculated (3.14),

t̂0.05 = 1−Fε̂1 [−â + b̂F−1
ε̂0

(0.95)], and t̂0.05 = 1−Fε̂1 [−â + b̂F−1
ε̂0

(0.90)]. Estimates for

the AUC under binormal model and t0.05, and t0.10 under both models were easily

calculated using delta method from SAS PROC NLMIXED [12]. To estimate AUC

under ESBN model, we used the approach outlined in section 3.2, equation (3.14)

with B = 10000.

Figure 2 shows plots of the observed versus expected AUCs, t0.05, and t0.10 for

µ1 = 1 under the variety of ε0 and ε1 combinations. We see that while both models

appear to be similar in terms of providing relatively unbiased estimates of the AUC,

the binormal model is clearly biased when estimating pointwise TPF and FPF. While

not shown, plots were similar for µ1 = 1.5.

Figure 3 illustrates typical ROC plots under a variety of scenarios. In each

case, the epsilon-skew-binormal ROC curve follows the true ROC curve. However,

when departures from normality are observed, we find that the binormal ROC curve

sometimes crosses the true curve, part of the curve below the true ROC curve and
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part of the curve above the ROC curve. In effect, AUCs are similar due to lost area

from curve below canceling out the gained area from the curve above. However,

the bias across the set of potential decision thresholds is obviously inherent in the

binormal model. In practice this would yield either an inflated number of true

positives or false positives relative to the true population distribution.

We conducted a second simulation study to compare the AUC from the non-

parametric ROC method to the binormal and epsilon-skew-binormal models for a

select number of model scenarios. As in the previous simulation, we utilized 1000

simulations with Y0 ∼ ESN(0, 1, ε0) and Y1 ∼ ESN(µ1, 1.5, ε1) and sample size

n0 = n1 = 100, respectively. We set µ1 = 1 and let ε0 and ε1 range from −0.25 to

0.25 by 0.25 over all positive, negative, and zero combination. In total there were

nine model combinations. Table 1 summarizes our results. We find that results for

calculating the empirical AUC and the epsilon-skew-binormal models are similar in

terms of bias and variance. This provides evidence that the ESBN model provides

the benefits of a parametric model in terms of smoothness, yet is relatively robust

and efficient as compared to the nonparametric model. Our example in the next

section also provides a good illustration in terms of the relative similarities of ESBN

and nonparametric approaches, particularly in terms of the pointwise estimates.

We illustrate the maximum likelihood estimation of the ESBN model using skele-

tal measurements in 507 physically active individuals [16] as compared to binormal

and nonparametric models. Heinz et al. examined several skeletal measurements as

possible predictors for sex using the binormal model. The relevance of these types

of biometric measures in terms of prediction includes archeological and forensics ap-

plications. We chose chest depth between spine and sternum at nipple level as a

predictor for sex. There were 247 men and 260 women in the original study.

Figure 5 gives histograms of the chest depth measurements for males and females

with overlays of the fitted normal and ESN distributions. When fitting the ESN
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distributions to the data, ε̂0 = 0.47 and ε̂1 = 0.24. For testing H0 : ε0 = 0 and

H1 : ε1 = 0, p-values from the large sample approximation at (3.10) were < 0.0001

and 0.007, respectively, indicating that the binormal distribution is not a good fit.

We fit the nonparametric, binormal, and ESBN models to the chest depth mea-

surements to predict sex. Using the nonparametric model, the estimated AUC was

0.8734 with standard error 0.0154. Under the binormal model, estimated AUC was

0.8633 with standard error of 0.0158. With the ESBN model, estimated AUC was

0.8649 with standard error of 0.0155. As might be expected from our simulations

estimating AUC is comparable for all three methods. However, when estimating pos-

sible cut-offs, we find that the estimated t0.05 is 0.5138 (s.e. 0.0412) for the binormal

model and 0.4204 (s.e. 0.0494) for the ESBN model. For t0.10 is 0.6350 (s.e. 0.0365)

for the binormal model and 0.5751 (s.e. 0.0464) for the ESBN model. We see that

while the estimated AUC is similar for all three models, there is likely bias present

when estimating pointwise TPF and FPF. Figure 4 shows the estimated ROC curves

for the binormal, ESBN, and nonparametric models. We see from figure 4 a crossing

of the binormal and ESBN. In addition the ESBN model follows the empirical model

closely, indicating the ESBN model is a reasonable model choice and illustrating

potential bias of the binormal model.

5 Conclusions

In this note we have extended the binormal model via utilization of the epsilon-skew-

normal family of distributions. We illustrated the following:

1. If the binormal assumptions are correct, the epsilon-skew-binormal model ver-

ifies the model fit.

2. AUC estimates are similar between binormal, ESBN and nonparametric mod-
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els.

3. If the ESBN model is correct (ε0, ε1 6= 0), then the binormal is biased in terms

of estimating TPF and FPF.

4. The epsilon-skew-binormal model is comparable to nonparametric model in

terms of the unbiased AUC estimates and relative efficiency.

Overall, the epsilon-skew-binormal ROC model provides a robust, easily imple-

mented, and smooth parametric alternative to the binormal and nonparametric mod-

els.
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Appendix A

We first note that

∂Fε1(x)

∂ε1

=





x
1−ε1

φ
(

x
1−ε1

)
− Φ

(
x

1−ε1

)
, if x < 0

−x
1+ε1

φ
(

x
1+ε1

)
− Φ

(
−x

1+ε1

)
, if x ≥ 0,

(5.1)

and

∂F−1
ε0

(1− u)

∂ε0

=





1−u

(1−ε0)φ
[
Φ−1

(
1−u
1−ε0

)] − Φ−1
(

1−u
1−ε0

)
, if 0 < u ≤ 1+ε0

2

u

(1+ε0)φ
[
Φ−1

(
1− u

1+ε0

)] + Φ−1
(
1− u

1+ε0

)
, if 1+ε0

2
< u < 1,

(5.2)

In section 3, the equation of the ROC curve is given by

h(x) = 1− Fε1 [−a + bF−1
ε0

(1− x)], (5.3)

where a = µ1−µ0

σ1
and b = σ0

σ1
.

Let ε = (ε0, ε1)
′, and let ζ = a + bΦ−1(x).

Taylor’s series of (3.5) expanded around ε0 = 0 and ε1 = 0 is given by

hθ(x) ≈ Φ(ζ) + A0ε0 + A1ε1 (5.4)

where

A0 =




−φ(ζ) ·

[
1−x

φ[Φ−1(x)]
+ Φ−1(x)

]
, if 0 < x ≤ 1

2

−φ(ζ) ·
[

x
φ[Φ−1(x)]

− Φ−1(x)
]
, if 1

2
< x < 1,

(5.5)

and

A1 =





ζφ(ζ)− Φ(ζ), if 0 < x ≤ Φ(−a
b

)

−ζφ(ζ) + Φ(ζ), if Φ(−a
b

) < x < 1,

(5.6)

Thus

AUCESN ≈ AUCNOR + ε0

∫ 1

0

A0d x + ε1

∫ 1

0

A1d x. (5.7)
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Figure 1: Some typical ESN(0, 1, ε) probability density functions.

(a) ε = 0 (b) ε = 0.25

(c) ε = 0.50 (d) ε = 0.75
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Figure 2: Plots of expected versus estimated AUC, t0.05, and t0.10 for binormal versus

ESBN models

ε0, ε1 ∈ [0, 0.75]

ε0 ∈ [−0.75, 0), ε1 ∈ (0, 0.75] or ε0 ∈ (0, 0.75], ε1 ∈ [−0.75, 0)

ε0, ε1 ∈ [−0.75, 0)
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Figure 3: Some typical ROC curves (binormal versus ESBN)

(a) ε0 < 0, ε1 < 0, δ = 1 (b) ε0 < 0, ε1 = 0, δ = 1 (c) ε0 < 0, ε1 > 0, δ = 1

(d) ε0 = 0, ε1 < 0, δ = 2 (e) ε0 = 0, ε1 = 0, δ = 1.5 (f) ε0 = 0, ε1 > 0, δ = 1

(g) ε0 > 0, ε1 < 0, δ = 3 (h) ε0 > 0, ε1 = 0, δ = 2 (i) ε0 > 0, ε1 > 0, δ = 1
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Figure 4: Chest depth as a predictor of gender using ESBN, binormal and nonpara-

metric models
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Figure 5: Histogram of chest depth measurements by sex
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Table 1: Comparison of AUC for binormal, ESBN, and nonparametric models

ε0 ε1 Expected AUC Binormal ESBN Nonparametric

−0.25 −0.25 0.679 0.670± 0.040 0.679± 0.039 0.679± 0.040

−0.25 0 0.779 0.781± 0.032 0.780± 0.033 0.779± 0.034

−0.25 0.25 0.866 0.863± 0.022 0.865± 0.025 0.866± 0.024

0 −0.25 0.603 0.588± 0.041 0.603± 0.040 0.602± 0.041

0 0 0.710 0.710± 0.038 0.711± 0.038 0.710± 0.038

0 0.25 0.809 0.810± 0.028 0.808± 0.032 0.808± 0.031

0.25 −0.25 0.522 0.500± 0.040 0.522± 0.041 0.531± 0.035

0.25 0 0.634 0.630± 0.039 0.633± 0.041 0.633± 0.040

0.25 0.25 0.741 0.743± 0.033 0.740± 0.035 0.739± 0.035
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