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Abstract

We propose a novel SAS macro to utilize PROC NLMIXED in SAS to esti-
mate the standard error for AUC when the AUC estimator is based on the
trapezoidal rule. Our method accounts for the trapezoidal region-by-region
correlation structure. An example is provided for the standard error of the

AUC under the ROC curve.
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1. Introduction

There are many applications in statistics where the estimation of area
under the curve (AUC) and its corresponding standard error is of interest.
Examples include AUC of the concentration-time curve for a drug in phar-
macokinetic studies, and for AUC of receiver operating characteristic (ROC)
curves. In general, the common approach to estimating AUC is by the trape-
zoidal rule, which is a straightforward approach for estimating AUC [1]. Due
to the complex covariance structure of the adjacent trapezoidal regions, sta-
tistical software packages generally do not have built-in method for estimat-
ing the variance. We provide an extention that utilizes SAS NLMIXED|2]
within a SAS macro. We provide a detailed algorithm for estimating the
AUC and its corresponding variance structure. Sample code for estimating
AUC of an ROC binormal curve and illustration with a simulated data set
is provided.
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2. Computational Methods and Theory

Let X1,..., X, denote i.i.d. fg, where 8 = (6y,...,0,)", a p x 1 vector of
unknown parameters. Let @ ~ AN(0,b2X), where b, — 0 as n — oo. For
example, 6 can be the maximum likelihood estimate or method of moments
estimate of 8. Let g(y; @) be a real valued function which is continuous over
the interval [a,b]. Suppose we wish to estimate

A(8) = / o(y:0)dy (1)
with .
A(9) = / o(y: 0)dy 2)

Equation (2) is often in practice does not have a close form solution. Using
the trapezoidal rule, we divide [a, b] into m+1 subintervals of width (b—a)/m.
Then the function

At(é):b—a{g(a;0)+g(b;é)+§g(a+i(b—a);é)} 3)

m 2

~

approximates the integral A(8).
For simplicity of notation, write (3) as

where ho(0) = %g(a;é), hm(6) = %g(b;é), and h;(0) = g(a + =4 0),i =
1,...,m—1.

Theorem 1. Let A,(0) be defined as in (4) with @ ~ AN(0,b2%). Then

A A

Ai(0) is AN(A4(0),Var(Ai(0))) where

Var(4,(8)) = —;L)Q{Z Varla(0)] +2 Y Y Covlhi(6).h,(0)]} (5)

Jj=i+1 =0

Proof. By Theorem A, section 3.3 in Serfling[3] we have

~ A~

hi(8) ~ AN (hi(0), Var[hi(6)])

for i = 1,...,n. The formula for Var(A;) follows directly from the general-
ization of Theorem 4.5.6 in Casella and Berger[4]. O



3. ROC Example

We illustrate the trapezoid method for estimating the AUC and standard
error for a binormal ROC curve. Estimating the parameters is straightfor-
ward using methods discussed by Goénen[5]. For the purpose of comparing
the two methods, we choose a binormal ROC model, in which the standard
error can be directly estimated using PROC NLMIXED in SAS. Note how-
ever, that the approach used in the example easily extends to models where
closed form solutions for AUC and/or standard errors for AUC do not exist.

Let Y|D =0 ~ N(pg,02) and Y|D = 1 ~ N(u1,0%). Then the equation
of the binormal ROC curve is given by g(z;0) = ®[a + b®~!(z)], where
0 = (10,00, 11,01), a = (1 — po) /o1, and b = 0y /oy. For the binormal ROC
curve, there is a closed form solution.

/01 Bla + bd(z)]dz = @ (ﬁ) , (6)

where —o0o < a < 0o and b > 0. We estimate (6) by

A0y = = {% + 2_: Ola + b@_l(i/m)]} . (7)

m =1
So, ho(0) = 0, hpy(0) = 1, and h;(8) = ®la+bd ' (i/m)] fori=1,...,m—1.
Equation (8) reduces to

m—1 m—1

Var(A(0)) = %{i Var[h;(0)] + 2 Z Z Covlhi(6),h;(0)]}  (8)

j=i+1 i=1

We simulated a data set so that Y|D = 0 ~ N(0,1) and Y|D =1 ~
N(2,1.5%) and n = 50 in each group. Under these assumptions, the true
AUC is 0.866. Using maximum likelihood estimation for this data set we get
AUC = 0.880 with standard error estimate of 0.0332. Using the trapezoid
rule, we get estimated AUC = 0.879 and standard error estimate of 0.0329.
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Appendix A

/KoK sk ok ok sk ok ok sk ok ok sk ok ok sk K ok ok K ok ok K ok ok ok ok ok sk 3k ok ok ok ok sk ok ok K ok ok K ok ok K ok kK ok kR ok ok /

/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%

Macro seAUC was created to estimate the AUC and standard */

error of the AUC for a binormal ROC curve using the
This macro can be easily modified to
include other distributions besides the binormal.

trapezoidal rule.

MACRO VARIABLE DEFINITIONS

INDATA

name of dataset to be analyzed

Y = response variable name

D

OTHER VARIABLE DEFINITIONS

ml = mean of Y|D =
sl = std of YID =
a = (ml - m0)/si;
u_i = i/N;

1;
1

mO
s0
b
u_j

mean of Y|D
std of Y|D
s0/s1

j/N

disease status variable name(O=no 1=yes)
N = number of intervals for trapezoid rule

0
0

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/************************************************************/

%MACRO seAUC(INDATA,Y,D,N);
/o ok sk sk sk ook ok sk ok sk ok ok ok sk sk sk ook ok sk ok sk ok ok sk sk ks ook ok sk sk sk ok ok ok sk ks sk ok ok sk sk sk ok ok ok sk ok k /

/* 1. Estimate the parameters
/KK Kok K K ok ok K sk ok oK ok o K ok ok K ok ok Kok o K oK ok K ok ok Kok K oK o K ok ok K ok Kok o K oK ok Kok Kok ok ok /

PROC NLMIXED DATA=&INDATA;
PARMS m1=0 m0=0 sl1=1 s0=1;

BOUNDS s1>0, s0>0;

IF &D=1 THEN m=ml; ELSE IF &D=0 THEN m=mO;

IF &D=1 THEN s=s1**2; ELSE IF &D=0 THEN s=s0%%*2;

MODEL &Y ~ normal(m,s);
0DS OUTPUT ParameterEstimates=parms;

RUN;

*/

/KoK sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok K 3 ok ok K ok ok sk 3 ok ok K 3k ok ok K ok ok 3k ok ok K ok ok K ok ok K ok ok ok ok kR ok ok /

/* 2. Create macro variables of the parameter estimates

*/

/************************************************************/

PROC TRANSPOSE DATA=parms 0UT=parmsi;



VAR estimate;
ID parameter;
RUN;

DATA parmsl; SET parmsl;
CALL SYMPUT (’m0’,m0); CALL SYMPUT (’ml’,ml);
CALL SYMPUT (’s0’,s0); CALL SYMPUT (’s1’,sl);
RUN;

[ KoK Kk Kok KoK ook ok ook ok ok Kok oK ok Kok oK o Kok ook oK ok ok oK ok Kok oK ok Kok oK Kok ok ok ok ok k
/* 3. Output dataset (n-1)(n-2)/2 times to estimate */
/* covariance components x/
[ KoK KoK Kok oK oK ok ok ook oK ok oK ok o ok ok K ok o oK o K ok ook oK ok ook oK ok Kok oK ok K ok ok Kok ok oK ok ok K

DATA CopyData; SET &INDATA;
DO i=1 TO &N-1;

DO j=i+1 TO &N-1;
u_i=1/&N;
u_j=j/&N;
OUTPUT;

END;

END;
RUN;

PROC SORT DATA=CopyData;
BY i j;
RUN;

/************************************************************/

/* 4. Use PROC NLMIXED to estimate the standard errors of *x/
/* each of the AUC components */
/ 3k sk sk sk ok sk ook sk ok sk ok sk ok ok ok sk ok ok ok sk sk o ok sk sk ok s ok stk ok sk o stk sk sk sk sk ok sk sk skok sk ok skok ok o/

ODS LISTING CLOSE;

PROC NLMIXED DATA=CopyData MAXITER=3; BY i j;
PARMS m1=&ml1 mO=&mO0 si1=&s1 s0=&s0;
IF &D=1 THEN m=ml1; ELSE IF &D=0 THEN m=mO;
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IF &D=1 THEN s=s1*%*2; ELSE IF &D=0 THEN s=s0%%*2;

a=(ml - m0)/s1; b=s0/s1;

h_i=PROBNORM (a+b*PROBIT(u_1i));

h_j=PROBNORM (a+b*PROBIT (u_j));

sum_ij=h_i+h_j;

MODEL &Y ~ normal(m,s);

ESTIMATE ’VAR_i’ h_i;

ESTIMATE °*VAR_j’ h_j;

ESTIMATE ’SUM_ij’ sum_ij;

0ODS OUTPUT AdditionalEstimates=out;
RUN;

0ODS LISTING;
/KoK sk ok ok sk ok ok sk ok ok K ok ok sk K ok ok K ok ok K ok ok K 3 ok ok 3k 3k ok ok K ok ok 3k ok ok K ok ok K ok ok K ok sk ok ok kK ok ok /

/* 5. Get the var and cov of the AUC components */
[ F A A A A KA A KA A K oK K oK K ok K oK K ok K ok K ok K ok Kok Kok Kok Kok Kok Kk Kk KRk

DATA outl; SET out;
KEEP i j label standarderror variance;
variance=standarderror**2;

RUN;

DATA out2; SET outl; BY i;

IF first.i then output;

IF i=&N-2 and j=&N-1 and label=’VAR_j’ then output;
RUN;

DATA out2; SET out2;
IF label=’VAR_j’ then i=&N-1;
RUN;

PROC TRANSPOSE DATA=outl 0UT=out3;
VAR variance;
ID label;
BY i j;

RUN;

DATA out4d; SET out3;



_2cov=sum_ij-var_i-var_j;
RUN;

/3K ok ok sk Kk o ok ok sk kK ok ok ok sk 3 K K ok ok ok 3K K oK ok ok sk 3K K ok ok ok K K ok ok ok ok K K ok ok ok K K ok ok ok sk sk kok /
/* 6. Sum the variance and covariance AUC components x/
/* to get the final standard error estimate x/
/K ok ok sk sk sk o ok ok sk sk sk o ok ok ok sk ok o ok ok sk sk ok ok sk sk o ok ok sk sk sk ok ok ok sk Kk ok ok ok sk sk sk ok ok ok sk ok k /
PROC MEANS DATA=out2 SUM;

VAR variance;

OUTPUT 0OUT=outb5 SUM=sumvar;
RUN;

PROC MEANS DATA=out4 SUM;

VAR _2cov;

OUTPUT 0OUT=out6 SUM=sum2cov;
RUN;

DATA AUCse; MERGE outb5 out6; by _TYPE_;
se2=sqrt (sumvar+sum2cov) /&N;
KEEP _TYPE_ se2;

RUN;

PROC PRINT DATA=AUCse;
RUN;
%MEND seAUC;



