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SUMMARY

Methods of testing the equality of conditional correlation of bivariate data across a third variable of

interest (covariate) have been studied [9, 10, 11, 12, 13, 14, 15, 16]. Most of these methods, such as

the test based on Fisher z-transformation [15], the likelihood ratio tests, and the C(α) statistics [9],

are limited to the case where a categorical covariate is considered. When the covariate is numeric,

existing methods typically categorize data into groups based on percentiles of the covariate before

estimating and comparing sub-group correlations. As an example, consider a study where the Pearson

correlation coefficient of diastolic blood pressure with weight is tested among people of different ages.

Using current methods, an analyst would first define meaningful age groups before performing the

equality test.

In this study, we propose a generalized linear model approach for estimation and hypothesis testing

about the Pearson correlation coefficient, where the correlation itself can be modeled as a function

of numeric covariates. This approach allows for flexible and robust inference and prediction of the
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conditional correlations based on the generalized linear model. Simulation studies show that the

proposed method is statistically more powerful and more flexible in accommodating complex covariate

patterns than existing methods.
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1. Introduction

The correlation coefficient, ρ, is a parameter that measures the linear association between

two random variables. Different methods have been studied to estimate a common population

correlation, and to test the hypothesis H0 : ρ = 0 [1, 2, 3, 4, 5, 6, 7, 8]. In addition, approaches

are available to testing the equality of correlations in bivariate populations across a third

variable of interest (covariate) [9, 10, 11, 12, 13, 14, 15, 16], where the covariate is categorical.

When the covariate is categorical, or treated as categorical, let (Xij , Yij), i = 1, 2, . . . , k, j =

1, 2, . . . , ni be k independent random samples from k bivariate normal distributions with

means (µXi , µYi), variances (σ2
Xi

, σ2
Yi

), and correlations ρi. Current practices test the following

hypothesis:

H0 : ρ1 = ρ2 = . . . = ρk

H1 : Not all the ρ′is are equal. (1)

For example, Steel and Torrie [15] propose a test assuming asymptotic normality of the Fisher

z-transformation [5] of the sample correlation coefficients (χ2
Z). Paul [9] compares the χ2

Z

test to several tests derived from a likelihood ratio statistic (χ2
L), a C(α) test statistic based

on Fisher-z transformation (χ2
CF ), and a C(α) statistic based on the maximum likelihood

estimator of the common correlation coefficient (χ2
CM ). Paul recommends the χ2

CF test for

general use because of its computational ease and slight power advance. In addition, Wilcox

[13] implements a method based on percentile bootstrap simulation for the comparison of

correlation coefficients when the conditional variance of variable Y , given X, is not a constant.



A GLM APPROACH TO TESTING THE EQUALITY OF CONDITIONAL CORRELATIONS 3

Finally, Yu and Dunn [14] have studied nonparametric methods, such as the ”Spearman” test

and the ”Kendall” test, and found that they perform better than the statistics based on Fisher

z-transformation for non-normal data.

Few studies have considered the situation where the covariate of interest is numeric, or where

a continuous rather than discrete change of the correlation coefficient is being conceived. One

exception may be the approach by Bartlett [16]. In Bartlett’s paper, the author considers a

linear model for the Pearson’s correlation coefficient over a numeric grouping variable, in which

the correlation coefficient at each level of a categorized version of the third variable is first

estimated. Weighted least square estimators are obtained, and their asymptotic distributions

are discussed. This regression based approach may represent an improvement over previous

methods. However, its limitations are that an overall large sample size is necessary for

estimating the association between the Pearson correlation coefficient and the covariate, and

the model becomes quickly intractable when two or more covariates of interest exist. Therefore,

the approach still cannot fully accommodate numeric covariate(s).

This study proposes a more flexible methodology for modeling the Pearson correlation

coefficient of bivariate normal data across both numeric and categorical covariates. The outline

of this paper is as follows. Section 2 introduces the generalized linear model (GLM) approach

to estimating the correlation coefficient for bivariate normal data, where the restricted

maximum likelihood (REML) approach is used for parameter estimation. Simulation studies

are performed in Section 3 to compare the type I error rate and power of the proposed method

to those of existing methods, and to test the robuestness of the proposed approach when the

correlation function or data distribution is misspecified. Section 4 presents a real data example.

The strength and limitation of the proposed method is discussed in Section 5.

2. The Proposed Method

We assume Xi and Yi to be bivariate normally distributed, where their means are considered

functions of the covariates ZXi and ZYi , respectively, and their variances σ2
X and σ2

Y are
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constants. The data distribution is expressed as (in a matrix form)

Definition 2.1. Let




X

Y

∣∣Z


 ∼ MVN







µX|Z

µY |Z


 ,




ΣXX ΣXY

ΣY X ΣY Y





 ,

where
X′ = (x1, x2, . . . , xn) ,

Y′ = (y1, y2, . . . , yn) ,

µX|Z = ZXβX ,

µY |Z = ZY βY ,

ΣXX = σ2
XI,

ΣY Y = σ2
Y I,

ΣXY = ΣY X = Σ1/2
XXDiag(ρi)Σ

1/2
Y Y

where βX and βY are parameter vectors in the regression models of X on Z and Y on Z, ZX

and ZY are design matrices corresponding to the regression models of X on Z and Y on Z,

respectively, I is identity matrix, and ρi is the Pearson correlation coefficient between X and

Y that varies over Z. ZX and ZY need not be the same.

We further define a function h−1(·) that relates ρi to Zγi , where Zγi is the ith row of the

design matrix Zγ corresponding to the correlation vector ρ. Here Zγ need not be the same as

ZX or ZY . Since (ρi + 1)/2 has a range of [0,1], one form of the link function could be

h(ρi | Z) = Φ−1

(
ρi + 1

2

)
= γ0 + γ1zi (2)

when only one covariate is considered in the function, where Φ(·) represents the CDF of the

standard normal random variable, and γ0 and γ1 are covariate parameters. Equation (2) can
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be re-written as

ρi = 2Φ (γ0 + γ1zi)− 1. (3)

Therefore the log likelihood can be written as

l(µXi
, µYi

, σ2
X , σ2

Y , ρi|X, Y, Z)

= −n log(2π)− 1
2

n∑

i=1

log
(
σ2

X

)− 1
2

n∑

i=1

log(σ2
Y )− 1

2

n∑

i=1

log
(
1− ρ2

i

)

−
n∑

i=1

(xi − µXi
)2

2(1− ρ2
i )σ

2
X

+
n∑

i=1

ρi(xi − µXi
)(yi − µYi

)
σXσY (1− ρ2

i )
−

n∑

i=1

(yi − µYi
)2

2(1− ρ2
i )σ

2
Y

, (4)

where µXi , µYi and ρi can be replaced by the link functions denoted above.

Parameters in the mean functions are not of interest in our study, and thus can be considered

nuisance parameters. The restricted maximum likelihood (REML) approach can be used in

order to eliminate these nuisance parameters[17].

The following theorem is needed to apply the REML approach to our proposed method.

Theorem 2.2. Let

W =




X

Y




be given by Definition 2.1. Also let

C =




I − HX 0

0 I − HY


 ,

where HX and HY are hat matrices of the design matrices of ZX and ZY , respectively:

HX = ZX(Z′
XZX)−1Z′

X ,

HY = ZY (Z′
Y ZY )−1Z′

Y .
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Now let

W∗ =




X∗

Y∗


 = C




X

Y


 ,

then the conditional covariance matrix is

ΣX∗Y ∗ =
√

ΣX∗X∗Diag(ρi)
√

ΣY ∗Y ∗ ,

where ΣX∗X∗ and ΣY ∗Y ∗ are the variance matrices for X∗ and Y ∗, respectively. That is,

the conditional correlation matrix of the transformed data W ∗ equals the one of the original

data, and

E (W∗) = E




X∗

Y∗


 =




0

0


 .

The proof of Theorem 2.2 is shown in the Appendix. Given the Theorem, the transformed

data remain the same conditional correlation structure as the original data, and nuisance

parameters in the mean functions are eliminated. After data transformation, parameter

estimates and their variance-covariance structure in the link function of ρi can be obtained

using iteration techniques. The corrected likelihood ratio test (LRTF ) can be used for

hypothesis testing, where the statistic is a function of the log likelihood ratio (λ):

U = λ2/n, (5)

and

1− U

U

n− q

q1

Asm∼ F (q1, n− q) , (6)
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where n is the number of observations, q is the number of parameters in the model, and q1 is

the number of parameters involved in the null hypothesis. A merit of the corrected likelihood

ratio test is that the limiting distribution of the test statistic converges faster than the one

based on −2λ [18, 19].

3. Simulation Study

In this section we perform Monte Carlo simulations based on random samples generated from

the bivariate normal distribution




Xi

Yi


 ∼ BVN







1 + 2Zi

1.5 + 1.2Zi


 ,




1 ρi

ρi 1





 , (7)

where Zi is randomly chosen from uniform(0,1) distribution. We further define the underlying

link function of the correlation ρi aganist Zi as follows:

ρi = 2Φ (γ0 + γ1Zi)− 1 (8)

After data are generated, parameters of the proposed GLM approach are estimated using

the REML approach. Hypothesis testing for γ1 = 0 is conducted with the LRTF test described

before. We compare the type I error rate and power of our approach to those of existing

k-sample test methods [9, 15], where we first divide the simulated data into two or three

groups based on the percentiles of zi, i = 1, 2, . . . , n, and then calculate the χ2
z and χ2

CF

statistics for comparison purposes. We choose the two statistics for comparison because χ2
Z is

most commonly used, and χ2
CF is recommended by Paul as an easily applied approach with

potentially higher power compared to competitors [9].

Table I shows that both the proposed GLM method with LRTF test and the two current

methods maintain the type I error rate very well. Table II shows that the power of these tests
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increases with sample size and is dependent on the assumed correlation structures as would

be expected. When the correlation between X and Y does not vary substantially across the

covariate Z (i.e., γ1 = 0, 0.1, 0.2), the LRTF , χ2
Z , and χ2

CF tests have similarly low power, that

is, for the different sample sizes considered in the simulation (n=30, 60, 90, 120, 150, 180),

the power of all approaches is generally below 10%. However, when the correlation between X

and Y varies in a more substantial way (i.e., γ1 = 0.5, 1.0, 1.5), the LRTF test based on the

proposed method is more powerful than existing methods (χ2
Z and χ2

CF ).

Regarding the robustness of the proposed method, we test the equality of conditional

correlations across the covariate when the true data are generated from the probit link function

in Monte Carlo simulation (see equation (3)), while the estimated model defines the link

function h−1(·) based on Fisher z-transformation:

ρi =
2 exp (γ0 + γ1Zi)− 1
2 exp (γ0 + γ1Zi) + 1

(9)

We also study the robustness of the proposed model (with normality assumption) when the true

data are generated in Monte Carlo simulation as elliptical contoured distributed (specifically,

Pearson Type II distributed). Both robustness tests are in comparison with the χ2
Z and χ2

CF

tests.

Table III shows the estimated type I error rate and power of the three tests when the link

function of ρi is misspecified. The three tests, even with misspecified link function based on

Fisher z-transformation, maintain the type I error rate reasonably well. However, the power

of the LRTF test based on the proposed GLM approach is higher than the power of two

existing test statistics in almost all considered scenarios. The increased power of the proposed

LRTF test is more pronounced when sample size or γ1 increases. In general, even when the

estimated correlation function is misspecified, the LRTF test based on the proposed method

shows reasonably high power (i.e., >70%) when sample size is reasonably large (n ≥ 60) and

the true variation of ρi across the covariate is medium (i.e., γ1 ≥ 0.5).

Table IV compares the type I error rate and power of the proposed and existing methods
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with bivariate normal assumption while the true data are generated from Pearson type II

distribution. The results suggest that all tests are conservative in maintaining the type I error

rate. In many simulated scenarios, however, the LRTF test based on the proposed method still

shows higher power than the χ2
Z and χ2

CF tests.

4. An exampleIn this section, we present a real sample analysis based on published data from the 2003

and 2004 Health Outcome Survey (HOS) study [20], where we model the Pearson correlation

coefficient between the physical component summary (PCS) and mental component summary

(MCS) of the Medical Outcome Study 36-items Short Form Health Survey (MOS SF-36) as a

function of demographic covariates of survey respondents. The MOS SF-36 was developed in

1990’s to measure generic health status and quality of life [21], of which the PCS and MCS are

aggregated components to quantify overall physical and mental health functions, respectively

[22]. The medical literature has suggested that the two components may be correlated with

age, and with each other [21, 23, 24, 25].

The data we use include 28,724 survey respondents sampled from 53 Medicare insurance

plans [20]. Bivariate analysis shows positive correlation between PCS and MCS (r = 0.14, P <

0.0001). In addition, both of them are negatively correlated with age (r = −0.22, P <

0.0001, and r = −0.08, P < 0.0001, respectively). we categorize age into twenty groups based

on percentiles and calculate the Pearson correlation coefficient between PCS and MCS within

each age group. Results suggest a nonlinear downward trend of the correlation coefficient over

age (Figure 1).

To illustrate the proposed GLM approach, we model the correlation of PCS with MCS using

a probit link function of age and other demographic variables, including marital status, gender,
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Figure 1. Correlation of PCS with MCS in the Health Outcome Survey data within twenty age groups

and race. That is,

ρ = 2Φ
(
γ0 + γ1 ×AGE + γ2 ×AGE2 + γ3 ×AGE3 + γ4 ×MARRIED

+γ5 ×GENDER + γ6 × RACE)− 1

where, based on the Akaike Information Criterion (AIC) for model selection [27, 28], the second

and third order polynomials of age (in years) are included to model nonlinear trend, and other

demographic variables are defined as below:

• MARRIED: 1 if married, 0 otherwise

• GENDER: 1 if female, 0 otherwise

• RACE: 1 if non-white, 0 white

The restricted maximum likelihood estimates of parameters are shown in Table V, and the

estimated correlation function is

ρ = 2Φ
(
0.194− 0.024×AGE + 0.027×AGE2 − 0.010×AGE3

+0.041×MARRIED− 0.124×GENDER− 0.020× RACE)− 1
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It can be seen that age still significantly predicts the Pearson correlation coefficient between

PCS and MCS even after controlling for other demographic variables. In addition, married and

male respondents tend to show higher correlation between their physical and mental health

functions than others, while the correlation does not seem to vary across racial groups (Table

V). Figure 2 shows the predicted correlation between PCS and MCS as a function of age while

stratified by marital status (panel 1) and gender (panel 2).

Figure 2. Predicted correlation between PCS and MCS over age in the HOS data: by marital status
(Panel 1) and gender (Panel 2)

5. Discussion

Methods for testing the equality of linear association between two random variables across a

categorical covariate have been studied in the literature [9, 15, 16]. In the presence of a numeric

covariate, current practices are to first categorize the covariate into groups before calculating

and comparing correlation coefficients of the two random variables across grouped samples.

These approaches require relatively large sample so that sub-group correlation coefficients can

be tested. In addition, categorization of data results in information loss and is not feasible

when multiple covariates are of interest or need to be controlled for.

In this study, we propose a generalized linear model approach to estimating the Pearson

correlation coefficient of bivariate normal variables and testing its equivalence across numeric

covariate(s). This approach directly estimates the correlation coefficient as a function of

numeric or categorical covariate(s), and allows for flexible and robust parameter estimation



12 G.E. WILDING, X. CAI, AND A. HUTSON

and inference through the REML approach. The proposed method maintains type I error rate

well, and shows higher statistical power than existing approaches. We note that in the simplest

case where the conditional correlation coefficient varies over a single categorical covariate, our

proposed approach reduces to many existing approaches.

This proposed method has limitations. First, it is computationally more intensive

than existing methods since it requires optimization technique for parameter estimation.

Additionally, when the numeric covariate is of extreme values, the model with linear

specification may lead to unreliable parameter estimates [26]. Future work is needed to improve

the proposed approach to accommodate non-normal data or data that are obtained from non-

independent (or clustered) samples, such as the case where the PCS and MCS scores are

collected from respondents in (or potentially clustered by) multiple insurance plans.
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APPENDIX

Proof of Theorem 2.2:

According to the properties of multivariate normal distribution [29], the transformed vector,

W∗ = C




X

Y


 =




(I − HX)X

(I − HY )Y




is multivariate normal distributed with expectation




I − HX 0

0 I − HY







µX

µY


 =




0

0



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and its covariance structure




I − HX 0

0 I − HY







ΣXX ΣXY

ΣXY ΣY Y







I − HX 0

0 I − HY




=




(I − HX)ΣXX(I − HX) (I − HX)ΣXY (I − HY )

(I − HX)ΣXY (I − HY ) (I − HY )ΣY Y (I − HY )


 .

Since the matrices I − HX and I − HY are idempotent symmetric [29], we have

ΣX∗X∗ = (I − HX)ΣXX(I − HX)

= (I − HX)σ2
XI(I − HX)

= σ2
X [(I − HX)]2

= [σX(I − HX)]2 ,

and

ΣY ∗Y ∗ = (I − HY )ΣY Y (I − HY ) = [σY (I − HY )]2 ,

where ΣX∗X∗ and ΣY ∗Y ∗ are the variance matrices of transformed X and Y , respectively.

Therefore
ΣX∗Y ∗ = (I − HX)ΣXY (I − HY )

= (I − HX)σXIDiag(ρi)σY I(I − HY )

= [σX(I − HX)]Diag(ρi) [σY (I − HY )]

=
√

ΣX∗X∗Diag(ρi)
√

ΣY ∗Y ∗ q.e.d.

REFERENCES

1. Guo JH. Four correlation coefficients with a third blocking variable: their efficacy, relative efficiency, and

test statistics. Communications in Statistics: Theory and Methods 2003 32(9): 1835-1858

2. Paul SR, Barnwal PK. Maximum likelihood estimation and a C(α) test for a common intraclass correlation.

The statistician 1990 39 (1): 19-24



14 G.E. WILDING, X. CAI, AND A. HUTSON

3. Donner A, Rosner B. On inferences concerning a common correlation coefficient. Applied Statistics 1980;

29(1): 69-76

4. Duncan GT, Layard MW. A Monte-Carlo study of asymptotically robust tests for correlation. Biometrika

1973; 60: 551-558

5. Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely

large population. Biometrika 1915; 10: 507-521

6. Fisher RA. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1921;

1: 3-32

7. Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: Unconstrained

parameterisation. Biometrika 86 (3): 677-690

8. Tian L, Wilding GE. Confidence interval estimation of a common correlation coefficient. Computational

Statistics and Data Analysis 2008 52:4872-4877

9. Paul SR. Test for the equality of several correlation coefficients. The Canadian Journal of Statistics 1989;

17(2): 217-227

10. Sakaori F. A nonparametric test for the equality of dependent correlation coefficients under normality.

Communications in Statistics: Theory and Methods 2002 31 (12): 2379-2389

11. Sakaori F. Permutation test for equality of correlation coefficients in two populations. Communications in

Statistics: Simulation 2002 31 (4): 641-651

12. Wolfe DA. A distribution-free test for related correlation coefficients. Technometrics 1977 19 (4): 507-509

13. Wilcox RR, Muska J. Comparing correlation coefficients. Communications in Statistics: Simulation 2002

31 (1): 49-59

14. Yu MC, Dunn OJ. Robust tests for the equality of two correlation coefficients: A Monte Carlo study.

Educational and Psychological Measurement 1982; 42: 987-1004

15. Steel RGD, Torrie JS. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, 1980

16. Bartlett RF. Linear modeling of Pearson’s product moment correlation coefficient: An application of

Fisher’s z-transformation. The Statistician 1993; 42:45-53

17. McCullagh P, Nelder JA. Generalized Linear Models (2nd edn). Chapman & Hall, 1989

18. Anderson TW. An Introduction to Multivariate Statistical Analysis(3rd edn). Wiley, 2003.

19. Rao CR. An asymptotic expansion of the distribution of Wilks’s criterion. Bulletin of the international

statistical institute 1951; 33(2): 177-180

20. Li Y, Cai X, Glance LG, Mukamel DB. Gender differences in healthcare-seeking behavior for urinary

incontinence and the impact of socioeconomic status: a study of the medicare managed care population.

Medical Care 2007; 45: 1116-1122

21. Heyes V, Morris J, Wolfe C, Morgan M. The SF-36 health survey questionnaire - Is it suitable for use with

older adults? Age and Ageing 1995; 24: 120-125

22. Bierman AS, Lawrence WF, Haffer SC, Clancy CM. Functional health outcomes as a measure of health

care quality for Medicare beneficiaries. Health Services Research 2001; 36: 90-109



A GLM APPROACH TO TESTING THE EQUALITY OF CONDITIONAL CORRELATIONS 15

23. Mittal SK, Ahern L, Flaster E, et. al. Self-assessed physical and mental function of haemodialysis patients.

Nephrol Dial Transplant 2001; 16: 1387-1394

24. Iliescu EA, Coo H, McMurray MH, et. al. Quality of sleep and health-related quality of life in haemodialysis

patients. Nephrol Dial Transplant 2003; 18: 126-132

25. Newton-Bishop JA, Nolan C, Turner F, et. al. A quality-of-life study in high-risk (ThicknessX2 mm)

cutaneous melanoma patients in a randomized trial of 1-cm versus 3-cm surgical excision margins. Journal

of Investigative Dermatology Symposium Proceedings 2004; 9: 152-159

26. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models. McGraw-Hill,

1996

27. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control

1974; 19(6): 716-723

28. Burnham KP, Anderson DR. Model Selection and Inference: A Practical Information-Theoretic Approach.

Springer - Verlag, 1998.

29. Graybill FA. Theory and Application of the Linear Model. Duxbury Press, 2000



16 G.E. WILDING, X. CAI, AND A. HUTSON

Table I. Estimated type I error rate (%) of tests based on the proposed (LRTF ) and existing (χ2
Z and

χ2
CF ) approaches for the equality test of conditional correlations (α = 0.05, γ1 = 0)

n γ0 ρ Estimated α
n=(1:1) n=(1:1:1)

LRTF χ2
Z χ2

CF χ2
Z χ2

CF

30 0 0 6.0 4.7 6.6 5.3 6.8
0.3 0.39 6.0 4.7 6.7 5.3 7.5
0.6 0.84 5.3 4.8 6.2 5.2 7.2

60 0 0 5.4 5.3 5.7 5.4 6.4
0.3 0.39 5.5 5.3 5.3 5.1 6.1
0.6 0.84 5.0 5.0 6.1 5.0 5.7

90 0 0 5.6 5.1 5.8 5.5 5.5
0.3 0.39 5.2 5.1 5.4 4.8 5.6
0.6 0.84 4.9 4.9 5.5 4.7 5.6

120 0 0 5.2 5.0 5.7 4.8 5.4
0.3 0.39 5.1 5.0 5.4 5.3 5.7
0.6 0.84 4.9 4.9 5.0 4.8 5.7

150 0 0 5.1 4.9 5.5 5.0 5.1
0.3 0.39 5.5 4.9 5.0 4.7 5.7
0.6 0.84 5.3 4.6 5.5 5.0 5.3

180 0 0 5.3 5.1 5.6 5.3 5.5
0.3 0.39 4.8 5.2 4.8 5.2 5.2
0.6 0.84 5.4 5.1 5.2 5.1 4.9
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Table II. Type I error rate and power (%) of the proposed (LRTF ) and existing (χ2
Z and χ2

CF )
approaches for the equality test of conditional correlations (γ0 = 0.5)

n γ1 Probability of Rejection
n=1:1 n=1:1:1

LRTF χ2
Z χ2

CF χ2
Z χ2

CF

30 0 6.1 5.0 6.1 5.2 7.1
0.1 6.0 4.6 6.6 5.0 6.8
0.2 6.4 5.3 7.7 4.9 7.9
0.5 10.6 8.2 9.2 7.7 8.7

1 31.5 18.9 28.1 13.7 19.8
1.5 56.0 49.8 37.1 27.9 41.2

60 0 5.2 5.2 5.5 5.1 5.8
0.1 5.9 5.4 5.6 5.7 6.5
0.2 6.9 6.3 6.9 10.1 6.8
0.5 17.3 12.3 12.2 12.5 13.4

1 56.2 29.6 42.7 36.9 40.9
1.5 94.4 62.9 77.1 72.3 72.2

90 0 5.3 5.0 5.7 4.9 5.8
0.1 6.2 5.5 6.0 5.4 5.9
0.2 8.3 6.7 7.4 5.8 6.9
0.5 25.2 18.7 18.6 11.9 16.4

1 76.2 57.5 49.5 51.3 57.3
1.5 99.8 82.9 87.9 85.1 88.5

120 0 5.1 5.3 5.4 5.2 5.2
0.1 6.0 5.4 6.2 5.2 5.8
0.2 8.7 7.7 7.5 6.8 6.8
0.5 31.1 21.3 19.6 19.2 18.2

1 90.2 74.5 63.1 66.6 64.3
1.5 98.1 93.9 97.7 96.6 97.0

150 0 5.3 4.8 5.1 5.4 5.3
0.1 6.3 5.8 6.5 5.6 6.0
0.2 9.7 8.1 8.5 6.8 7.4
0.5 43.2 22.1 22.9 21.9 21.2

1 95.3 77.5 79.9 80.4 88.1
1.5 100.0 97.8 98.0 99.3 99.6

180 0 5.2 5.2 4.7 5.1 5.6
0.1 6.2 5.8 5.8 5.5 5.7
0.2 11.2 8.8 9.5 7.7 7.9
0.5 47.3 30.1 28.4 25.2 22.9

1 99.0 83.2 85.5 82.5 85.6
1.5 100.0 99.1 99.4 99.5 99.9
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Table III. Type I error rate and power (%) of the proposed (LRTF ) and existing (χ2
Z and χ2

CF )
approaches for the equality test of conditional correlations when the link function is misspecified

(γ0 = 0.5)
n γ1 Probability of Rejection

n=1:1 n=1:1:1
LRTF χ2

Z χ2
CF χ2

Z χ2
CF

30 0 5.8 5.0 6.1 5.2 7.1
0.1 6.8 4.6 6.6 5.0 6.8
0.2 8.3 5.3 7.7 4.9 7.9
0.5 41.1 8.2 9.2 7.7 8.7

1 75.4 18.9 28.1 13.7 19.8
1.5 98.8 49.8 37.1 27.9 41.2

60 0 5.5 5.2 5.5 5.1 5.8
0.1 9.7 5.4 5.6 5.7 6.5
0.2 18.2 6.3 6.9 10.1 6.8
0.5 78.5 12.3 12.2 12.5 13.4

1 97.6 29.6 42.7 36.9 40.9
1.5 99.3 62.9 77.1 72.3 72.2

150 0 5.1 4.8 5.1 5.4 5.3
0.1 14.4 5.8 6.5 5.6 6.0
0.2 49.2 8.1 8.5 6.8 7.4
0.5 99.5 22.1 22.9 21.9 21.2

1 100.0 77.5 79.9 80.4 88.1
1.5 100.0 97.8 98.0 99.3 99.6

†The true correlation is generated from a probit function, while the estimated link function in all

approaches is based on Fisher z-transformation.
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Table IV. Type I error rate and power (%) of the proposed (LRTF ) and existing (χ2
Z and χ2

CF )
approaches for equality test of conditional correlations when data distribution is misspecified (γ0 = 0.5)

n γ1 Probability of Rejection
n=1:1 n=1:1:1

LRTF χ2
Z χ2

CF χ2
Z χ2

CF

30 0 3.9 3.1 4.4 3.4 4.8
0.1 4.1 3.6 4.6 3.9 4.9
0.2 5.0 6.3 5.5 3.5 4.7
0.5 9.2 18.5 6.7 4.8 6.6

1 23.8 34.5 22.6 7.5 20.4
1.5 69.9 51.8 51.0 20.3 30.6

60 0 3.1 3.2 3.8 2.7 3.5
0.1 4.1 3.3 3.7 3.0 4.1
0.2 4.6 4.4 4.6 3.5 4.1
0.5 12.9 10.5 12.1 7.0 9.5
1.0 72.2 42.1 31.0 27.9 40.7
1.5 97.3 86.5 77.2 75.8 70.6

150 0 3.5 3.3 2.8 2.7 3.1
0.1 3.6 3.5 3.4 3.0 3.1
0.2 7.2 5.8 5.9 4.2 3.9
0.5 34.5 26.5 24.4 17.7 19.0
1.0 97.7 83.8 80.9 70.0 77.8
1.5 100.0 99.7 99.2 99.2 99.6

‡The simulated data are Pearson type II distributed, while all approaches assume bivariate normal

distribution.

Table V. Parameter estimation in HOS data using the proposed approach to modeling conditional
correlation between PCS and MCS

Param Variable Estimation Standard Degree of t Pr Lower Upper
Error Freedom CL CL

γ0 INTERCEPT 0.194 0.020 28715 9.84 < .0001 0.155 0.232
γ1 AGE -0.024 0.012 28715 -1.96 0.0497 -0.048 -0.001
γ2 AGE2 0.027 0.008 28715 3.58 0.0003 0.012 0.042
γ3 AGE3 -0.010 0.004 28715 -2.33 0.0199 -0.018 -0.001
γ4 MARRIED 0.041 0.016 28715 2.61 0.0091 0.010 0.072
γ5 GENDER -0.124 0.017 28715 -7.27 < .0001 -0.158 -0.091
γ6 RACE 0.020 0.021 28715 0.94 0.3461 -0.021 0.062


