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ABSTRACT 

 

The Mixed Effects Mixed Distribution (MEMD) model has been proposed by Tooze and 

Olsen to deal with longitudinal or repeated measures with clumping at zero. This model 

contains two components with one modeling the probability of a nonzero value and 

another modeling the mean of nonzero values. The repeated measures are handled with 

random effects and correlation between the random effects is allowed to connecting the 

two components. This paper presents an application of the MEMD model on the patient-

reported peripheral neuropathy in a cancer clinical trial which are characterized by 

repeated measures with many zeroes. 



 

1. INTRODUCTION 

Measurement of patient-reported outcomes (PRO) has grown to be a focus in recent 

years in evaluating treatment benefits in randomized clinical trials and other clinical 

studies. Most instruments that are used to assess PRO are in a questionnaire format 

that outlines several questions for patients to answer. Each question is followed by a few 

choices with a pre-defined scale, e.g. 0 represents no symptoms and a higher score 

represents a worse scenario. Even after aggregating items (e.g. by summation of item 

rating), many zeros often remain.  The distribution of this type of data is characterized by 

a spike or discrete probability mass at zero, followed by a heavily skewed bump or ramp 

describing the positive values. This type of data occurs in many applications in the 

medical sciences in biometrics, such as health policy research, epidemiology, substance 

abuse studies, and quality of data research and clinical trials.  

 

Analyzing data with clumping at zeros and non-zero values extremely skewed pose an 

important challenge for biostatisticians. If the data are treated as if they come from a 

normal distribution, the clumping at zero is ignored and so is the skewness of the non-

zero data. Clearly a normal distribution is an incorrect specification in such cases. If a 

nonparametric approach is employed by using the distribution of the ranks, a large 

number of ties will exist due to the zero values and the distribution will not be symmetric. 

In addition, it is not possible to obtain estimation and prediction with a nonparametric 

approach. One way to analyze this type of data is to treat the zeros and nonzeros 

separately as in the “two-part model” used for cross-sectional data in econometrics [1, 

2]. This method, however, does not account for the relationship that might exist between 

the probability of a nonzero value and the magnitude of the nonzero value. In addition, 



many studies involving PRO assessment include repeated assessments over time.  The 

correlation among repeated measurements on the same person must be accounted for.  

 

The most challenging aspect of analyzing repeated measures with clumping at zero is 

how to deal with the zeros. One way as suggested by Berk [3, 4] is to regard some zeros 

as the result of left censoring. This approach assumes an association between zero 

value and low values for the nonzero data. Another way is to consider zeros as “true” 

zeros and handle the “true” zeros with logistic model as proposed by Tooze [5, 6] and 

Olsen [6]. The latter one is similar to the ‘two-part model’ by combining models for the 

probability of occurance of a nonzero value and for the probability a)distribution of the 

nonzero values. However, they allow for a connection between the two parts by way of 

the correlation between the random effects in each model. This paper represents an 

application of the mixed-effects mixed-distribution (MEMD) model proposed by Tooze to 

a patient-reported neurotoxicity data.  

 

2. MIXED EFFECT MIXED DISTRIBUTION (MEMD) MODEL 

Let ijy be an observation from the jth measurement on the ith subject, where the ijy are 

all nonnegative. Let ijp  be the probability for ijy  >0 and  0| ijij yyf  be the p.d.f of ijy  

given ijy  >0. Then the p.d.f. of ijy [5] is  
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And the unconditional expectation and variance  of ijy [7] can be calculated by:  
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where 0| ijij yy  and 
2

0| ijij yy  are the mean and variance of ijy  given ijy  >0 respectively. 

 

Let  ri  be the random effect  that accounts for the correlations due to the repeated 

measures on the same subject. Given the random effect r1i for the ith subject, we 

assume a logistic model for the probability of being a nonzero value ( ijy  >0) such that   
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where 1 is a vector of fixed effect parameters and X1ij is a vector of covariates for the 

probability of a nonzero value. 

 

Under the condition of being a nonzero value ( ijy  >0) and random effect r2i for the ith 

subject we assume a lognormal model for a nonzero value so that  

                  2
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where 2 is a vector of fixed effects and X2ij is a vector of covariates for a nonzero value.  

 

The random effects r1i and r2i in the logistic model and lognormal model are allowed to 

be correlated by assuming that 
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Under above assumptions, the subject-specific expectation of a nonzero ijy given ijy >0 

and random effect r2i is  
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and the variance[7] is 
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The marginal expectation of ijy  given ijy  >0 is  
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and the variance is  
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Let zij be an indicator variable such that  
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Given the random effects, the p.d.f. for ijy  is  
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Here  is the standard normal density. The density function of ijy  is the product of two 

terms, where the first corresponds to the zero values and the second to the nonzero 

values. 

 

The conditional likelihood for a single subject is obtained as a product 
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Letting g(r1i, r2i) be the bivariate normal density of the random effects, the marginal 

likelihood for a single subject is  
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Finally, the likelihood to be maximized is  

    
i r r

iiii

j

iiij

i i

drdrrrgrryfL

1 2

212121 ,,|  

 

3. APPLICATION 

A randomized clinical trial was conducted by Gynecological Oncology Group (GOG) to 

determine whether the addition of paclitaxel to standard doxorubicin/cisplatin 

chemotherapy (TAP) produces improvement in the survival of patients with advanced 

endometrial carcinoma compared to standard treatment (AP) alone [8]. A potential 

adverse effect of this trial was chemotherapy-induced peripheral neuropathy. To 

measure the patient-reported neurotoxicity symptoms and concerns, the neurotoxicity 

subscale (NTX subscale) of FACT/GOG-NTX (Functional Assessment of Cancer 

Therapy/Gynecologic Oncology Group-Neurotoxicity) was administered to all qualified 

patients at baseline and prior to each subsequent course of chemotherapy. The 

maximum of numbers of courses was seven. The NTX subscale had 11 items when it 

was initially applied to this study. Each item uses 0-4 rating scale, with 0 = no symptoms 

at all, 1 = a little bit, 2 =  somewhat, 3 = quite a bit, and 4 = very much. A scale score 

was obtained by  summating the rating over all items to produce a total score for 

analysis. It has been validated and suggested that the 11 item subscale could be 

reduced to 4 items without compromising its performance of psychometric properties [9]. 

Thus, the total score of the reduced NTX sucscale (NTX4) ranges from 0 to 16 for the 

reduced subscale. A higher score indicates worse toxicity and the nonzero (>0) score 



indicates the onset of neurotoxicity. The baseline neurotoxicity assessment is completed 

at the time of patient entry. Six follow-up assessments are conducted prior to the 2nd to 

7th course of chemotherapy. A total of 263 patients participated in the study. Of them, 

238 (91%) patients completed the assessment prior to cycle 1 (considered as baseline). 

The completion rates for follow-up assessments were  83%, 77%, 70%,65%, 59% 

respectively at the 2nd, 3rd, 4th, 5th, 6th assessment and 52% at the last assessment. The 

distributions of the NTX4 reported at follow-up assessments are displayed in Figure 1 by 

assessment time points. Among these assessments, about 34% to 62% of patients 

scored zero on the reduced neurotoxicity subscale. Furthermore, nonzero NTX4 scores 

were extremely skewed to the right.  

 

For this NTX4 data, we applied the mixed-effect mixed-distribution (MEMD) model 

defined above to assess the effects of TAP on both the development of neurotoxicity and 

the severity of the toxicity. Specifically, the logistic model was used to model the 

probability of reporting a nonzero NTX4 score and a lognormal model is applied in 

modeling the magnitude of a nonzero NTX4 score when reported.  

 



Figure 1.  

 

In the analysis, the effect of treatment, assessment time, and the interaction between 

treatment and assessment time were examined for both the logistic and lognormal 

models. The baseline NTX4 score was included as a covariate in both models. The 

treatment effect is coded as 0 for the control group (AP) and 1 for the experiment group 

(TAP). Assessment time points are coded as 1, 2, … ,6 for assessments prior to the 2nd , 

3rd, …. , 7th cycle of chemotherapy. To account for the repeated measures on the same 

subject, a random effect was incorporated to both logistic and lognormal models and the 

two random effects were allowed to be correlated.   

 

This MEMD model with correlated random effects was fitted using SAS PROC 

NLMIXED. The PROC NLMIXED in SAS software enables you to specify a conditional 

distribution of the data given the random effects. It is also flexible in specifying a 

standard distribution such as normal, binomial, and Poisson or a general distribution that 

you code using SAS programming statements. Parameter estimates for logistic part and 

lognormal part of the MEMD model are given in Table 1. 

  

Table 1.            Parameter estimates for MEMD model fitting NTX4 data 

 

Parameters 

Logistic model Lognormal model 

Estimate (S.E) P > | t | Estimate (S.E) P > | t | 

Intercept -2.839(0.445) <0.001 0.078 (0.136) 0.565 

Treatment 0.871(0.569) 0.127 0.131 (0.153) 0.394 

Assessment time 0.275(0.087) 0.002 0.051 (0.026) 0.051 

Treatment*time 0.531(0.134) 0.001 0.134 (0.032)  <0.001 



Baseline NTX4 scores 1.267(0.208) <0.001 0.174 (0.038) <0.001 

Var. of Random effect  5.912(1.290) <0.001 0.335 (0.059) <0.001 

Var. of Random error - - 0.269  <0.001 

Correlation between random effects            0.742 (0.08)                p<0.001 

      

 

The significant random effects in the logistic model (variance=5.912, p<0.001) and the 

lognormal model (variance=0.335, p<0.001) constitute clear evidence of substantial 

heterogeneity among patients in perceiving neurotoxicity symptoms. A positive 

correlation (r=0.74, p<0.001)) between the random effects indicated that, after adjusting 

for the baseline scores, the patients with a higher tendency to report neurotoxicity 

symptoms also tend to report a greater neurotoxicity score. 

 

After adjusting for the baseline scores, the significant interactions between treatment 

and time in both components of the model suggest that the addition of paclitaxel to the 

standard chemotherapy (TAP) in treating advanced endometrial cancer would not only 

increased the odds of developing neurotoxicity symptoms but also increased, among 

those who do develop neurotoxicity, the reported severity of toxicity during the treatment, 

when compared with AP alone. 

 

4. MODEL CHECKING 

Our specification of the MEMD model assumes that the random effects in the logistic 

and lognormal models are bivariate normal and independent of errors in the lognormal 

model, which is assumed normally distributed. The residuals for the lognormal model 

were calculated as    iijij rXy 222
ˆˆln   .  Quantile-quantile plots of these random 



effects (Figure 2,3) and residuals (Figure 4) didn’t reveal severe violation of the 

assumptions.  

 

Figure 2.      Figure 3.  

  

 Figure 4.  

 

 

5. PREDICTIONS FOR THE PROBABILITY OF A NONZERO NTX4 SCORE AND 

MEAN NTX4 SCORES 

Under the MEMD model defined by (1) – (4), the predicted probability of a nonzero 

NTX4 score is  
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The predicted NTX4 scores given the NTX4>0 is calculated as  
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and the predicted unconditional NTX4 score is calculated as 
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The observed and predicted probabilities ( ijp̂ ) of reporting a nonzero NTX4 score and 

the observed and predicted nonzero NTX4 scores ( ijŷ ) given a nonzero score for two 

treatment groups are displayed in Table 2 and Table 3 respectively. The fitted MEMD 

model estimates showed a good prediction for the probability of a nonzero NTX4 score 

and the mean of nonzero NTX4 scores. The mean of predicted NTX4 score ( ijy~ ) were 

plotted together with the mean of observed NTX scores that include zeros in the Figure 5 

and presents a good prediction for the self-assessed neurotoxicity score. 

Table 2.            Observed and predicted probability of a nonzero NTX4 score 

Assessment  

Time 

AP TAP 

Observed Prob. Predicted Prob. Observed Prob. Predicted Prob. 

Pre-2nd course 0.30 (30/101) 0.27 0.47 (49/105) 0.46 

Pre-3rd course 0.35 (33/93) 0.31 0.54 (52/96) 0.55 

Pre-4th course 0.29 (24/82) 0.34 0.68 (60/88) 0.65 

Pre-5th course 0.30 (23/76) 0.35 0.72 (61/85) 0.74 

Pre-6th course 0.47 (32/68) 0.42 0.81 (62/77) 0.81 

Pre-7th course 0.46 (27/59) 0.45 0.83 (59/71) 0.86 

 
 

Table 3.               Observed and predicted means of nonzero NTX4 score 

Assessment 

Time 

AP TAP 

Observed Means Predicted Means Observed Means Predicted Means 

Pre-2nd course 2.70  2.45 2.87  3.09 

Pre-3rd course 2.30  2.62 4.47  3.63 



Pre-4th course 2.46  2.75 4.27  3.97 

Pre-5th course 2.57  2.60 4.57  4.63 

Pre-6th course 2.66  2.70 5.69  5.26 

Pre-7th course 3.14 2.84 5.64  5.95 

 

 

Figure 5. 

 

6. DISCUSSION 

The Mixed-Effect Mixed Distribution (MEMD) model with correlated random effects 

demonstrated to be a reasonable model for longitudinal patient-reported outcomes data 

with clumping at zero. This MEMD model handles the excess zeros by modeling the 

probability of a nonzero rating and modeling the magnitude of a nonzero rating 

separately and using random effects to account for the correlations among the repeated 

measures. The key feature of this method lies in that the two separate models are linked 

by allowing the random subject effects to be correlated with each other such that the 

parameter estimates are computed by means of models whose random components are 

intercorrelated [10].  



 

A zero score in this study is treated as a real zero, implying no neurotoxicity perceived 

by the patient. This is considered reasonable for patient-reported neurotoxicity. 

Although, sometimes a zero might not be a true zero but left censored values that would 

not be zero if using a more sensitive scale, or a mixture of true zeros and left censored 

values, the MEMD model is still applicable. In these cases, the method can be  modified 

by adding a left-censored lognormal to the probability of a zero value [3, 4].  

 

This model can also be applied to repeated measures data with many ‘ceiling’ values 

[11]. For, example, suppose the PRO data are collected from extremely sick patients. 

Many might report highest scores for the worst symptoms or side effects. In this case, 

the ‘ceiling’ value is considered right-censored and a right-censored lognormal can be 

added to the density of a nonzero score.  

 

The correlations among the longitudinal PRO data were dealt with by assuming random 

intercepts in both components of the MEMD model. It is possible that there is substantial 

heterogeneity in rate of change in PRO score. Inclusion of random coefficients to the 

random effect could be a topic of further attention for longitudinal data that include many 

zero values. 
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