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Summary

The Tobit model was introduced by James Tobin in 1958 in order to model a spe-

cific type of discrete-continuous data commonly found in economic applications. The

Tobit model is a specific case of a censored regression model and assumes that the

continuous component of the data (right-tail) is normally distributed. It has been

demonstrated in later research that even small departures from this assumption may

lead to inconsistent estimators. One technique that is often utilized in an attempt

to compensate for this weakness is to apply a log transformation to the data. How-
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ever, we illustrate that for many biological applications this approach is oftentimes

inadequate. An alternative approach is to utilize more flexible parametric models,

such as the epsilon-skew-normal (ESN) developed by Mudholkar and Hutson (2000),

in order to create a logical extension to the original Tobit Model. We show that this

approach lends itself well towards generalizing Tobit regression models in terms of

providing consistent and efficient parameter estimates.

Key Words: left-censoring; limit of detection; maximum likelihood estimation;

regression modeling

1 Introduction

The Tobit model was introduced by James Tobin in 1958 in order to model a spe-

cific type of discrete-continuous data commonly found in economic applications. The

Tobit model is a specific case of a censored regression model and assumes that the

continuous component of the data (right-tail) is normally distributed. Early exam-

ples included modeling household expenditures of luxury goods, inheritance, and

expected age of retirement. The Tobit model was first used in economics applica-

tions. More recently, Tobit models have been used for biostatistical applications such

as analyzing data where measurements fall below a limit of detection. A few exam-

ples among many include cord blood IgE levels, Scirica et al (2007) and coronary

artery calcification, Reilly et al (2004).

It has been demonstrated in later research that even small departures from un-

derlying normality assumption may lead to inconsistent estimators. Arabmazar and

Schmidt (1982) explored the robustness of the Tobit estimator when estimating a

population mean when the assumption of normality is violated. They concluded

that the bias can be quite large and that the bias is dependent on the proportion of
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censoring.

One technique that is often utilized in an attempt to compensate for this weakness

in the case of long-tailed distributions is to apply a log transformation to the data.

Lorimer and Kiermeier (2007) conduct a simulation study to examine the use of Tobit

models on log-transformed microbiological data. They compared the Tobit method

to two other methods, using only uncensored observations, and using the limit of

detection for the censored values. They concluded that the two standard methods led

to biased estimates and that the Tobit model led to less biased estimates. However,

their conclusions are based on the underlying assumption of normality.

In addition to log-transformations, people have considered other types of Box-Cox

transformations, such as the square root transform. Han and Kronmal (2004) exam-

ine the use of Box-Cox transformations for both linear and non-linear Tobit models.

They develop a method for choosing an appropriate data-based transformation.

Another approach towards improving the model fit is to consider semi-parametric

approaches. Chay and Powell (2001) compared the censored least absolute deviations

(CLAD) estimation, symmetrically censored least squares (SCLS) estimation, and

identically censored least absolute deviations (ICLAD) estimation. Chay and Powell

suggested that Tobit estimators can be biased when the normality assumption is

violated.

An alternative approach, which we consider, is to utilize more flexible parametric

models, such as the epsilon-skew-normal (ESN) developed by Mudholkar and Hutson

(2000), in order to create a logical extension to the original Tobit model. We show

that this approach lends itself well towards generalizing Tobit regression models in

terms of providing consistent and efficient parameter estimates.

In section 2 we review the Tobit model and we define a new model termed the

Epsilon-Skew-Normal (ESN) Tobit model. In section 3 we then use the maximum-

likelihood approach to estimate the model parameters. In section 4 we then sum-
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marize the results of a simulation study we conducted to examine the asymptotic

properties of the maximum likelihood estimates in the ESN Tobit model and com-

pare with the maximum likelihood estimates in the Tobit model. In section 5 we

then illustrate the maximum likelihood estimation of the ESN Tobit regression model

using data involving lung injury in 276 mice.

2 Background

2.1 Tobit Regression

Let Y ∗ denote a random variable with mean θ. Suppose we observe Y = max{0, Y ∗ =

θ + ζ} and the error term ζ is assumed to be normally distributed with mean 0 and

variance σ2. Let φ and Φ represent the standard normal d.f. and c.d.f respectively.

The first two moments of Y are

E(Y ) = θΦ(θ/σ) + σφ(θ/σ), (2.1)

E(Y 2) = (θ2 + σ2)Φ(θ/σ) + θσφ(θ/σ), (2.2)

Let θ be defined as a linear combination of parameters, namely,

θ = β0 + β1x1 + · · ·+ βp−1xp−1, (2.3)

where, using standard notation, x = (1, x1, x2, . . . , xp−1)
′ denotes the p× 1 vector of

known covariates and βj (j = 0, 1, . . . , p−1) are the p unknown regression coefficients.

More compactly use standard matrix notation and denote the mean θ = x′β, where

β = (β0, β1, . . . , βp−1).

Let yi, i = 1, 2, . . . , n denote observations from of a sample of size n with the

corresponding vector of covariates xi and assumed i.i.d. error terms ζi ∼ N(0, σ2).

Let δi be an indicator variable that is 1 when yi > 0 and 0 otherwise.

4



The log-likelihood per observation for the Tobit regression model is given by

l(yi; β, σ2) = (1− δi) log

[
Φ

(−x′iβ
σ

)]
− δi

2

[
log 2πσ2 +

(yi − x′iβ)2

σ2

]
; (2.4)

See Amemiya (1973) for detailed theoretical results for the Tobit Model.

2.2 Epsilon-Skew-Normal (ESN) distribution

The epsilon-skew-normal distribution was developed by Mudholkar and Hutson (2000).

What we term the “base model” or standardized model for the epsilon-skew-normal

distribution ESN(θ, σ, ε) is defined to be a unimodal distribution with the mode at

θ and probability mass (1− ε)/2 below the mode. The probability density function

(p.d.f.), the distribution function (d.f.), and quantile function (q.f.) of its canonical

form ESN(0, 1, ε) are respectively:

f0(x) =





1√
2π

exp
(
− x2

2(1−ε)2

)
, if x < 0,

1√
2π

exp
(
− x2

2(1+ε)2

)
, if x ≥ 0,

(2.5)

F0(x) =





(1− ε)Φ
(

x
1−ε

)
, if x < 0,

−ε + (1 + ε)Φ
(

x
1+ε

)
, if x ≥ 0,

(2.6)

and,

Q0(u) = F−1
0 (u) =





(1− ε)Φ−1
(

u
1−ε

)
, if 0 < u < (1− ε)/2

(1 + ε)Φ−1
(

u+ε
1+ε

)
, if (1− ε)/2 ≤ u < 1,

(2.7)

where −1 < ε < 1, and Φ(x) denotes the standard normal c.d.f.

The standard epsilon-skew-normal distribution, ESN(0, 1, ε), is a mixture of two

half-normal distributions and reduces to the standard normal distribution when ε =

0. The distribution is skewed right for values of ε > 0 and skewed left for values

of ε < 0. The limiting cases of (2.5) as ε → ±1 are the well known half-normal

distributions. Figure 1 gives some typical ESN probability density functions.
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The p.d.f. f0(·) at (2.5) has derivatives of arbitrary orders. It is differentiable

once at the mode. The p.d.f. of ESN(θ, σ, ε) is f0(
x−θ
σ

)/σ, where f0(·) is given by

(2.5). The c.d.f. of ESN(θ, σ, ε) is F0(
x−θ
σ

), where F0(·) is given by (2.6). Its quantile

function, Q(u) = θ+σQ0(u), can be used to generate samples from the ESN(θ, σ, ε)

population. Note the relationship Q(1−ε
2

) = θ. The mean is given by

E(X) = θ +
4σε√
2π

, (2.8)

Mudholkar and Hutson (2000) give an in depth mathematical treatment of the

maximum likelihood estimation for the ESN distribution in the univariate case.

Namely, they illustrate that the likelihood estimates are well behaved. Mudholkar

and Hutson give detailed theoretical results pertaining to this model.

3 Epsilon-Skew-Normal Tobit Regression Model

3.1 Univariate Case

Let Y ∗ denote a random variable with mode θ where Y = max{0, θ + ζ}. For the

ESN Tobit model the error term ζ is assumed to have an ESN(0, σ, ε) distribution.

The parameters of interest for the ESN Tobit regression model are similar to those

in the Tobit regression framework with the exception of the additional parameter ε.

The mean of the ESN Tobit regression model is given by

E(Y ) =





θ[1−Kθ,σ] + σ(1 + ε)2κθ,σ, if θ ≤ 0,

θ[1−Kθ,σ] + σ(1− ε)2κθ,σ + 4σε√
2π

, if θ > 0,

(3.1)

where κθ,σ = f0(−θ/σ) and Kθ,σ = F0(−θ/σ), and f0(·) and F0(·) are the d.f. and

c.d.f. of the standard ESN distribution respectively.

Note that when ε = 0 corresponding to normal error term, (3.1) reduces to (2.1).
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The second moment of the ESN Tobit regression model is given by

E(Y 2) =





[θ2 + σ2(1 + ε)2][1−Kθ,σ] + θσ(1 + ε)2κθ,σ, if θ ≤ 0,

θ2 − [θ2 + σ2(1− ε)2]Kθ,σ + θσ(1− ε)κθ,σ + 8θσε√
2π

+ σ2(3ε2 + 1), if θ > 0,

(3.2)

where κ and K are defined above.

In the context of Tobit regression modeling the parameter ε may be interpreted

as a measure of distance of the error ζ from normality with respect to ESN skew

alternatives. Hence, the test

H0 : ε = 0

H1 : ε 6= 0 (3.3)

may be used as a regression diagnostic tool with respect to the appropriateness of

testing the appropriateness of an underlying normal model versus a broad class of

skew normal alternatives.

Let Y1, Y2, . . . , Yn denote i.i.d. ζi ∼ ESN(0, σ, ε), i = 1, 2, . . . , n. Let δi be an

indicator variable that is 1 when yi > 0 and 0 otherwise.

The log-likelihood per observation for the ESN Tobit regression model is given

by

l(yi; θ, σ
2, ε) = (1− δi) log

[
F0

(−θ

σ

)]
+ δi log

[
1

σ
f0

(
yi − θ

σ

)]
. (3.4)

More specifically, we need to consider the cases where θ ≤ 0, θ > 0 and yi < θ,

and 0 < θ ≤ yi.

For θ ≤ 0 the log-likelihood per observation takes the form

l(yi; θ, σ
2, ε) = (1− δi) log

[
−ε + (1 + ε)Φ

( −θ

σ(1 + ε)

)]

− δi

[
1

2
log(2πσ2) +

(yi − θ)2

2σ2(1 + ε)2

]
,

(3.5)
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For θ > 0 and yi < θ the log-likelihood per observation takes the form

l(yi; θ, σ
2, ε) = (1− δi) log

[
(1− ε)Φ

( −θ

σ(1− ε)

)]

− δi

[
1

2
log(2πσ2) +

(yi − θ)2

2σ2(1− ε)2

]
,

(3.6)

and for 0 < θ ≤ yi the log-likelihood per observation takes the form

l(yi; θ, σ
2, ε) = −1

2
log(2πσ2)− (yi−θ)2

2σ2(1+ε)2
. (3.7)

The score functions are given in Appendix A. Note however direct maximum

likelihood solutions for the estimates of the vector of parameters β are analytically

intractable. An alternative approach is to utilize numerical nonlinear maximization

routines such as SAS’s PROC NLMIXED and PROC NLP. The basic requirements

are an expression for the loglikelihood per observation, reasonable starting values

for the parameters β, ε, and σ, and programming statements corresponding to any

parameter bounds.

The general approach for determining starting values for the maximum likelihood

estimation method is to first fit the standard Tobit model (ε = 0). The parameter

estimates from the Tobit model are then used as the starting values for θ and σ with

the ε set to zero as the starting value. Equations (3.1) and (3.2) provide alternative

mechanics for parameter estimation and starting values via the method of moments.

Covergence of the fitting algorithm is given by relative gradient convergence crite-

rion GCONV < 1E−8. Error estimates are computed using the inverse of the Hessian

matrix. The SAS/STAT 9.1 user guide (2004) has detailed information regarding

convergence criteria and standard error estimation when using the NLMIXED pro-

cedure.
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3.2 Multivariate Regression Case

We extended the univariate case to the multivariate regression case through the

parameter θ. We define θ as a linear combination of parameters, namely,

θ = β0 + β1x1 + · · ·+ βp−1xp−1, (3.8)

where, using standard notation, x = (1, x1, x2, . . . , xp−1)
′ denotes the p× 1 vector of

known covariates and βj (j = 0, 1, . . . , p−1) are the p unknown regression coefficients.

More compactly use standard matrix notation and denote the mode θ = x′β, where

β = (β0, β1, . . . , βp−1).

Note that when ε = 0 this reduces to the standard Tobit regression and further

reduces to classic least squares regression when all δi, i = 1, 2, . . . , n.

The maximum likelihood estimation for this model is a straightforward extension

to the univariate ESN Tobit model discussed in the previous section. In section 5,

we look at examples fitting the ESN Tobit model for both the univariate and the

multivariate regression case.

4 Simulation

We conducted a simulation study in order to examine the behavior of the maximum

likelihood estimates of the location parameter for the Tobit model over a variety of

scenarios.

For the univariate case, we examined the estimated coverage probability for the

normal model fit versus the ESN model fit for samples of size 25, 50, and 100 for the

left censored regression model Yi = max{0, θ + ζi} over the values of ε = 0 to 0.75

by 0.25 using 10,000 replications, where ζi ∼ ESN(0, 1, ε).

Let Y ∗ ∼ ESN(θ, σ, ε) and let c = P (Y ∗ ≤ 0). The range of simulation values

for θ were chosen by solving θ + σQ0(c) = 0 for θ, where Q0 is given by equation
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(2.7). Letting c = 0.2, 0.3, and 0.4 gives values for θ that simulate samples with an

average of 20%, 30%, and 40% censoring respectively.

The parameter of interest for our simulation study was µ = E(Y ∗), where µ = θ

for the normal model (ε = 0), and µ = θ + 4σε√
2π

for the ESN model. Under each

model, 95% confidence intervals for µ were computed. The coverage probabilities

were estimated by determining the proportion of times the computed confidence

interval captured the true value of µ in the 10,000 replications.

Tables 1 and 2 gives µ̂± σ̂µ̂, where σ̂µ̂ is the standard deviation of the estimates

for µ, along with the estimated coverage probability for each simulation. When sim-

ulating under the normal distribution (ε = 0), both the Tobit and ESN Tobit models

have comparable and acceptable coverage probabilities. As we varied the skewness

parameter ε in an increasing fashion, the Tobit model began to have coverage proba-

bilities below the 95% level for larger samples, falling as low as 81%. This is similar

to behavior seen earlier by Arabmazar and Schmidt (1982) and Chay and Powell

(2001). It is interesting to note here that the estimated coverage probability for

the normal model decreases as the sample size increases. The implication is that

potentially the estimate of the mean may be inconsistent.

For the multivariate regression case, we fit the model Yi = max{0, β0 +β1xi + ζi}
where ζi ∼ ESN(0, 1, ε) and β0 = 0.5. The value of xi was defined as an indicator

variable given by 0 or 1 divided evenly by sample size. For n = 25, n1 = 12 had a

covariate level of 0, and n2 = 13 had a covariate level of 1.

Choosing the range of simulation values for β1 is more complex than in the

univariate case. For this purpose we used a two step process. First, simply let

θi = β0 + β1xi and then average both side sides to arrive at θ̄ = β0 + β1x̄. We then

chose values of θ̄ using the same method as in the univariate case. Since we fixed

β0 = 0.5 and the average of the covariate indicator variables, x̄ is 0.5, we then choose

β1 using the relation β1 = θ̄−0.5
0.5

. These values of β1 simulate samples with an average
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censoring proportion near to 20%, 30%, and 40% and were applied consistently across

model comparisons.

Tables 3 and 4 gives β̂1± σ̂β̂1
, where σ̂β̂1

is the standard deviation of the estimates

for β1, along with the estimated coverage probability for each simulation. When sim-

ulating under the Tobit assumptions the estimated coverage probability was slightly

below the expected 95% level for the ESN Tobit model for small samples. As ex-

pected, the estimated coverage probability for β1 did approach 95% as the sample

size increased.

As ε increased, the estimated coverage probability β1 using Tobit model was

slightly below the 95% level. Interestingly, we did not see as much of a decrease in

the coverage probability for β1 as the sample size increased as we did in the location

case.

In general, when ε = 0 both the Tobit and ESN Tobit models performed equally

well. There was no substantial penalty for using ESN Tobit model when Tobit model

assumptions held. When ε > 0 the Tobit model did not perform as well as the ESN

Tobit model.

5 Application

We illustrate the maximum likelihood estimation of the ESN Tobit regression model

using data involving lung injury in 276 mice, see Raghavendran et al. (2005). There

were two groups of mice, wild type (WT), and MCP-1(−,−) mice. There were 145

WT mice and 131 MCP-1(−,−) mice. The mice were sacrificed at 5, 24, or 48 hours

to assess lung injury. For purpose of illustration we chose two of the set of cytokines

used in this study as our response variables, namely IL-1β and MIP−2. The limit of

detection for both IL-1β and MIP-2 was 32 pg/ml. Note that we subtracted the limit

of detection from all the observations before fitting the Tobit and ESN Tobit models.
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We then simply added the limit of detection to the location parameter estimates to

arrive at the final fitted results. The histograms of the data are given in figures 2

and 3. The percent of values falling below the limit of detection was 45.7% for IL-1β

and 21.7% for MIP-2.

We first estimated the mean IL-1β level using a univariate model and a multi-

variate model controlling for mouse type and time. We the fit the OLS model, the

Tobit Model, and the ESN Tobit Model. The results are summarized in tables 5 and

7.

It is interesting to note the p-value for testing H0 : ε = 0, see (3.3) for details.

For the univariate model for the mean IL-1β level, the skewness parameter in the

ESN Tobit model is not significantly different from zero (p = 0.69). This suggests

that the Tobit model may be appropriate for modeling the mean IL-1β levels. In the

Tobit model, we conclude that the mean IL-1β level is significantly different from

zero (p = 0.0058) while in the ESN Tobit model, we conclude that the mean IL-1β

level is not significantly different from zero (p = 0.2675), at α = 0.05.

For the multivariate model for the mean IL-1β levels with covariates mouse type

and time, the skewness parameter in the ESN Tobit model is not significantly dif-

ferent from zero (p = 0.6217). Again, this suggests that the Tobit model may be

appropriate. In both the Tobit and ESN Tobit models, we conclude that there is no

significant difference in the IL-1β levels between WT mice and MCP-1(−,−) mice

(p = 0.6105 and p= 0.5234 respectively). In both the Tobit and ESN Tobit mod-

els, we conclude that there is a significant time effect (p = 0.0013 and p = 0.0014

respectively).

Next, we estimated the mean MIP-2 levels using a univariate model and a mul-

tivariate model again with covariates mouse type and time. The results are summa-

rized in tables 6 and 8.

For the univariate model for the mean MIP-2 level, the skewness parameter in
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the ESN Tobit model is highly significantly different from zero (p < .0001). This

suggests that the Tobit model likely a poor choice for modeling mean MIP-2 level.

We see in table 6 the confidence interval for the mean MIP-2 level in the ESN Tobit

model suggests the mean MIP-2 level is higher than the mean MIP-2 level estimated

in the Tobit model.

For the multivariate model for the mean MIP-2 level, the skewness parameter in

the ESN Tobit model is highly significantly different from zero (p < .0001). Again,

this suggests that the Tobit model may not be appropriate. In the Tobit model, we

conclude that there is a significant difference in the MIP-2 level between WT mice

and MCP-1(−,−) mice (p = 0.0318). In the ESN Tobit model, we conclude that

there is no significant difference in the MIP-2 level between WT mice and MCP-

1(−,−) mice (p = 0.7869).

We see that when fitting IL-1β using the ESN Tobit model, we fail to reject the

hypothesis that ε = 0. Both the Tobit and ESN Tobit models yielded similar results.

When fitting MIP-2 using the ESN Tobit model, we strongly rejected the hypothesis

that ε = 0. Thus the Tobit model potentially gives the misleading conclusion that

there is no difference in the MIP-2 levels between WT mice and MCP-1(−,−) mice.

This example illustrates how the Tobit model may lead to false conclusions when the

underlying assumptions are not met.
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Appendix A

The score equation per observation for θ, σ, and ε are as follows:

∂l(yi; θ, σ
2, ε)

∂θ
=





−(1−δi)φ( −θ
σ(1+ε))

σ[−ε+(1+ε)Φ( −θ
σ(1+ε))]

+ δi(yi−θ)
σ2(1+ε)2

if θ ≤ 0,

−(1−δi)θφ( −θ
σ(1−ε))

σ(1−ε)Φ( −θ
σ(1−ε))

if θ > 0 and yi < θ,

(yi−θ)
σ2(1+ε)2

if 0 < θ ≤ yi.

(5.1)

∂l(yi; θ, σ
2, ε)

∂σ2
=





(1−δi)θφ( −θ
σ(1+ε))

2σ3[−ε+(1+ε)Φ( −θ
σ(1+ε))]

+ δi

[
−1
2σ2 + (yi−θ)2

2σ4(1+ε)2

]
if θ ≤ 0,

(1−δi)θφ( −θ
σ(1−ε))

2σ3(1−ε)Φ( −θ
σ(1−ε))

+ δi

[
−1
2σ2 + (yi−θ)2

2σ4(1−ε)2

]
if θ > 0 and yi < θ,

−1
2σ2 + (yi−θ)2

2σ4(1+ε)2
if 0 < θ ≤ yi.

(5.2)

∂l(yi; θ, σ
2, ε)

∂ε
=





(1− δi)

[
−1+Φ( −θ

σ(1+ε))+ θ
σ(1+ε)

φ( −θ
σ(1+ε))

−ε+(1+ε)Φ( −θ
σ(1+ε))

]
+ δi

[
(yi−θ)2

σ2(1+ε)3

]
if θ ≤ 0,

(1− δi)

[
−1
1−ε

− θφ( −θ
σ(1−ε))

σ(1−ε)2Φ( −θ
σ(1−ε))

]
+ δi

[
(yi−θ)2

σ2(1−ε)3

]
if θ > 0 and yi < θ,

(yi−θ)2

σ4(1+ε)3
if 0 < θ ≤ yi.

(5.3)
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Figure 1: Some typical ESN(0, 1, ε) probability density functions.
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Figure 2: Histogram of IL-1β data. The first bin corresponds to the IL-1β values

below the limit of detection.
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Figure 3: Histogram of MIP-2 data. The first bin corresponds to the MIP-2 values

below the limit of detection.
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Table 5: Univariate Model IL-1β

Method Parameter Estimate S.E. p-value 95% CI

OLS mean 97.94 6.73 < .0001 (84.69, 111.19)

Tobit mean 34.68 12.47 0.0058 (11.87, 59.22)

mean 42.61 38.36 0.2675 (−32.90, 118.12)
ESN Tobit

ε 0.1718 0.4302 0.6900 (−0.68, 1)

Table 6: Univariate Model MIP-2

Method Parameter Estimate S.E. p-value 95% CI

OLS mean 466.13 41.59 < .0001 (384.25, 548.01)

Tobit mean 369.36 43.11 < .0001 (284.48, 454.23)

mean 575.03 56.37 < .0001 (464.06, 686.01)
ESN Tobit

ε 0.6714 0.1182 < .0001 (0.44, .90)
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Table 7: Multivariate Regression IL-1β

Method Parameter Estimate S.E. p-value 95% CI

slope 113.80 23.26 0.0003 (72.02, 163.59)

OLS mouse type 0.98 13.41 0.9418 (−25.42, 27.38)

time −0.85 0.39 0.0288 (−1.62,−0.09)

slope 71.53 39.65 0.3197 (−6.53, 149.58)

Tobit mouse type 11.65 22.85 0.6105 (−33.34, 56.64)

time −2.23 0.68 0.0013 (−3.57,−0.88)

slope 80.53 50.14 0.1094 (−18.7, 179.23)

mouse type 15.83 24.78 0.5234 (−32.94, 64.60)
ESN Tobit

time -2.46 0.76 0.0014 (−3.96,−0.95)

ε 0.2075 0.42 0.6217 (−.62, 1)

Table 8: Multivariate Regression MIP-2

Method Parameter Estimate S.E. p-value 95% CI

slope 576.90 135.28 < .0001 (310.57, 843.23)

OLS mouse type 154.51 78.02 0.0487 (0.92, 308.11)

time −13.55 2.26 < .0001 (−17.99,−9.11)

slope 512.69 138.74 0.0003 (239.56, 753.83)

Tobit mouse type 173.86 80.58 0.0318 (15.22, 332.50)

time −15.98 2.34 < .0001 (−20.58,−11.38)

slope 787.49 146.36 < .0001 (499.36, 1075.62)

mouse type 20.61 76.14 0.7869 (−129.29, 170.50)
ESN Tobit

time -11.45 2.51 < .0001 (−16.40,−6.50)

ε 0.6796 0.09 < .0001 (0.51, 0.85)
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