
Rough Draft: Not for Distribution

R/Cpp: Interface Classes to Simplify Using R Objects in C++

Extensions

James J. Java∗†

Time Warner Cable
Daniel P. Gaile

University at Buffalo
Kenneth F. Manly

University at Buffalo

July 23, 2007

Abstract

The R statistical environment provides a very utile programming language, some of whose
utility derives from the implementation of R as an interpreted language. However, simulation or
analysis can sometimes benefit from manipulating R data in an existing library or in optimized
code written in a compiled programming language. Through the mechanism of foreign-language
extensions (such as C++ or FORTRAN), computationally intensive code, for example, can be
compiled in a lower-level language linked to the R environment, and have its results passed back
to R. Such extensions are somewhat difficult to create, though.

This paper describes the development of a set of classes written in C++ to offer simpli-
fied ways of manipulating R objects in a C++ context. We hope to provide in R/Cpp the
means for ready creation of fast extensions to R, without the typical concomitant difficulty in
implementation.

1 The Programming Languages

1.1 R

R is an “integrated suite of software facilities for data manipulation, calculation and graphical
display” designed around a true computer language1. It is an open-source GNU2 project which is
similar to the S language and environment developed at Bell Laboratories. (S-PLUS is a commercial
version of S.) R provides many functions and packages implementing statistical techniques, and in
fact many of its users consider R to be primarily a statistics system.

As a data-analysis environment, R provides1,3

• facility of data importation, manipulation, and storage;

• a large collection of tools for data analysis;

• highly customizable, production quality graphics;

• ready extensibility through user-defined functions and a growing list of add-on packages.
∗Correspondence to: James J. Java, Time Warner Cable, 71 Mt. Hope Avenue, Rochester, New York 14620–1090,

U.S.A.
†E-mail: james.java@twcable.com

1

As a programming language, R provides3–5

• control statements for conditional or repetitive execution;

• user-defined recursive functions;

• support for object-oriented constructs;

• operator overloading;

• interactive command interpretation and object manipulation;

• a simple interface to compiled code that has been linked to R.

The two lattermost language characteristics suggest a potential problem and its resolution, re-
spectively. The flexibility provided by code interpretation allows for such conveniences as command-
line interactivity, run-time object resolution, and fast debugging; but this flexibility can cost com-
putational efficiency, and some perfectly valid programming structures cannot take advantage of
R’s built-in code optimizations, thus running slower than the same structures built in the idiom of
a compiled language. R, though, allows its objects to be passed into compiled extensions linked to
the R environment, where the objects can be invoked, used, altered, and then sent back where they
came from, as needed. If some piece of R code plods along against the wishes of the programmer, its
functionality can be farmed out to speedier C or FORTRAN libraries, for the best of both worlds.

1.2 R Language Extensions5

The R environment provides the functions .C and .Fortran as a standard interface to compiled
code that has been linked into R, either at build time or through the dyn.load function. The .C
function is intended for compiled C code, but it can be used with other languages that can create C
interfaces, such as C++. (Likewise the intention for the interface functions .Call and .External,
which are discussed below.)

The first argument to each function is a character string giving the symbol name known to C
or FORTRAN, that is, the function or subroutine name. A further 65 arguments giving R objects
can be passed to the compiled code. Normally these are copied before being passed in (unless the
argument DUP=F is given), and copied again to an R list object when the compiled code returns. If
the arguments are given names, these are used as names for the components in the returned list
object.

The following table maps the modes of R vectors to the corresponding arguments passed to a
C function or FORTRAN subroutine.

R storage mode C type FORTRAN type

logical int* INTEGER
integer int* INTEGER
double double* DOUBLE PRECISION
complex Rcomplex* DOUBLE COMPLEX
character char** CHARACTER*255
raw char* none

R also provides the functions .Call and .External as alternative interfaces to compiled C code
that has been linked into R. Whereas .C allows type-checking (since an argument on one side of
the interface must typewise match its partner on the other side) and duplication of its arguments,

2

.Call and .External transfer type-checking to the C code and do not automatically duplicate
their arguments. Of the two .Call is simpler to use, but .External is more general.

A call to .Call is very similar to .C; for example,

.Call("hello", a, b)

The first argument should be a character string giving a C symbol name of code that has already
been loaded into R. Up to 65 R objects can be passed as arguments. The C side of the interface is

#include <R.h>
#include <Rinternals.h>

SEXP hello(SEXP a, SEXP b)
...

A call to .External is identical,

.External("hello", a, b)

but the C side of the interface is different, having only one argument:

#include <R.h>
#include <Rinternals.h>

SEXP hello(SEXP args)
...

Here args is a LISTSXP, a Lisp-style list from which the arguments can be extracted.
In C code, all objects you deal with will be of type SEXP†, which is a pointer to a structure with

the type definition SEXPREC. This structure is a variant type, a sort of catch-all container which can
handle the usual types of R objects—vectors of various modes, functions, environments, language
objects, and so on. Access macros are used on SEXPs to get from them the basic data types that
C can use directly. The R types and their corresponding SEXP type identifiers are provided in the
following table:

SEXP type R equivalent

REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP character
VECSXP list (generic vector)
LISTSXP “dotted-pair” list
DOTSXP a ‘...’ object
NILSXP NULL
SYMSXP name/symbol
CLOSXP function or function closure
ENVSXP environment

†SEXP is an acronym for S imple EXPression, common in Lisp-like languages.

3

A complete but toy example, presented as a series of steps, will illustrate how .External is used.
We assume that the operating system used to run the example has been configured for building
add-on packages from source, as described by the R Development Core Team6.

1. Create an empty directory to assemble and run the example project in. Place any new files
discussed below into this directory.

2. Create the file hello.c and, using a text editor, add the following code to it:

1 // hello.c
2

3 #include <R.h>
4 #include <Rinternals.h>
5 #include <Rdefines.h>
6

7 SEXP hello(SEXP args) {
8 SEXP langNameSXP = CADR(args);// extract 1st SEXP argument passed to C
9 char* languageName = CHAR(STRING_ELT(langNameSXP, 0));// extract string

10 Rprintf("Hello from %s\n", languageName);// print message from R
11 SET_STRING_ELT(langNameSXP, 0, COPY_TO_USER_STRING("C"));// make it "C"
12

13 return R_NilValue;
14 }

3. Open a command window and navigate to the example directory. Compile hello.c and link
it to R by issuing the command

R CMD SHLIB hello.c

If all goes well, the compiler and linker will output a few benign (i.e. without the word
“error”) diagnostic messages and the directory will now contain a file called either hello.so
or hello.dll, depending upon your operating system.

4. Create the file hello.R and add the following code to it:

1 # hello.R
2

3 # Load shared object/DLL compiled from C code:
4 dyn.load(paste("hello", .Platform$dynlib.ext, sep=""))
5 languageName <- "R"
6 SayHello <- function() {
7 returnValue <- .External("hello", languageName) # call C function
8 cat("Hello from", languageName, fill=T) # print message from C
9 }

10 SayHello()
11 dyn.unload(paste("hello", .Platform$dynlib.ext, sep="")) # unload

5. Start up an interactive R session and navigate to the example directory. Type

source("hello.R")

4

to run the example project. It should produce the following output:

Hello from R
Hello from C

This is what happens, in an abstract way, when the example project is sourced. R loads the
shared object/DLL into memory, putting the C interface function hello into the symbol table so
it can be invoked. We create the character variable languageName with the value ‘R’, then use the
.External function to pass languageName into the C function hello.

C receives the entire set of objects (only one object here, but this interface allows an unlimited
number) from R as a single LISTSXP, args, which is itself a list of SEXP pointers to all the objects
given as arguments to .External. The SEXP particular to languageName is extracted from args
by the CADR macro and assigned to langNameSXP, from which in turn is extracted a char* string
variable native to C; we also call the char* variable languageName to correspond to its native-R
counterpart. Note that R’s languageName actually contains C’s languageName: R is written in C,
and part of the SEXPREC structure of an R character vector is the simple char* strings supplying
values to the vector’s elements. And recall that arguments to .External are not automatically
duplicated; through langNameSXP, then, we have direct control of the languageName variable within
the R environment.

Next we print out a message containing the value of languageName assigned in R, then proceed
to change that value by using macros contained in the R-supplied C header files Rinternals.h
and Rdefines.h. The C function hello finishes up and returns a NULL. Back in R, we print out
a message containing the value of languageName assigned in C and note the change in value. R
unloads the shared object/DLL from memory and returns to interactive mode.

In this example, we have deliberately gone afoul of the recommendations of the R Development
Core Team:

Before you decide to use .Call or .External, you should look at other alternatives.
First, consider working in interpreted R code; if this is fast enough, this is normally the
best option. You should also see if using .C is enough. . . . The .Call and .External
interfaces allow much more control, but they also impose much greater responsibilities
so need to be used with care. Neither .Call nor .External copy [sic] their arguments.
You should treat arguments you receive through these interfaces as read-only5.

But the interfaces exist, and are quite powerful when used properly. In the R/Cpp package
we try to take on most of the aforementioned “responsibilities” that make moving R objects into
fast extensions perilous, by using certain features of C++ that allow the imported R objects to be
manipulated much as if in their native environment.

1.3 C++

C++ can be considered a superset of the C programming language with extensions for object-
oriented programming. Like C, C++ separates the core programming language from all input and
output operations, and from the implementation of data types other than the inherent integer,
character, and floating-point types. Input and output commands are implemented as program
functions for other functions to call, which helps to minimize the number of platform-dependent
features built into the C++ language and its compilers. In addition to the built-in data types, C++
includes a pointer data type to hold memory addresses from which variable values can be retrieved
indirectly7,8.

5

C++ uses the function as the basic unit of program execution. Every program begins execution
in a function named main and terminates when the main function ends. The main function can call
other functions, which can in turn call other functions. Programmers can build their own function
libraries—collections of functions that can be called from within any program linking itself to the
library8.

The ANSI/ISO standard definition of C++9 incorporates into itself the core C language and
the Standard C Library. The Standard C Library defines a standard (that is, common to all C++
compilers) set of library functions that support streaming character input/output to the console
and disk files; it also defines other standard libraries supporting common operations on characters,
dates, times, strings, function arguments, and for math, memory allocation, and so on. Because
C++ “contains” C, it augments the low-level memory management and computing efficiency of C
with its own high-level programming efficiency.

Standard C++ also includes the Standard C++ Library, which consists of definitions of classes,
a class being that object-oriented mechanism of C++ which allows the addition of user-defined
data types to the language. Classes provide a way to encapsulate data and the functions that
operate on that data, and more specific classes can be derived from those more generic (IS-A), or
included in those of larger scope (HAS-A). Among the classes in the Standard C++ Library are
classes that enable instantiation of:

• character string objects with string operations similar to those of other high-level languages;

• input/output stream objects that read and write character data to and from the console and
disk files, and which are extensible to other input/output devices;

• container objects—such as vectors, lists, and queues—used to contain and manipulate collec-
tions of data objects;

• generic algorithms to perform operations on the container objects;

• numerical objects to represent complex numbers;

• localization objects to control at run time the display of dates, currency, and other culturally
mutable signs, based on the geographical location of a program’s user;

• exception objects to manage execution failure of a program gracefully8.

Not directly instantiable themselves, but used to build generic data-type container objects, are
C++ template classes. A prominent example of C++ template classes is the Standard Template
Library, a set common containers and generic functions included in the Standard C++ Library.

1.4 The Standard Template Library

C++ templates are used to define generic container classes for managing sets of data objects, and
generic functions that take parameterized arguments. A part of the Standard C++ Library, the
Standard Template Library (STL) is a library of container class templates, generic iterators, and
algorithmic function templates. STL containers are agnostic of the objects they contain; neither
should the objects concern themselves with the details of containment. The containers are simply
objects that hold other objects, and because container classes are templatized, they can hold any
type of object, including those instantiated from user-defined classes. Iterators are pointer-like
objects that allow movement from one element of a container to the next, a necessity for containers

6

whose elements sit in non-contiguous memory. Algorithms operate on containers by modifying,
copying, removing, or otherwise manipulating their elements10,11.

A simple example will illustrate how the STL is used in C++. We assume that the operating
system used to run the example has been configured for building add-on packages to R from source,
as described by the R Development Core Team6.

1. Create the file stl.cpp and, using a text editor, add the following code† to it:

1 // stl.cpp
2

3 #include <iostream>
4 #include <vector>
5 #include <string>
6 #include <iterator>
7 using namespace std;
8

9 int main() {
10 // Create empty vector for strings:
11 vector<string> hello;
12

13 // Reserve memory for six elements to avoid reallocation:
14 hello.reserve(6);
15

16 // Append some elements:
17 hello.push_back("Hello,");
18 hello.push_back("world");
19 hello.push_back("--");
20 hello.push_back("from");
21 hello.push_back("the");
22 hello.push_back("STL");
23

24 cout << "size(): " << hello.size() << endl;
25

26 // Print elements using an iterator loop:
27 vector<string>::iterator i;
28 for (i=hello.begin(); i!=hello.end(); ++i)
29 cout << *i << " ";
30 cout << "!" << endl;
31

32 // Print elements using the ’copy’ algorithm:
33 copy(hello.begin(), hello.end(), ostream_iterator<string>(cout," "));
34 cout << "!" << endl;
35

36 // Remove the last four elements:
37 hello.erase(hello.begin()+2, hello.end());
38 cout << "size(): " << hello.size() << endl;

†We recommend in general not using the using namespace statement, as it contravenes the reason for defining
namespaces in the first place. We use it here, though, to simplify the code for presentation.

7

39 copy(hello.begin(), hello.end(), ostream_iterator<string>(cout," "));
40 cout << "!" << endl;
41

42 return 0;
43 }

2. Open a command window and navigate to the example directory. Compile stl.cpp by issuing
the command

g++ -o stl stl.cpp

If all goes well, the compiler and linker will output some non-error diagnostic messages and
the directory will now contain an executable file called either stl or stl.exe, depending
upon your operating system.

3. From the same command window, type the name of the executable file and press Enter. The
following output should appear:

size(): 6
Hello, world -- from the STL !
Hello, world -- from the STL !
size(): 2
Hello, world !

A few glosses on this code:

• L. 11 instantiates the vector container object hello for holding character string objects.
A STL vector is an all-purpose container in that it can be readily grown and shrunk, its
elements can be iterated through bi-directionally or selected directly, and it acts as a dynamic
replacement for the sometimes difficult C++ arrays inherited from C.

• L. 14 reserves enough memory for hello to hold six elements, so that as objects are added
to the originally empty vector, memory reallocation and copying because of insufficient con-
tiguous memory become unnecessary.

• Ll. 17–23 append a full sentence of single string objects on to the originally empty hello
vector.

• L. 27 creates a vector<string> iterator which, in ll. 28–29, gets an initial value pointing
to the first element of the hello vector, and which is then incremented by the for loop until
each element of hello has been printed out.

• L. 33 also prints out each element of hello, but this time via the copy algorithm.

• L. 37 removes the last four elements of hello. Note that adding n to the random-access
iterator returned by hello.begin() points the resulting iterator to the (n + 1)th element of
the hello vector.

In R/Cpp, we have decided that the R-object containers formed in our C++ extensions should
act as much like STL-compliant containers as possible while still retaining R-like functionality.
Then users of R/Cpp have the best of both worlds: easily manipulable R-like objects that can also
be treated like STL containers, for use within a computationally efficient C++ environment.

8

2 R/Cpp

2.1 Development

R/Cpp developed from a simulation problem in computational genetics. When we had realized
that we must move a certain amount of the simulation code from R to a fast extension linked to
R, the next problem became what language we ought to write the extension in. FORTRAN was
considered but dismissed as unable to receive or manipulate R list objects; that pretty much
left us to use C through the .Call or .External functions in R. Since .External doesn’t require
argument matching on the C side (recall from Section 1.2 that the arguments are sent from R as a
single “dotted-pair” list), and because C++ can generate C interfaces and is a “better” programming
language than C, we decided on C++ through .External as potentially leading to the most generic
and reusable code.

After some ill-fated (and slow!) tests using GNU-licensed variant classes to work with R objects
in C++, we decided that STL-like containers might represent a better approach to the problem,
and so we created new template classes. Because of their apparent usefulness, we broke out the
template classes as R/Cpp for general use elsewhere. Debugging continued as some maddeningly
subtle errors plagued R/Cpp, but these were overcome (as far as we know), and we have used the
R/Cpp classes quite successfully since then.

Further development continues with a new wish to make the R/Cpp containers fully STL
compliant, if that is even possible. (See the discussion in Section 2.9 for details.)

2.2 Implementation

The core of R/Cpp is about 2000 lines of modern C++ code that defines four major classes:
RcallArgs, vector_r<>, array_r<>, and RObject. Development was done primarily on Windows
XP using Visual Studio .NET 2003 (and more recently Visual Studio 2005), but the code was
also regularly compiled with gcc and run on Windows XP and on various *nixes (including Red
Hat Linux and Solaris) to ensure platform independence comparable to R’s platform independence.
The theological-type debates regarding the standards-compliance of the various C++ compilers
never really influenced the development of R/Cpp, with universal warning- and error suppression
being the prime movers for multiple-platform testing. (We did need to tailor the code extensively
a couple of times for it to compile and run on all platforms, though care was taken not to rely on
any ephemeral characteristics of the compilers just to avoid diagnostic complaints.)

The four major classes of R/Cpp allow simplified manipulation of R objects within C++, and
we describe them now.

2.3 The RcallArgs class

RcallArgs is a class for dealing easily with the argument pairlist sent over to C++ by .External.
It is a current requirement of R/Cpp (and of the R-extensions mechanism in general) that users
know the structure of R objects they pass to C++; RcallArgs takes advantage of that knowledge
to easily extract individual objects from the argument pairlist. The pairlist shows up in C++ as
a single SEXP (a pointer to a SEXPREC object), whose pointee contains other SEXPs pointing to the
individual objects sent through the R interface; if any of those objects are vector lists, then they
too contain SEXPs pointing to the objects that they themselves contain, and so on, ad infinitum,
theoretically. Suppose that the following objects are created in an R environment and passed to a
linked and loaded C++ extension containing a function called test:

9

u <- 1:5 # integer vector
v <- c(u, 3.14) # numeric vector
w <- c("This", "is", "an", "’RcallArgs’", "test") # character vector
x <- list(y=as.logical(0:4)) # F T T T T
z <- list(d=u, e=v, f=w, g=list(h=as.logical(0:4)))
...
returnValue <- .External("test", u, v, w, x, z)

In the C++ function test, the arguments passed from R now have the following hierarchy:
SEXP args

u
v
w
x

y

z
d
e
f
g

h

That is, y is “in” x; d, e, f, and g are in z, and everything is in args. The RcallArgs()
constructor creates an object of class RcallArgs from the argument pairlist,

SEXP test(SEXP args) {
RcallArgs rca(args);
...

and the overloaded parenthesis operator () allows access to the pairlist’s contained objects based on
the internal hierarchy described above, using zero-based natural numbering to identify an object’s
position in each level of the hierarchy. In the example, the first tier of objects under args comprises
u, v, w, x, and z, which are indexed in RcallArgs by 0–4, repectively. Separate second tiers of
objects exist under each of x and z; x contains y, which is indexed by 0, and z contains d, e, f, and
g, which are indexed by 0–3. A solitary third tier exists under g, which contains h, indexed by 0.

To get the SEXP pointing to a particular object, the RcallArgs parenthesis operator takes the
indices that trace through the hierarchy a path that leads to the object. Retrieving an object
pointer from the first tier requires one argument to operator (); retrieving an object pointer from
the second tier requires two arguments; third tier, three arguments; and so forth. To get, say, the
SEXP for u from the RcallArgs object rca, the call is

SEXP sexp_u = rca(0, -1);

Well, there is actually more than one argument needed to retrieve a first-tier pointer, but the second
argument has nothing to do with tracing the object hierarchy. In C++ (through inheritance from
C), a function that takes a variable number of arguments, like operator () in RcallArgs, needs
to know when its argument list is complete; here we use -1 as an ending delimiter to tell operator
() that the previous argument is the last one relevant to this function call. The function call to
get to y is, then,

10

SEXP sexp_y = rca(3, 0, -1);

and that to get to h is

SEXP sexp_h = rca(4, 3, 0, -1);

The SEXPs extracted from argument pairlists can be used in R-provided macros to manipulate their
objects, but we have taken further steps to make using R objects in C++ more familiar to users
of R to whom C++ is less familiar: the object SEXPs extracted by RcallArgs can be passed into
constructors of the R/Cpp classes vector_r<> or array_r<> to make the corresponding objects
much easier to work with.

2.4 The vector r<> Class

vector_r<> is a template class for wrapping around the SEXPs of R objects passed into C++
extensions, and for directly building new R objects in C++ extensions. The most commonly used
objects within the R environment are vectors of various storage modes. In this context a vector is
analogous to its mathematical counterpart, the one-dimensional array, with elements that can hold
a single type from among several numerical types and a character-string type. These types, the
so-called atomic storage modes in R, are logical, integer, numeric, complex, character, and
raw. Each mode can be invoked in a vector in R by using the vector function,

vector(mode = storage_mode , length = length)

where storage mode is one of the six atomic storage modes; each mode also has a function with
the same name as itself for creating new vectors, as in, for example,

logical(length = length)

The other types have corresponding functions that also take a length argument.
Using the vector_r<> class to contain R vector objects passed into C++ aids in their use and

manipulation in two primary ways. First, it makes getting and setting individual elements quite
simple (rather simpler than getting or setting with the macros provided by R); second, as a pseudo-
STL (Standard Template Library; v. Section 1.4) container, vector_r<> allows the programmer
to take advantage of the various STL algorithms available for expediting certain commonly desired
operations on its elements.

For example, if the following R object is sent through .External to a C++ extension,

u <- 1:5 # integer vector

it can be received in C++ as a SEXP and governed by vector_r<> like this:

vector_r<int> u(rca(0, -1));

where the RcallArgs object rca has supplied vector_r<> with the SEXP pointing to R’s u. Now u
in C++ is a vector_r<> object, and gets and sets on it can be performed as follows:

// In R, ’print’ing u gives [1] 1 2 3 4 5
int singleElement = u[1]; // singleElement == 2 is true
u[0] = 666; // In R, ’print’ing u would give [1] 666 2 3 4 5

11

Note that vector_r<> uses zero- rather than one-based indexing like R, which is customary in C++.
Note also the template parameter int passed to vector_r<>: it is required that vector_r<> receive
as a parameter a C++ data type according with the storage mode of the R object that it’s meant
to contain. The R storage modes are matched to their appropriate R/Cpp–C++ data types in the
following table:

R storage mode C++ data type

logical bool
integer int
numeric double
complex Rcomplex†

character char*
raw unsigned short int†

Using the bracket operator [] on a vector_r<> object extracts from it the single element at
the given index, returned as the appropriate C++ data type from the table above; as in,

int singleElement = u[1];

Using the bracket operator along with the assignment operator = in the following way sets the
single element at the given index to a new value; as in,

u[0] = 666;

The R/Cpp containers vector_r<char*> and vector_r<SEXP>, corresponding to a vector of R
storage mode character and to an R generic vector, respectively, act somewhat differently. While
the bracket operator still gets elements from vector_r<>s of these types, it no longer works as
part of an assignment operation to set elements to new values. The reason for the breakage has
to do with the fact that elements of R character vectors and of R generic vectors are not stored
in contiguous memory, whereas the elements of the other R vectors are. The current solution is
to provide a set member function in the class specializations of the vector_r<char*> and the
vector_r<SEXP> containers, to be used like this:

In R:
w <- c("This", "is", "a", "’vector_r<>’", "test")
x <- list(y=as.logical(0:4))
...
// In C++:
w.set("hack", 4); // changes "test" to "hack"
x.set(w.GetObject(), 0); // makes ’w’ the first element of ’x’

Though this solution works, it is aesthetically displeasing (it breaks the orthogonality of the
vector_r<> class) and doesn’t jibe with how container elements arranged in non-contiguous mem-
ory are handled in the STL. A better solution would probably be to move char*- and SEXP-vector
handling to a separate R/Cpp list_r<> class which deals with the elements of its objects in the
same manner in which STL lists deal with theirs. In fact, we have decided to make this change,
along with beefing up the iterators of the vector_r<> class, in order to put R/Cpp containers as

†Unfortunately, we have not yet implemented R/Cpp analogues to the complex and raw storage mode vectors
/. The situation will change in the next revision of the software; see Section 2.9 for information on this and other
imminent updates.

12

close as possible to their true STL counterparts. The change will happen in a future revision of
R/Cpp.

A further comment on vector_r<SEXP>. The vector_r<SEXP> container is used to wrap R
generic vectors, or lists, whose elements can hold any type of R object, with a single list
possibly containing many different types of R objects! In C++ every R object is represented
by a SEXP pointer which points to a SEXPREC structure, which in turn “holds” the data of the
R object. An R list is really just a container full of SEXPs pointing to the contained objects;
therefore in R/Cpp we must treat its elements as SEXPs, hence the SEXP template parameter given
to vector_r<SEXP>. The vector_r<> class provides the member function GetObject to return the
SEXP of an enwrapped R object; a vector_r<SEXP> object can take that SEXP and use it to contain
within itself the corresponding R object; as in, from the code pieces just above,

x.set(w.GetObject(), 0); // makes ’w’ the first element of ’x’

where element 0 of the vector_r<SEXP> x is set to the character vector w’s SEXP (as returned by
GetObject), in effect embedding w in x.

∗ ∗ ∗

Recall from Section 1.4 that the Standard Template Library algorithms operate on containers
by modifying, copying, removing, or otherwise manipulating their elements11. Algorithms are not
member functions of the container classes. Instead, they are global functions that operate with
iterators. The advantage of this is that instead of each algorithm being implemented for each
container type, all are implemented only once for any container type. Algorithms will also operate
on user-defined container types10. This concept allows the programmer to take advantage of the
power and flexibility of the STL algorithms while using R/Cpp vector_r<> containers.

Here is a partial list10 of STL algorithms tested with vector_r<> containers:

Non-modifying Algorithms

Algorithm Name Effect

for_each() Performs an operation for each element
count() Returns the number of elements
count()_if() Returns the number of elements that match a criterion
min_element() Returns the element with the smallest value
max_element() Returns the element with the largest value
find() Searches for the first element with the passed value
find_if() Searches for the first element that matches a criterion
search_n() Searches for the first n consecutive elements with certain properties
search() Searches for the first occurrence of a subrange

13

Modifying Algorithms

Algorithm Name Effect

for_each() Performs an operation for each element
copy() Copies a range starting with the first element
fill() Replaces each element with a given value
fill_n() Replaces n elements with a given value
generate() Replaces each element with the result of an operation
generate_n() Replaces n elements with the result of an operation
replace() Replaces elements that have a special value with another value
replace()_if() Replaces elements that match a criterion with another value

Removing Algorithms

Algorithm Name Effect

remove() Removes elements with a given value
remove_if() Removes elements that match a given criterion
remove_copy() Copies elements that do not match a given value
remove_copy()_if() Copies elements that do not match a given criterion
unique() Removes adjacent duplicates (elements that are equal to their predecessor)
unique_copy() Copies elements while removing adjacent duplicates

Mutating Algorithms

Algorithm Name Effect

reverse() Reverses the order of the elements
rotate() Rotates the order of the elements
next_permutation() Permutates the order of the elements
prev_permutation() Permutates the order of the elements
random_shuffle() Brings the elements into a random order

14

Sorting Algorithms

Algorithm Name Effect

sort() Sorts all elements
stable_sort() Sorts while preserving order of equal elements
partial_sort() Sorts until the first n elements are correct
partial_sort_copy() Copies elements in sorted order

Numeric Algorithms

Algorithm Name Effect

accumulate() Combines all element values (processes sum, product, and so forth)
inner_product() Combines all elements of two ranges
adjacent_difference() Combines each element with its predecessor
partial_sum() Combines each element with all of its predecessors

(N.B. We have implemented some of these algorithms as member functions of vector_r<> out of
necessity, but with the upgrade to heartier iterators in vector_r<> we will be able to remove most of
them and allow the corresponding STL algorithms to take over. The modifying algorithms currently
do not work with vector_r<char*> and vector_r<SEXP>, for reasons given in Section 2.4.)

The availability of these algorithms for vector_r<> simplifies operations on R objects in C++.
Take as an example a function in C++ for finding the cumulative sums along the elements of an
R vector; the code should receive a single numeric vector and output the result as another vector
containing the cumulative sums. Using the R-supplied macros will produce code like the following:

1 RCPP_API SEXP cumsum_rext(SEXP args) {
2 SEXP a = CADR(args);
3

4 SEXP cumsum;
5 PROTECT(a = AS_NUMERIC(a));
6 int na = LENGTH(a);
7 PROTECT(cumsum = NEW_NUMERIC(na));
8 double* xa = NUMERIC_POINTER(a);
9 double* xcs = NUMERIC_POINTER(cumsum);

10 xcs[0] = xa[0];
11 for (int i = 1; i < na; i++)
12 xcs[i] = xcs[i-1] + xa[i];
13

14 UNPROTECT(2);
15 return(cumsum);
16 }

Using R/Cpp will make the code a little more concise:

15

1 RCPP_API SEXP cumsum_rcpp(SEXP args) {
2 RcallArgs rca(args);
3

4 vector_r<double> a(AS_NUMERIC(rca(0, -1)));
5 vector_r<double> cumsum(a.size());
6 partial_sum(a.begin(), a.end(), cumsum.begin());
7

8 return cumsum.GetObject();
9 }

∗ ∗ ∗

Finally, we wish to mention something about vector_r<> that may already be apparent from
some of the code samples in this section. The vector_r<> class is used not only for wrapping R
objects passed into a C++ extension, but also for creating completely new R objects that can be
passed back to the calling R environment. In the R/Cpp code from the latest example, which finds
the cumulative sums along the elements of an R vector, we create a new vector_r<> named cumsum
to receive the cumulative sums, which then gets sent back to R:

vector_r<double> cumsum(a.size());
...
return cumsum.GetObject();

The vector_r<> constructor for creating new R vectors takes an argument of type int, which gives
the length of the new vector.

2.5 The array r<> Class

In computing, row-major order and column-major order describe ways to store multi-dimensional
arrays in linear memory. Understanding array ordering is critical to passing arrays between pro-
grams written in different languages.

Row-major storage has a multi-dimensional array arranged in linear memory such that rows are
stored one after the other. This is the approach taken by C, C++, and many other languages. In an
array stored in row-major order, the differences between addresses of array elements in increasing
rows is larger than the addresses of elements in increasing columns. For example, the following
2× 3 array, [

1 2 3
4 5 6

]
,

can be declared in C++ by

int A[2][3] = { {1, 2, 3}, {4, 5, 6} };

This lays out the array in linear memory thus:[
1 2 3 4 5 6

]
.

The linear offset from the beginning of the array to any element A[row][col] can be computed
from

offset = row * num_cols + col ;

16

where num cols is the number of columns in the array.
In column-major storage, an array is stored in linear memory such that columns are stored one

after the other. This is the approach taken by FORTRAN and—more important for this discussion—
R. In an array stored in column-major order, the difference between addresses of array elements in
increasing columns is larger than the addresses of elements in increasing rows. The example array
already given, [

1 2 3
4 5 6

]
,

can be declared in R by

A <- array(c(1,4,2,5,3,6), dim=c(2,3))

This lays out the array in linear memory as[
1 4 2 5 3 6

]
.

with columns listed first. The linear offset from the beginning of the array to any element
A[row,col] can be computed from

offset <- row + col * num_rows

where num rows is the number of rows in the array.
These concepts can be generalized to arrays of more than two dimensions12.
In R/Cpp, we manage both the passing of arrays from column-major R to row-major C++, and

the generalization of R’s multi-dimensional arrays into a C++ class, since C++ has no particularly
good built-in mechanism for working easily with any sort of array.

In R, an array is just a vector with an attribute called dim, which itself is a vector containing
the ordered dimensions of the array. The code to create a 2× 3 array is, for example,

A <- array(c(1,4,2,5,3,6), dim=c(2,3))

whose representation is typeset as

A =

[
1 2 3
4 5 6

]
.

The elements of A can be retrieved and set through the bracket operator by using one-based
indexing:

a23 <- A[2, 3] # ’a23’ equals 6
A[2, 3] <- 666
a23 <- A[2, 3] # ’a23’ equals 666

In R/Cpp, array_r<> is a derived class of vector_r<> which adds to its superclass a dimen-
sional attribute, and member functions for navigating through R’s column-major arrays. All the
vector_r<> operations can be performed on an object of class array_r<>, and the elements of the
object set or retrieved through the parenthesis operator:

RcallArgs rca(args);
array_r<int> A(rca(0, -1));
int a23 = A(2, 3); // ’a23’ equals 6
A(2, 3) = 666;
a23 = A(2, 3); // ’a23’ equals 666

Included in the class is the member function subset for extracting subsets of array_r<>s.

17

2.6 The RObject Class

The RObject class allows the creation of R objects from a standard set of C++ types. For example,
the constructor to create from a single C++ bool object an R logical vector with one element is
given within this sample code:

define FALSE 0
bool isCpp = true;
RObject logicalObject(isCpp);
vector_r<bool> isNotR(logicalObject()); // operator () returns RObject’s SEXP
isNotR[0] = FALSE;

Note that using the parenthesis operator of an RObject with no argument returns the SEXP of its
enclosed R object.

The following table lists the C++ types that RObject takes and their corresponding R-object
conversions.

C++ type R vector

bool logical (single element)
std::vector<bool> logical
int integer (single element)
std::vector<int> integer
double numeric (single element)
std::vector<double> numeric
char* character (single element)
std::vector<char*> character
std::string character (single element)
std::vector<std::string> character

2.7 Installation

Though R/Cpp could be installed as a (rather pointless) stand-alone package in R, its real value
comes from its incorporation into packages that need the computational efficiency of C++. We
have made the R/Cpp source files available through the following Web links:

• http://www.priscian.com/code/Cpp_0.9.6.tar.gz

• http://www.priscian.com/code/Cpp_0.9.6.zip

In what follows we assume that C++-extension code consists of a header file (whose name ends
in .h or .hpp) and a source file (whose name ends in .cpp). Assuming that the operating system
used to run the example has been configured for building add-on packages to R from source, as
described by the R Development Core Team6, we enumerate below the steps required to add R/Cpp
functionality to an R project called test.

1. Create an empty directory to assemble and run the test project in. Place the R/Cpp files
listed below into this directory:

RCpp.h
RCpp.cpp
vcpp.h

18

common.h
algostuff.h
Rinterface.h
Rinterface.cpp
miscellaneous.h
miscellaneous.cpp

Also, place any new files discussed below into this directory.

2. Minimally, three user-made files are necessary: test.R, test.h, and test.cpp; they should
be created with a favorite text editor.

3. The file test.h must include RCpp.h and declare any extension function using the “C” linkage
specification:

#include "RCpp.h"

extern "C" {

RCPP_API SEXP test_rext(SEXP args);

}
...

Function declarations should have the same signature (parameters, return type, storage-class
attribute) as function definitions (see the following step).

4. The file test.cpp must include test.h; and any extension function must take a single SEXP
argument, and it must be prefixed by the RCPP_API storage-class attribute:

#include "test.h"

RCPP_API SEXP test_rext(SEXP args) {
...

5. Open a command window and navigate to the example directory. Compile test.cpp and
link it to R by issuing the command

R CMD SHLIB test.cpp

If all goes well, the compiler and linker will issue some error-free diagnostic messages and
the directory will now contain a file called either test.so or test.dll, depending upon the
operating system in use.

6. The file test.R should contain functions to load and unload the test shared object/DLL,
and .External calls to any extension functions declared in test.h:

Load shared object/DLL compiled from C++ code:
dyn.load(paste("test", .Platform$dynlib.ext, sep=""))
Test <- function(x)

19

.External("test_rext", x) # call C++ function
...
dyn.unload(paste("test", .Platform$dynlib.ext, sep="")) # unload

Add any other desired functionality to test.R.

7. Start up an interactive R session and navigate to the project directory. Type

source("test.R")

to run the example project.

2.8 Example Usage

We now present an entire small R/Cpp project based on the cumulative-sum example in Section 2.4
and the installation steps from Section 2.7. We have made the cumsum and base R/Cpp source files
available through the following Web links:

• http://www.priscian.com/code/cumsum.tar.gz

• http://www.priscian.com/code/cumsum.zip

1. Create an empty directory named cumsum to assemble and run the cumsum project in. Place
the R/Cpp files listed below into this directory:

RCpp.h
RCpp.cpp
vcpp.h
common.h
algostuff.h
Rinterface.h
Rinterface.cpp
miscellaneous.h
miscellaneous.cpp

Also, place any files discussed below into this directory.

2. Create the file cumsum.h and add the following code to it:

1 // cumsum.h
2

3 #ifndef __CUMSUM_H__
4 #define __CUMSUM_H__
5

6 #include "RCpp.h"
7

8 extern "C" {
9

10 RCPP_API SEXP cumsum_rext(SEXP args);
11

20

12 RCPP_API SEXP cumsum_rcpp(SEXP args);
13

14 }
15

16 #endif // !__CUMSUM_H__

3. Create the file cumsum.cpp and add the following code to it:

1 // cumsum.cpp
2

3 #include "cumsum.h"
4 using namespace std;
5

6 RCPP_API SEXP cumsum_rext(SEXP args) {
7 SEXP a = CADR(args);
8

9 SEXP cumsum;
10 PROTECT(a = AS_NUMERIC(a));
11 int na = LENGTH(a);
12 PROTECT(cumsum = NEW_NUMERIC(na));
13 double* xa = NUMERIC_POINTER(a);
14 double* xcs = NUMERIC_POINTER(cumsum);
15 xcs[0] = xa[0];
16 for (int i = 1; i < na; i++)
17 xcs[i] = xcs[i-1] + xa[i];
18

19 UNPROTECT(2);
20 return(cumsum);
21 }
22

23 RCPP_API SEXP cumsum_rcpp(SEXP args) {
24 RcallArgs rca(args);
25

26 vector_r<double> a(AS_NUMERIC(rca(0, -1)));
27 vector_r<double> cumsum(a.size());
28 partial_sum(a.begin(), a.end(), cumsum.begin());
29

30 return cumsum.GetObject();
31 }

4. Open a command window and navigate to the cumsum directory. Compile cumsum.cpp and
link it to R by issuing the command

R CMD SHLIB cumsum.cpp

If there are any error messages from the compiler or linker, check to see whether you have
correctly followed all the steps thus far.

5. Create the file cumsum.R and add the following code to it:

21

1 # cumsum.R
2

3 # Load shared object/DLL compiled from C++ code:
4 dyn.load(paste("cumsum", .Platform$dynlib.ext, sep=""))
5

6 Cumsum1 <- function(x)
7 .External("cumsum_rext", x) # call C++ function
8

9 Cumsum2 <- function(x, y)
10 .External("cumsum_rcpp", x) # call C++ function
11

12 a <- 1:100
13 stm1 <- system.time(for (i in 1:100000) v1 <- Cumsum1(a))
14 stm2 <- system.time(for (i in 1:100000) v2 <- Cumsum2(a))
15 stm3 <- system.time(for (i in 1:100000) v3 <- cumsum(as.numeric(a)))
16

17 print(stm1)
18 print(stm2)
19 print(stm3)
20

21 dyn.unload(paste("cumsum", .Platform$dynlib.ext, sep="")) # unload

6. Start up an interactive R session and navigate to the cumsum project directory. Type

source("cumsum.R")

to run the project.

The R code calls each of the two cumulative-sum functions in the C++ extension, and then R’s
built-in cumsum function, 100000 times apiece and reports back the CPU time used in toto by the
repeated calls to each function. The output will look something like this:

[1] 0.69 0.00 0.69 NA NA
[1] 1.01 0.00 1.03 NA NA
[1] 2.16 0.00 2.20 NA NA

Here the R/Cpp code comes in second after the macro’d R-extension code, because there is some
overhead associated with class-creation in R/Cpp that cannot be avoided. We insist that it has
still has the other benefits detailed in the rest of this document!

2.9 Future Expansions

• Move vector_r<char*> and vector_r<SEXP> to a new list_r<> class that behaves more
like STL lists.

• Implement copy-on-write semantics in vector_r<> and list_r<>.

• Move all R macros contained in R/Cpp to the smallest number of places possible (in case the
R header files change).

22

• Hunt down various possibilities for optimization in the classes’ code. We suspect that there
may exist a few big opportunities for further speeding up R/Cpp.

• Complete the R/Cpp analogues to R’s complex and raw storage mode vectors.

• Make the R/Cpp classes as fully STL-compilant as possible. They may never be truly STL-
compliant because they are not agnostic of the objects they contain (which must be R objects),
but they will be very close; and, what’s more, they will be compatible with most of the STL
algorithms.

• Introduce exception handling into the R/Cpp classes. This is currently lacking in R/Cpp.

• Create full class documentation of R/Cpp.

References

[1] The R Foundation. The R project for statistical computing. Web site, 2007. http://www.
r-project.org/.

[2] The Free Software Foundation. The GNU project. Web site, 2007. http://www.gnu.org/.

[3] R Development Core Team. An Introduction to R. R Foundation for Statistical Computing,
Vienna, Austria, 2007. URL http://cran.r-project.org/doc/manuals/R-intro.pdf.

[4] R Development Core Team. R Language Definition. R Foundation for Statistical Computing,
Vienna, Austria, 2007. URL http://cran.r-project.org/doc/manuals/R-lang.pdf.

[5] R Development Core Team. Writing R Extensions. R Foundation for Statistical Computing,
Vienna, Austria, 2007. URL http://cran.r-project.org/doc/manuals/R-exts.pdf.

[6] R Development Core Team. R Installation and Administration. R Foundation for Statisti-
cal Computing, Vienna, Austria, 2007. URL http://cran.r-project.org/doc/manuals/
R-admin.pdf.

[7] S. Satir and D. Brown. C++: the Core Language. O’Reilly & Associates, Inc., first edition,
1995. ISBN 156592116X.

[8] A. Stevens. Teach Yourself C++. IDG Books Worldwide, Inc., sixth edition, 2000. ISBN
0764546341.

[9] JTC1/SC22/WG21 Working Group. Information Technology — Programming Languages —
C++. ANSI/ISO, second edition, October 2003. Reference number ISO/IEC 14882:2003(E).

[10] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison–Wesley
Professional, 1999. ISBN 0201379260.

[11] H. Schildt. The Art of C++. McGraw–Hill/Osborne, 2004. ISBN 0072255129.

[12] Wikipedia. Row-major order — wikipedia, the free encyclopedia. Online, accessed April 10,
2006. http://en.wikipedia.org/wiki/Row-major_order.

23

