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SUMMARY

The UB Population Health Observatory developed a Bioterrorism trigger that can alert 
the Erie County Department of Health when the observed count of flu-like-symptoms 
cases on a particular day exceeds a threshold estimated by a statistical model. Daily count 
of flu-like symptoms cases between Aug 1, 1999 and Nov 30, 2002 were divided into 
training and model validation subsets. Explanatory variables were restricted to seven lags 
of daily temperature and precipitation each. These readily available data ensure easy 
implementation and updating of the model. Indicator variables for week-day and month 
were also included in the model. Upper 100(1−α)% prediction limits were calculated for 
each observation using Monte Carlo simulation.  The prediction limits served as daily 
thresholds. Assuming no unusual events impacted the number of flu cases during the 
training and validation time frame, the 95% prediction limits can be expected to generate 
about 32 false alarms per year. The 100(1−α)% prediction limit can be adjusted to control 
the number false alarms.  The uniqueness of this methodology lies in distributional 
assumptions of the residuals, necessitating the simulation.

KEY WORDS: Disease surveillance; Threshold model; Poisson regression; Prediction 
limits;

1. INTRODUCTION

Many potential bioterrorism agents and devastating emerging diseases, such as SARS or
the avian flu, manifest themselves with flu-like symptoms.  This fact has prompted 
interest in the development of real-time monitoring systems for early detection of excess 
numbers of influenza like illnesses (ILI).  For example, the Erie County Department of 
Health and the Calspan University at Buffalo Research Center (CUBRC) collaborated to 
plan a syndromic surveillance system for Erie County, New York. The proposed 
surveillance system was extensive, encompassing input from all emergency services, 
including hospital emergency rooms, 911 calls and other first responders.  The current 
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research was motivated by the need to incorporate statistically based early warning alerts 
of excess numbers of ILI cases into such surveillance systems.  

Three general approaches to statistical surveillance systems have been used:  (1) those 
that are based on Markov models; (2) change point detection methods; and (3) those that 
are based prediction thresholds.  

Methods based on hidden Markov models were proposed by Le Strat [1] and Rath [2], for 
example.  Generally, these approaches use a training data set to derive an algorithm for 
classifying future observed counts into normal (baseline) or epidemic states.  When the 
goal is surveillance for bioterrorism or emerging diseases, the epidemic state usually has 
not occurred in the training data set. Thus, Markov model approaches are not applicable.

Hutwagner [3] described the CDC Early Aberration Reporting System (EARS) which 
employs CUSUM change-point detection and other methodologies.  Rossi [4] extended 
the CUSUM method to accommodated covariates. Rolfhamre [5] found CUSUM 
methods to be less sensitive than other methods, but Cowling [6] found parity in the 
effectiveness of CUSUM and time series approaches.  Farrington [7] argued that 
maintenance requirements make CUSUM methods inappropriate.

Prediction threshold methods for identifying significantly larger than expected numbers 
of cases of an event of interest are represented extensively in the literature. Three general 
types of threshold methods have been used: that is, those based on 1) parametric 
regression models without regard for historical counts [7,8,9]; 2.) smoothing methods
[10]; and 3.) time series models (e.g., ARIMA models could be used; such as those 
studied by Zeger [11] and Watier [12]; or branching processes as discussed by Diggle, et 
al. [13] and extended by Held [14]).  
 
We shall employ a first order autoregressive model with daily weather variables and
indicator variables for day of the week and month of the year to define thresholds for 
early identification of excess numbers of ILI cases. An association between weather and 
flu incidence has been recognized by many.  The causal link, however, is disputed.  In 
1920, Huntington [15] tracked weekly deaths from influenza in New York City from 
1889 through 1918, noting the “marked effect” of low temperature on increasing the 
incidence of influenza.  Schulman and Kilbourne [16], however, observed that mice were 
more likely to get sick in the winter in spite of strictly controlled temperature and 
humidity.  Several reasons for the observed association have been postulated.  Season 
may impact immune system resistance to the virus.  Human reactions to the live virus 
vaccines are more frequent in winter than in summer [17].  In cold weather, indoor 
crowding becomes more common, and buildings are less well ventilated. Spread of 
influenza is greatly influenced by the density and mass of a population [18].  Influenza 
spreads exceptionally well in concentrated communities [19].  Regardless of the cause, 
the association between weather and number of ILI cases provides information that, if 
utilized, should improve the accuracy with which we identify excess numbers of ILI 
cases.
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Previous authors typically have used normal theory quantiles in their derivations of 
thresholds.  Models used for prediction, however, contain a model error whose 
distribution is a centered version of the conditional distribution of the outcome variable
(Y=count), which typically is not normally distributed given the covariates.  The 
normality assumption, therefore, is heuristic.  It is more natural to assume that counts 
have a Poisson distribution.  It is common, however, to observe extra Poisson variation in 
observed counts when employing Poisson models, perhaps because of the association of 
ILI incidence with weather, or other variables that vary daily and are causally associated 
with the number of cases, have been ignored in the model specification.   Several authors 
have explicitly accounted for extra variation when using Poisson models [7,14,20].

The goal of this study was to develop a statistical model to serve as the basis for daily 
“bioterrorism alert” thresholds for the number of cases of ILI. To be operationally 
feasible, quantification of the threshold must be based on a few readily-obtainable pieces 
of information and the threshold must be adjustable to allow the Health Department to 
control the number of false alarms at a manageable level.  The method developed can be 
classified as a regional surveillance model [21].

2.  ILI DATA FOR ERIE COUNTY, NY

The data used to derive thresholds for event detection were obtained from the
CUBRC)/Erie County Health Department data collection system for real-time monitoring 
of ILI incidence.  Emergency services providers and selected emergency care centers 
throughout Erie County, NY reported data daily.  We obtained daily counts of cases from 
August 1, 1999 through November 31, 2002.  The dataset consisted of 1,217 observations 
(counts were missing for two days). Temporal patterns in the numbers reported are
believed to be representative of those of the total numbers of such cases in the County.
During this time period, no events occurred that would have pushed the mean number of 
cases above baseline.  Reporting of these data was voluntary, and therefore subject to 
timing and variability problems [7].  Specifically, the decision to model daily counts 
(rather than, say, a weekly aggregate) was based on assumptions that reporting delays are 
negligible.  Wagner [22] provided a detailed discussion of issues surrounding timely 
reporting.

Daily readings of temperature and precipitation at the Buffalo Niagara International 
Airport were obtained from the National Climactic Data Center Archives and were 
merged with case data.  The resulting dataset was divided into training and validation 
subsets that included observations from August 1, 1999 through December 31, 2001 (884 
days), and from December 1, 2001 through Nov 30, 2002 (365 days), respectively.  
December 2001 was included in both sets, for reasons discussed later.

*****       (insert Figure 1 here)       *****
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3.  MODELING AND THRESHOLD DEVELOPMENT

3.1. Simple Poisson Model Analysis

Let tY denote the number of cases reported on the tth day. Suppose that the tY  are 

independent identically distributed observations from a Poisson ( )µ  distribution.  Then 

( ) ( ) 1
!yP Y y e yµµ −−= = .  Table 1 gives the observed frequency of days for counts

between 1 and 32 inclusive.  The maximum likelihood estimator of µ  was 10.07, the 
sample mean number of cases.  The expected numbers of days for each observed count 
under the Poisson distribution with 10.07µ =  are given in the last column of table 1.

*****    (insert Table 1 here)    *****

A Chi-Square goodness of fit test resulted in a rejection of this distribution (p=0.00).  The 
sample variance was 13.83, suggesting significant extra Poisson variation.

If one were to ignore the fact that the Poisson distribution does not fit the data then, 
denoting the acceptable false positive rate by p, the 100(1-p)th percentile of the 
Poisson(10.07) would be used as the threshold number of cases to control the false 
positive alert rate at approximately 100p%.  If p is set at 0.051, then the threshold would 
be 15 under the Poisson assumption.  We see from table 1 that 125 days (10.3%) 
exceeded this threshold.

3.2. Negative Binomial Analyses

Agresti [23] recommended use of the Negative Binomial distribution when extra Poisson 
variation is observed.  A Negative Binomial distribution with mean 10.07 and dispersion 
parameter k = 27.02 fits the observed responses very well (p=1.00).  Under the best 
fitting Negative Binomial distribution, the 94.7% upper prediction limit was 16 cases per 
day.  Results from this simple model derived from the training data and applied to the 
validation data will be used as a basis for comparison to the results from a more complex 
model presented below, which included weather variables and lagged numbers of cases. 

3.3. Poisson Regression Model Analysis

Preliminary analyses of the data showed that month of the year and day of the week have 
significant effects on the number of cases.  Furthermore, the number of cases was shown 
to be associated with weather.  It seems likely, therefore, that the extra Poisson variation 
observed in the data was due at least in part to the influence of these variables on the 
mean.  In that case, the counts are not “identically distributed”.  It also seems likely that 
recent observations would be correlated with the current day’s observation, rendering the 
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independence assumption invalid.  To address these issues, we performed a Poisson 
regression analysis with month, day of the week, temperature, precipitation, and lagged 
number of cases in the model.

Let tY  be the number of ILI cases on a given day.  We assume ( )~t tY Poisson µ , where 

( )txµ β′  is a monotone function of a linear combination of the predictor variables ( tx β′ ).  

Then we can write

( )t t tY xµ β ε′= + ,

where the vector of predictor variables includes Yt-1.  We specify ( )txµ β′  to be ( )exp tx β′ .  

That is, we assume the log link function log t txµ β′= .  We further assume that 

dependence of the Yt observations over time is explained totally by the assumed 
dependence of the mean function on Yt-1.  That is, we assume that the tε are independent. 

3.3.1. Model Selection

In the initial model specification, the coefficient vector, β , consisted of coefficients on 42 
explanatory variables plus an intercept term.  The explanatory variables included a one-
day lagged incidence count, temperature and precipitation for the current and previous 
seven days, same-day interaction terms for temperature and precipitation, and indicator 
variables for month and day of the week.

The following variable selection strategies were employed on the training dataset:
1. A significance level of 0.05α = was used throughout the analysis.
2. Backwards Elimination Rules: In general, the variable with the largest p-value 

was dropped from the model. Interaction terms were considered first. If an 
interaction term was retained in a model, the associated main effects were also 
retained, regardless of their p-value.

3. An insignificant variable was retained if its removal caused another significant 
variable to become insignificant.  This prevents suppression of effects due to
multicollinearity.

4. Day of Week and Month indicator variables were retained throughout the model 
building process.

SAS version 9.1 Genmod Procedure was used to fit the models.

The backward selection process resulted in a final model, defined by the mean function 

( ) ( )expt txµ η β′=
where
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Various diagnostic measures indicted a good fit for the final model.  Compared with the 
deviance of the full model the backward model selection process did not compromise the 
goodness of fit (p=0.485).  The Chi square and Standardized Deviance Residual QQPlots 
in figure 2 show that the final model fit very well.

*****       (insert Figure 2 here)       *****

Coefficient estimates from the final model are shown in table 2.  The significance of P03, 
P04 and associated interaction terms corroborates the notions driving preliminary 
covariate selection.  Variability of the flu incubation period and symptom severity may 
account for the range of precipitation lags (P01, P06 and P07). 
 

*****       (insert Table 2 here)       *****

3.3.2.  Derivation of Prediction Intervals

Consider the dependent variable ( )( )~t tY Poisson µ η . Define tη as the linear 

combination tx β′ . The model for the next observation fY  is written as 

( )f f fY µ η ε= +

where ( )( )~ Centered Poissonf fε µ η  with ( ) ( )var f fε µ η= .  The associated prediction 

equation is 

( )ˆ ˆf fY µ η=

where the non-linear mean function under our model specification is

( ) expf fxµ η β′ =   .                              (2) 

By standard maximum likelihood theory, the maximum likelihood estimator β̂ satisfies

( )1
,

ˆ ~ ,
app

xN Iββ β −
′
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when n is large, where ,xIβ ′  is the estimator of the information matrix, which is defined 

as

( )
2

log |E L Xβ
β β

 ∂
−  ′∂ ∂ 

As the sample size increases, the information also increases, and the ( )ˆvar β  decreases.  

Derivation of a prediction limit for fY  depends on the variance of the non-linear function

( ) ( )ˆ ˆf f f f fY Y µ η µ η ε− = − +

The non-linear function ( )ˆ fµ η  can be approximated by a Taylor series expansion around 

β̂ β= .  We have that

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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where the remainder term in the Taylor expansion is ( )1pO n .  It follows that

( ) ( ) ( )

( ) ( )

( ) ( )

2
ˆ

_1 2
ˆ ,

ˆ
ˆˆvar var

ˆ

ˆ ˆ

ˆ ˆ
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= +

∂ ∂

′∂ ∂
≅ +

∂ ∂
                                        (4) 

because ( ) 0fE ε = , ( )ˆ 0E β β− = , fε  is independent of β̂ and 1
ˆ ,, xx

V Iββ
−

′′ ≅  is the 

variance/covariance matrix of β̂ .  The goal is to calculate a ( )100 1 %α−  upper 

prediction limit for fY  with the form

,
ˆ

f fY Cα+                                                           (5) 

where , fCα  is a function of ( )ˆvar f fY Y− .  To that end, define , fCα such that 

( ),
ˆPr 1f f fY Y Cα α≤ + = −                                          (6) 

From equation (3), ˆ
f fY Y−  is a function of an approximately normal term
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( ) ( ) ( ) ( )1
ˆ ,

ˆ
ˆ ~ 0,

ˆ

app
f f f

x
N I

β

µ η µ η µ η
β β

β ββ
−

′

 ′∂ ∂ ∂ − −  ∂ ∂∂  
 

        (7) 

and a centered Poisson term ( )fε .  We assume that the model appropriate for the past 

observations is applicable to the new observation.  Maximum likelihood methods provide 
consistent estimators of all the required parameters.  Given the maximum likelihood 
estimates, Monte Carlo simulation techniques can be used to estimate , fCα  for each new 

observation.

3.3.3. Algorithm for Estimating , fCα

The following algorithm uses Monte Carlo simulation to estimate , fCα  such that equation 

(6) is satisfied approximately.  The strategy is to generate random observations from the 
two distributions represented in equation (3) given fx , add the observations together, and 

chose the 1 α−  quantile as , fCα . From equation (2) and equation (4), ( )fµ η  and

( )var fε  depend on the newly observed explanatory variables fx′ .  As such, it is 

necessary to recalculate ( )ˆ fµ η  and the associated derivatives for each new observation.  

The algorithm for estimating , fCα  follows:

(1) Calculate ˆ
fY from equation (2), using the estimate β̂ calculated from the existing 

observations and fx  from the new observation.  That is,

( ) ( )ˆˆˆ expf f fy xµ η β′= = ;

(2) Again using equation (2), estimate ( )fµ η
β
∂
∂

 by substituting β̂  for β .  From

( ) ( )

( )
( )

( )

1

2

exp

exp

exp

exp

f f

f f

f f

fk f

x

x x

x x

x x

µ η β
β β

β

β

β

∂ ∂ ′=
∂ ∂

 ′
 
 ′

=  
 
 
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M

we obtain 
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MM
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(3) Using the results from steps 1 and 2, estimate  
( ) ( )_1

ˆ ,

f f

x
I
β

µ η µ η

β β′

∂ ∂

′∂ ∂
 in equation 

(4).  The estimate of 1
,xIβ
−

′  is provided by SAS Proc Genmod;

(4) Generate M  random observation (denoted iA ) from a 

( ) ( )_1
ˆ ,

0,
f f

x
N I

β

µ η µ η

β β′

 ∂ ∂
 
 ′∂ ∂ 

distribution with covariance matrix taken to be the estimate in step (3);

(5) Generate M  random observation (denoted iB ) from a ( )ˆ
fPoisson Y  distribution

(6) Calculate ˆ
i i fA B Y+ − , i=1, 2 … M, to obtain a random sample from the 

approximate distribution of ˆ
f fY Y− .

(7) To satisfy equation (6), identify , fCα , the value of ˆ
i i fA B Y+ −  such that

( ),
1

1 ˆ 1
M

i i f f
i

I A B Y C
M α α

=

+ − ≤ = −∑
(8) Then ,

ˆ
f fY Cα+  is an approximate upper ( )100 1 %α−  prediction limit for fY

4.  PERFORMANCE OF COMPETING THRESHOLDS

Model coefficient estimators ( )β̂  and the associated covariance matrix were estimated for 

the final model in equation (1). The estimates were used to generate the predictions
ˆ

fY and , fCα for each observation in both the training and validation datasets.  M = 10,000 

random samples per observation were generated for the Monte Carlo simulations. 
Prediction limits were then calculated for each observation.  In the reporting that follows, 
the December 2001 has been included in the validation dataset, in order to avoid skewed 
comparisons of methods, in spite of the fact that it was also included in the calibration 
dataset.

Table 3 shows the performance of thresholds, derived as 95, 97, and 99% prediction 
limits. The 95% prediction limit identified 6.51% of the training set and 8.77% of the 
validation set as days with an unexpectedly high number of ILI cases.  Possible 
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explanations of the fact that more than the expected percentages of the observations in the 
validation set exceeded the thresholds will be discussed in the next section.

*****       (insert Table 3 here)       *****

The numbers of days exceeding the prediction threshold were evenly spread across 
months and days of the week. (See table 4). This is a favorable indication of model 
performance.

*****       (insert Table 4 here)       *****

In building the Poisson regression model and validating the thresholds derived from it, 
we assumed that no unusual events occurred during the observation period. If this 
assumption is true, then the number of days that exceed the prediction threshold provides 
an indication of the false alarm rate. The validation results in table 3 suggest that the 95% 
prediction limit will result in about 32 false alarms during a year with no unusual 
incidents. The prediction limit level can be adjusted to accommodate the Health
Department’s tolerance for false alarms.

The number of false alarms generated by the modeled 95% prediction limit was about 6% 
below that for the simple Negative Binomial model, suggesting better performance of the 
Poisson regression model, and considerable cost savings to the County.  The superiority
of the regression model also is manifested by the more even distribution of false alarms 
between winter and summer months, in comparison to the negative binomial model.

5.  CONCLUSIONS AND DISCUSSION

We conclude that the simple Poisson model with no covariates suffers from over 
dispersion; that the alternative Negative Binomial model fits well but produces a higher 
false alarm rate than the Poisson regression model; and, hence, that thresholds should be 
derived taking into consideration weather, season, day of the week, and any other 
variables that may be readily available in a timely fashion and are associated with ILI. 

For a correctly specified model, prediction limits converge to corresponding tolerance 
limits as the sample size increases, but the sample prediction limits are expected to be 
wider than population tolerance limits in finite samples. Thus, it is surprising that the 
percentages of days that exceed prediction limits (see table 3) are higher than the nominal 
1, 3, and 5% levels.  The over dispersion evinced by this finding may be attributable to a 
variety of factors, including reporting errors, exclusion of other meaningful covariates, or 
a violation of our assumption that the tε  are independent.  The effects of seasonality and 

the infectious nature of the flu suggest some correlation among daily numbers of ILI 
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cases.  We have included month of the year in our model to adjust for seasonal effects 
and 1tY − to account for autocorrelation that should be expected when studying infectious 

illnesses.  Kafadar [24] examined ratio of current (time series) counts to historic baselines 
when observations are correlated.  Correlation induced an understated estimate of the 
ratio’s variance, potentially causing the prediction thresholds to be too low.  This is 
consistent with the results of table 3.  

It is possible that additional lagged counts should be included in our model.  Ignoring 
them would induce an auto-regressive error structure, in which case 1tY − would be

correlated with tε .  This generally results in biased, inconsistent estimates of standard 

errors. The effect can be corrected by using instrumental variable estimation of the linear 
distributed lag model in the Generalized Linear Model framework.  Under normality 
assumptions and with linear models, instrumental variable techniques are well 
documented [25].  An instrumental variable must be correlated with 1tY − , uncorrelated 

with the error ( )tε  and act indirectly on the outcome tY  through 1tY − .  Potential 

instrumental variables include prior weather variables. Unfortunately, more work is 
needed to develop instrumental variable methods for Generalized Linear distributed lag 
models.  

Fortunately, one can heuristically assume that 1tY −  and tε  are uncorrelated and use the 

methods of the current paper to derive thresholds, provided the false positive rate is 
estimated from a validation dataset.  In the case of Erie County, for example, we would 
recommend the use of the 97% prediction limit in order to ensure a false alarm rate of 
about 5% (see table 3).  Nevertheless, we would expect instrumental variable methods to 
be more efficient in the sense that, given the same sample size, a false alarm rate less than 
5% would be expected of the threshold derived from an instrumental variable based 97% 
prediction limit.  It is left for future research to develop the instrumental variables 
approach.
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Table 1: ILI Count Frequency Distribution

Daily 
Count 

Observed 
Frequency 

Expected 
Frequency 

Contribution 
to Chi-Sq
Statistic 

1 2 0.52 4.24 
2 8 2.61 11.15 
3 10 8.75 0.18 
4 45 22.04 23.91 
5 52 44.40 1.30 
6 86 74.54 1.76 
7 98 107.25 0.80 
8 128 135.04 0.37 
9 136 151.13 1.51 
10 135 152.22 1.95 
11 124 139.38 1.70 
12 101 116.99 2.19 
13 91 90.64 0.00 
14 76 65.21 1.78 
15 40 43.79 0.33 
16 24 27.57 0.46 
17 19 16.33 0.44 
18 13 9.14 1.63 
19 10 4.85 5.48 
20 6 2.44 5.19 
21 7 1.17 29.04 
23 3 0.23 32.59 
24 2 0.10 36.72 
32 1 0.65 0.19 
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Table 2
Coefficient Estimates of the Final Fitted Poisson Regression Model

Parameter Description Estimate StdErr ProbChiSq
Intercept Intercept 1.986 0.081 0.000
cnt01 Count Lag(1) 0.009 0.003 0.001
T00 Temperature Lag(0) 0.006 0.002 0.001
T01 Temperature Lag(1) 0.000 0.002 0.938
T03 Temperature Lag(3) 0.000 0.002 0.841
T04 Temperature Lag(4) -0.001 0.002 0.676
P01 Precipitation Lag(1) 0.389 0.141 0.006
P03 Precipitation Lag(3) 0.380 0.145 0.009
P04 Precipitation Lag(4) 0.472 0.147 0.001
P06 Precipitation Lag(6) 0.097 0.046 0.036
P07 Precipitation Lag(7) 0.104 0.045 0.022
TP01 Interaction Lag(1) -0.007 0.003 0.018
TP03 Interaction Lag(3) -0.006 0.003 0.037
TP04 Interaction Lag(4) -0.007 0.003 0.011
M01 January 0.019 0.053 0.726
M02 February -0.020 0.053 0.714
M03 March -0.034 0.051 0.511
M04 April -0.109 0.057 0.054
M05 May -0.298 0.071 0.000
M06 June -0.277 0.080 0.001
M07 July -0.212 0.082 0.010
M08 August -0.228 0.082 0.005
M09 September -0.220 0.073 0.003
M10 October -0.170 0.059 0.004
M11 November -0.143 0.051 0.005
D1 Sunday 0.030 0.041 0.457
D2 Monday 0.084 0.040 0.036
D3 Tuesday 0.010 0.041 0.806
D4 Wednesday 0.042 0.041 0.294
D5 Thursday 0.017 0.041 0.677
D6 Friday -0.009 0.041 0.833
Scale Overdispersion 1.000
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Table 3  

Percentage of Days Exceeding Simulation-derived Thresholds‡

Prediction Data Set
Limit Training Validation
95% 6.51% 8.77%
97% 3.08% 4.11%
99% 1.89% 2.74%

‡ December 2001 data are included in both the training and validation sets
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Table 4

Number of False Alarms by Month and Day of Week

Month Total Days Days Over Threshold
Day of 
Week Total Days Days Over Threshold

NegBin Model NegBin Model
Jan 31 7 4 Sunday 52 4 3
Feb 28 3 3 Monday 52 3 2
Mar 31 3 2 Tuesday 52 6 6
Apr 30 0 0 Wednesday 52 6 6
May 31 2 4 Thursday 52 6 6
Jun 30 2 2 Friday 52 6 7
Jul 31 1 2 Saturday 53 3 2
Aug 31 2 2 Total 365 34 32
Sep 30 1 2
Oct 31 5 6
Nov 30 1 2
Dec 31 7 3
Total 365 34 32
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For Peer ReviewFigure 1: The daily number of ILI cases reported by emergency services personnel in Erie 
County NY between August 1, 1999 and November 31, 2002. 
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Figure 2: Chi square and standardized deviance residuals demonstrate the goodness of fit 
of the final Poisson regression model to the observed daily flu counts. 
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