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Abstract1

The main focus in cDNA microarray analysis is determining which genes are differentially expressed. Scientists2

apply known statistical methods to model the structure of the experiment or develop new approaches for assessing3

statistical significance and assume that the data consist of the signal plus random noise. Here, we report the4

results of some exploratory analyses of such data that show the existence of sources of significant systematic5

variation which are not necessarily accounted for in standard analyses. Furthermore, we consider not only the6

variation due to the pin/print-tip as in previous work, but also the row and column location on the microarray7

chip, and the relative location from the well-plate. Removal of this extra variation can affect both the size of8

differential gene expression, and which genes are inferred to be differentially expressed. Further, we present violin9

plots as a measure to evaluate the quality of the probes broken down over pin, 384 well plates, plate rows and10

plate columns.11

Introduction12

In any new technology, studies involving quality control and tolerance should be performed. Once the technology13

has been benchmarked as suitable, continuing checks should be performed in order to ensure that the technology14

remains in check. With the burgeoning field of high throughput genomics, specifically microarrays, there have15

been numerous studies devoted to each facet of the technology, from image processing and data acquisition to16

end stage processing of gene networks. The success of each data processing step is highly dependent on the steps17

preceding it. In order to ensure integrity in the data based decision making process, it is necessary to have a set18

of tools which ensures the technology is in control and producing reliable results.19

By advocating the use of linear models based on the spotting process and violin plots for hybridization quality20

this paper demonstrates quality control metrics to ensure the integrity of the spot assay process. The rest of21

this paper is organized as follows: an overview of the aCGH microarray technology, a section on quality control22

metrics with examples and results, and a discussion of applicability of the methods.23

Pin tip (sometimes called print tip) microarray technology was invented in the early 1990s (ref). The technol-24

ogy has grown tremendously and now there are various flavors of probes and target elements. Target elements can25

include genes, oligonucleotides, or bacterial artificial chromosomes and new microarrays chips can now contain26
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on the order of a hundred thousand probes. Since the technology is maturing, the cost of analyzing a sample27

has been steadily decreasing so experiments are now being performed on hundreds of samples, rather than just a28

handful. Through this explosion of data, it can sometimes be lost that the microarray technology can be viewed29

as a machine. Although it does not require traditional maintenence, it does require a set of quality control stan-30

dards to ensure stability. We propose a set of quality control figures to benchmark the lab’s microarray facilities31

and ultimately pinpoint the location of errors in the process. We produce ANOVA tables that show the effects32

of the systematic variation. We also produce violin plots that demonstrate the quality of hybridization across33

several different variables in the technology. Although our results can be applied to any print tip microarray34

setting, our examples will focus mainly on Roswell Park Cancer Institute’s (RPCI) array based Comparative35

Genomic Hybridization (aCGH) facility.36

Materials and Methods37

Array based Comparative Genomic Hybridization (aCGH) technology is similar to cDNA arrays and is an38

extension from conventional CGH that is used to identify and quantify DNA copy number changes across the39

genome in a single experiment. The advantages of aCGH include high-resolution and high-throuput measurement40

capability, furthermore, more quantitative analysis of the genomic aberrations.41

In aCGH technology, the array elements or targets are laid out on a glass slide and are probed with dye labeled42

samples. In bacterial artificial chromosome (BAC) aCGH technology the target DNA elements are cloned in a43

bacterial culture and then physically arrayed in a two-dimensional grid on a chemically modified glass slide.44

After creation of the chip, differentially labelled total genomic DNA from a “test” and a “reference” cell45

population are cohybridized to the BAC clones using blocking DNA (Cot-1) to suppress signals from repetitive46

sequences. After hybridization, a GenePix Axxon scanner generates two images of the chip at the wavelengths47

of light corresponding to the two dyes. The images are processed to generate a single number corresponding to48

each sample for each spot on the chip. For the RPCI facilities, Genepix is currently used to perform the image49

processing. The resulting ratio of the fluorescent intensities at a location on the chromosomes is approximately50

proportional to the ratio of the copy numbers of the corresponding DNA sequences in the test and reference51

genomes.52
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The RPCI arrayer which generates the aCGH chips for our data consists of 48 pins to transport the samples53

from 384 well plates (4 96 well plates fused together) to the microscope slide. Each of the chips used in this54

experiment was created from 51 plates, where each plate was used twice in the spotting process.55

The Arrayer Procedure56

For our data, the 48 pins are arranged in a 12 × 4 matrix structure, approximately 4.5 mm on center, so that57

they transport the probes to the slide so that each pin fills one region or “grid” of the chip. The spots are58

approximately 80 µm in diameter, with respective centers 150? µm apart from each other to ensure no overlap59

between spots.60

The array has the spots laid out in a 116 × 348 array of 40368 spots. More specifically, each of the grids61

within the array (corresponding to pin number) has dimensions 29 × 29, thus there are 841 spots per grid62

(pin). The chip’s spot locations are labeled consecutively row-wise within each pin, first numbering within Pin63

1 (1-841), followed by the spots within 2 (842-1682), etc. Thus, the spot location values range from 1 to 40368.64

Intensities65

The data we analyzed is contained in a spreadsheet and gives the intensity readings from the Cy3- and Cy5-66

labeled probes for each spot, as produced by the image processing software. We let P1 denote the intensity of the67

Probe 1 signal that was Cy5-labeled for a specific spot. For each spot i, we let log( P1i

P2i

) denote the differential68

log expression between the two probes for that spot. For the Nowak array facility the sample labelled with Cy569

represents a collection of mRNA from a pool of normal subjects. Hence, in studying various cancerous tumors70

the standard log(P1i

P2i

) ≡ M values can be interpreted as the logarithm of tumor to control values (log
2
T/C).71

We should note at this point that there are 384/48 = 8 spots per grid per plate. Since 8 × 102 = 816 and72

each grid has 841 spots, there are 841 − 816 = 25 blank spots in each grid. Since each plate is used twice,73

each spot is replicated within a grid on the chip. Put another way, this procedure can produce the expression74

levels of 40, 368/2− 25× 48 = 18984 BAC clones per chip arranged in a two-dimensional array on the slide that75

accomodates up to 40368 spots. The remaining 25× 48 = 1200 spot locations remain unused and are, therefore,76

not considered in this analysis. (Note however, these unused spots may contain valuable information regarding77

the laser scanner settings).78
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For each spot we consider the log2(
P1i

P2i

) ≡ M as the differential log expression between the two probes for79

each spot i. From Sellers et al. (2004) there are three obvious sources of possible systematic variation which are80

a consequence of the experimental procedure and do not contribute to differential gene expression. Summarizing81

each effect, the first is the physical layout on the glass slide; one can imagine that there are spatial effects across82

the slide (caused, for example, by the way the dye-labeled material is hybridized to the slide) which would83

manifest as a pattern of row and/or column effects if the data were analyzed as 348 × 116 array. The second84

source of variation stems from the 384 well plates which are the source of the spots on the glass slide; one can85

imagine that there are effects which are localized to one (or more) specific plates which would appear as localized86

effects on the glass slide Also there are potentially effects due to the 384 well plate rows (16 rows) and 384 well87

plate columns (24 columns). Note that the localization is complicated because of the arrayer procedure described88

above; recall the complex numbering scheme. The third source is due to the pins themselves. One can easily89

imagine that the pins vary in size or some other property that causes the observations to vary from quadrant90

to quadrant on the chip. Equally, one can imagine a serial (in time) correlation among the observations caused91

by, for example, the pins not being adequately cleaned between successive dips into the wells on the plates. As92

those authors state: “This is not intended to be an exhaustive list of possible sources of systematic variation,93

but simply a short list of obvious possibilities.” The key point here, and in all subsequent analysis, is that we94

assume a random spatial distribution of the probes on the microarray chip.95

Numerous papers have been devoted to the general problem of normalization in aCGH arrays, however, few96

studies have focused on the systematic variation present in microarrays. Through a series of linear models that97

address the systematic variation above, we can obtain a signature of our lab’s aCGH technology. Note that the98

use of these linear models is derived from Sellers et al. (2004).99

In analyzing the relationship between spots on the microarray chip we consider ANOVA models corresponding100

to each of the three possible sources of variation described above. We consider models relating the differential101

log expression with each of the following factor combinations: pin number, plate number, and plate row and102

column locations. The effects from all of these factors among each of the three initial models was demonstrated103

to be significant; As advocated in the Sellers et al. (2004), we do not include a variable for the time order in104

order to avoid the of risk overfitting our data by including such a large number of degrees of freedom.105

Of interest is the effect of each of the remaining factors on the data as a complete model. In order to determine106
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the relative effect, we must proceed with caution. This is due to the collinearity that exists between the factors.107

By computing each relative effect, we can account for it in the normalization schemes. However, we can also use108

these linear models as a fingerprint for the lab. By examining the significance of the coefficients we can gain an109

understanding of the operating characteristics on the lab. By knowing the characteristics of the lab when the110

process is stable, we can quickly and easily pinpoint where the technology faulters.111

Building a complete model112

The motivation for model building is presented in ??. In addition to using these models as a way of removing113

the systematic variation, we will also use the diagnostics from these models as a fingerprint for the system. It is114

also important to study the coefficients from these linear models since they can provide metrics, themselves, as115

to the status of the imaging technology.116

From the ANOVA tables, it turns out that when we build a complete model including the pins, plates, plate117

row and plate column effect that each of these effects are significant. These effects, as being significant are118

accounted for in the normalization process presented in Miecznikowski et al. (2006). Besides determining the119

significance of these effects, it is illuminating to examine the coefficients for these variables. Figure 1 shows120

two sets of figures corresponding to two batches of samples. In Figure 1 (a), we have 4 subgraphs showing the121

coefficients for each pin, plate, plate row, and plate column. The data for Figure 1 consisted of 24 samples run for122

a dye swap experiment. If we study the figure corresponding to the plate effect, we see that the trend increases123

as the plate number increases. This effect indicates that, with respect to plate 1, the higher number plates have124

smaller M values. Likewise, we see a similar effect with the pin effect. This increasing nature of the pin effect125

indicates a spatial trend across the samples in this batch. These effects are often common in aCGH experiments126

and can be accounted for in normalization models (Miecznikowski et al., 2006).127

From Figure 1 we also see a marked shift in the plate row coefficients. This effect was not expected and128

further work is required to understand why there is a clear breakpoint after row 12. Nevertheless this effect can129

be accounted for in reference Tech report.130

Figure 1 (b) shows another set of coefficient figures. In this case, the data corresponded to a batch of 15131

samples in the new19k directory. The major difference between this batch and the batch of samples used for132

Figure 1 (a) is that the BAC cultures were regenerated for this set of experiments. When comparing Figure 1 (a)133
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with Figure 1 (b) we see that the plate coefficients are markedly different between the two batches of experiments.134

Regrowing the BAC cultures has produced a different set of coefficients for this experiment. Specifically, plates135

14, 28, and 36, seem to have the smallest M values. We see that the pin effect is very similar between the two136

batches. Basically, this indicates that the spatial trend is still present from batch to batch. Again, we see that137

there is break point in the plate row coefficients after row 12. From this set of experiments, it is clear that within138

a batch these effects are all significant and must be accounted for in a normalization scheme. Further, these139

models can change significantly from batch to batch and should be rerun for each batch. These models can even140

be broken down and run on each sample. By running the models on each chip we can gain insight on the specific141

operating characteristics for each chip.142

By running set of linear models, we can get an understanding for how the various systematic effects influence143

the output M values from an aCGH experiment. Other summary measures from these experiments can be144

presented in a statistical summary format giving a measure of the quality control for each batch of samples.145

From examining the coefficients from a linear model on a pin, plate row, and plate column level, we can explore146

other types of measures that can be broken down in a similar format. By using violin plots, we can explore147

pin, plate, plate row, and plate column information over a collection of samples. Specifically we will use violin148

plots to examine the question of spot quality for each assayed BAC. Spot quality is determined according to the149

strength of the signal obtained from the laser scanner at that spot location.150

Figure 2 shows a “violin plot” for the two batches discussed for Figure 1. Violin plots have numerous151

references in current statistical literature as a way of combining the information available from local density152

estimates with the basic summary statistics inherent in standard box plots. By combining the box plot and the153

density trace on a single plot, comparing the distributions of several variables via violins plots is a great tool for154

aCGH microarrays (Hintze and Nelson, 1998).155

For our aCGH lab, there are potentially three flags used to determine poor quality spots. The BAC spot can156

be flagged for having a signal-to-noise value. The signal-to-noise value is determined by taking the mean value157

of the pixels in the signal and dividing them by the standard deviation of the background. If this value is too158

low (< 2.5) then the spot is of poor quality. The spot can be manually flagged by the user to determine poor159

quality or the spot can be flagged of poor quality because of a dim signal in one of the channels. Dimmness is160

determined by having a mean signal value under a prescribed cutoff in one of the channels. With this set of flags161
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used for poor spot quality, the distribution of the percentage of poor quality spots was broken down over several162

different discrete variables in the spotting process.163

Figure 2 (a) shows the percentage of BACs from each pin which get flagged with a quality control problem164

on at least one of the samples in this study (15 samples). This batch of samples is the same batch used for165

Figure 1 (a). Namely for each pin on each sample, we took the percentage of spots from that pin that had a166

quality control problem as determined by the image processing software. We then computed that percentage167

for each sample in the batch, and examined the distribution of percentages for that specific pin via a violin168

plot. Similarly, Figure 2 (b) shows the percentage of BACs from each plate which get flagged with a quality169

control problem on at least one sample (24 samples). Figure 2 (b) confirms our suspicions in Figure 1 (b). From170

Figure 1 (b), our conclusion was that the higher numbered plates consisted of low (or dim) M values, since the171

coefficients for those plates were large. By examining the violin plots for the plates in Figure 2 (b) we see that172

a large number of these higher numbered plates (> 40) consisted of a large number of spots that were flagged173

with quality control problems due to dimness.174

We can also produce violin plots for the other batch of experiments from the newly generated BAC cultures.175

From Figure 2 (d) we see that only a few of the plates seem to consistently have quality control problems. This176

is an agreement with Figure 1 (b) where we see large coefficients for plate 14, 28 and 36. Subsequently, these177

plates have been removed from the process and the BAC materials for those plates has been regenerated.178

Discussion179

We focused on M to build our linear models and ANOVA tables. As expected based on the work in Sellers180

et al. (2004), the pins, plates, plate row and plate column are all significant factors in predicting the M values.181

For a specific experiment consisting of multiple chips, we can produce figures showing the coefficients for each182

variable. These figures can act as fingerprint for the technology and specifically for that experiment. From183

experiment to experiment the values of these coefficients should be stable, changes in these coefficients indicates184

that the microarray technology has changed characteristics, possibly due to the process being out of control. As185

noted, there were remarkable differences in the plate coefficients between the two experiments. This coincides186

with the target elements being regenerated for the second experiment. This notion of examining variables on a187
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Figure 1: Linear Models as Quality Control: (a) The set of linear coefficients for an older BAC experiment

involving 24 number of chips. A loess smoothed line is shown for each set of coeffiecients. Note that for the plate row

coefficients there is a significant break after plate row 12. Similarly there is a steady linear gradient for the pin coefficients.

In (b) an experiment consisting of 15 samples on new chips where each spot probe has been reconsitituted. The coefficients

due to pin, plate, plate row and plate column are much less in magnitude than in (a). Correspondingly, the quality of the

signal for the experiments in (b) is superior to those in experiment (a).

pin, plate, plate row and plate column level can be extended with violin plots regarding the quality control for188

each pin. From Figure 2 showing the percentage of spots without a quality control problem we can quickly and189

easily pinpoint the regions where the assay is consistently failing quality control measures. The concept of violin190

plots for quality control, can further be extended to other commonly reported spot variables such as background191

mean, background s.d., and other outlier flags.192

Figures193

Supplemental194

ANOVA tables from the linear models. Note the models are run on experiments consisting of sets of samples.195

So a model is built from several chips in two separate cases. The model for case 1 is built from the old19K BAC196

arrays, the model for case 2 is built from the new19K BAC arrays.197

Although this again demonstrates the significance of each of the factors in their effect relating to differential198

expression levels, this table is still not exact because the degrees of freedom under such a formulation are not199
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Figure 2: Violin Plots as Quality Control: Violin plots showing quality control for each 384 well plate used to

create the BAC array. There are 51 plates used in the creation of each chip. Each spot is evaluated according to the

hybridization quality and assigned a flag. A flag of poor spot quality can be assessed manually, or automatically if a spot

has a poor signal to noise value or has a signal below a preassigned cut-off. Often this poor quality is indicated by dim

flourescence in one of the channels due to degradation of the target material. In (a) there were 24 samples run and for

each sample, the percentage of spots with a quality control flag was recorded. The violin plot in (a) shows the distribution

of this percentage over the 24 samples. Note that the median is shown in white. There are several plates, namely the

plates past Plate 24 are all suspect in terms of quality of plate wells. (b) represents the new growth of the BAC arrays.

There were 15 samples run in this experiment. The BAC cultures have been regenerated and so each plate represents

newer BACs. Clearly the problems due to degrading BACs in (a) has been resolved with the new BAC cultures. The two

poor quality plates 24 and 48 have subsequently been identified and replaced.
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Table 1: Approximate ANOVA table representing effect of all factors on log-T/C expressions. These terms are

added sequentially (first to last).Note this ANOVA table corresponds to the new19K experiment.

Df Sum of Sq Mean Sq F Value Pr(F)

pin 47 1454 31 304.96 2.2e-16

plate 50 3607 72 819.8 2.2e-16

plate row 23 41 2 20.216 2.2e-16

plate col 15 30 2 22.720 2.2e-16

rep 1 10 10 116.53 2.2e-16

Residuals 605384 57721.52 .0953

Grand Tot 605520 62863.52

the true degrees of freedom for this model (this is due to the interdependencies of the factors). However, given200

the procedure by which the model was established, the degrees of freedom listed in Table 1 represent upper201

bounds on the true degrees of freedom. As a result, the F-statistics will only increase, thus demonstrating an202

even greater significance of the factor effects. The pin number plate row, plate column, and plate number factor203

mean squares still demonstrate significance in the model.204

Conclusion205

It is important to have adequate quality control measures in place to ensure microarray technology remains within206

tolerance. This paper demonstrates an example where the quality control samples had degraded in several of207

the plates and by regenerating the plates we were able to restore quality in each of the scanning channels for208

the probes. This problem was also evident by the size of the coefficients for linear models built to examine209

the systematic variation in spotted glass slide microarray technology. By implementing tools that work on a210

pin, plate, plate row, and plate column level we can pinpoint exactly where errors in the technology may be211

occurring. Further, by building linear models based on the systematic variation in the spot arraying technology212

we can account for a significant proportion of the variation in each array.213
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