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Abstract

Background

Radiation hybrid (RH) mapping is a technique for mapping relative positions of markers on
chromosomes with the goal of mapping animal genomes. In spite of the widespread usage of
RH mapping, few diagnostic tools seem to have been developed to assess the goodness of fit for
candidate maps. This paper presents graphical diagnostics of maximum likelihood estimates of
relative marker positions and applies the diagnostics to simulated and actual data.

Results

Simulated data sets with and without map errors are utilized to confirm expected behaviors
of the diagnostic plots. Diagnostics then are applied to a data set that is comprised of a published
RH map for Bos Taurus Autosome 5 (BTA5) and an RH panel consisting of 90 bovine-hamster
cell lines typed for 85 markers on BTA5. Our diagnostics suggest possible local errors in marker
position, a significant error of typing in at least one marker and a block inversion in a specific
region of the map. Possible map inflation due to mapping errors is also detected and discussed
in both the simulated and the BTA5 data sets.

Conclusions

Graphical diagnostics presented in this paper appear to provide a useful tool for assessing
RH maps, as illustrated by our examination of the RH map for BTA5. We believe that appli-
cation of our proposed diagnostics can facilitate the construction of maps for agriculturally and
scientifically important species.
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Introduction

Radiation hybrid (RH) mapping (Goss and Harris, 1975; Cox et al., 1990) is a somatic cell
technique for estimating the relative positions of markers along chromosomes which was useful
in providing some of the first comprehensive human genome maps (Slonim et al., 1997). Although
the usefulness of this technique with respect to the human genome has diminished, there is still
significant demand for radiation hybrid mapping tools in agriculturally important species, which
are not likely to have genomic sequence available soon.

In Radiation Hybrid experiments, cells are exposed to a dose of radiation that results in
the fragmentation of the chromosomes within the cell. The irradiated cells can be fused with
hamster cells and grown to form a hybrid cell line. Hybrid cells are plated at limiting dilution
so that only individual clones are grown. Each clone is expanded to produce large quantities of
DNA for typing and then assayed for the presence or absence of markers unique to the genome of
the irradiated cell line. The probability that the radiation will cause a break between two marker
loci is a function of the distance between the two loci; with smaller probabilities associated with
closer markers. Hence, the relative merit of putative marker orderings can be infered from the
patterns of marker coretention observed in the hybrid cell lines. Maximum likelihood (Lange
et al., 1995; Slonim et al., 1997), non-parametric Boehnke (1992), graph theoretic(Ben-Dor and
Chor, 1997; Bo et al., 2002) and Traveling Salesman Problem (Ben-Dor et al., 2000; Agarwala
et al., 2000) based methods of inference have all been developed for the RH mapping problem.

Problem Definition

In this paper, we consider the problem of assessing the quality of a candidate marker ordering.
We provide graph-based tools which allow for visualization of the overall quality of the map and
for identification of error prone regions within the map. We present three RH diagnostic plots.
The first plot was designed to assess whether or not the multi-point fit is consistent with all
possible two-point fits. The remaining plots are designed to assess whether the multi-point fit
is consistent with all possible three-point fits.

Summary of Previous Methods

Models Used in Recently Developed RH Mapping Algorithms

Recent advances in RH mapping have been in the area of translating the RH problem to a
graph theoretic problem (Ben-Dor and Chor, 1997; Bo et al., 2002) and a Traveling Salesman
Problem (Ben-Dor et al., 2000; Agarwala et al., 2000). These approaches are based on either
minimum number of breaks (MNB) or two-point and three-point approximations to the multi-
point likelihood. The parametric models adopted by these approaches commonly assume an
error free model with equal retention probabilities consistent with Boehnke et al. (1991) and
Lange et al. (1995).

Radiation Hybrid Mapping Diagnostics

Diagnostics to identify influential hybrids have been proposed by Lange et al. (1995) and Slonim
et al. (1997). These diagnostics have been designed to identify hybrids which are inconsistent
or improbable with respect to the optimal marker ordering. Lange et al. (1995) use the number
of OCB as a measure of consistency and Slonim et al. (1997) employ a likelihood ratio based
statistic. Both diagnostics assume that the estimated marker ordering is correct and seek to
identify hybrid data that are in error. We are unaware of any previous efforts to develop
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diagnostics that identify portions of a marker ordering that are least probable given the observed
data. We are also unaware of any efforts to provide graph-based tools for RH Mapping.

Overview of the current method

In this chapter, we consider the problem of assessing the quality of a candidate marker ordering.
We provide graph-based tools which allow for visualization of the overall quality of the map and
for identification of error prone regions within the map. We present three RH diagnostic plots.
The first plot was designed to assess whether or not the multi-point fit is consistent with all
possible two-point fits. The remaining plots are designed to assess whether the multi-point fit
is consistent with all possible three-point fits.

Methods

Radiation Hybrid Data

Let X = (X1, . . . , Xm) denote the observed hybrid vector for a single hybrid cell line where m
denotes the number of markers that have been typed. If no markers are present at locus k, then
Xk = 0. If one or more markers are present, then Xk = 1. To control errors in marker typing,
cell lines are often typed multiple times for each marker. If the marker could not be typed or a
consensus call was not possible, Xk = 2 or Xk =?. We define θk as the probability of at least
one break occurring between markers k and k + 1. The breakage probability is then related to
the scaled distance dk

dk = − log(1− θk).

This distance is said to have the unit measure of Rays(R). Sometimes the distance 100 × dk is
reported with unit measure centi-Rays(cR). The quantity dk can be interpreted as the expected
number of breaks that will occur between markers k and k + 1.

Likelihoods

Our diagnostic plots require that we fit two-point, three-point and the multi-point model which
is to be diagnosed. We consider the equal retention model which is a subset of the general class
of Markovian models described in Lange et al. (1995). The two-point and three-point likelihoods
can be evaluated under the multi-point model but we have opted to evaluate them differently
for reasons of computational efficiency. The two-point model allows a closed form solution for
the maximum likelihood estimates of the retention and breakage probabilities. The three-point
model can be evaluated more directly than the multi-point method detailed by Lange et al.
(1995). In this section we will provide an overview of the likelihood and maximization strategies
for the two-point, three-point and multi-point cases.

Multi-point Likelihood

The multi-point model presented in Lange et al. (1995) is given by

P = Pr(X = (x1, . . . , xm))

=
∑
g1

· · ·
∑
gm

(
c

g1

)
rg1
1 (1− r1)c−g1

×
m−1∏

k=1

tc,k(gk, gk+1)
m∏

k=1

φk(xk|gk)

(1)
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where gk is the number of copies of marker k present in the clone, r1 is the retention probability
of any irradiated chromosomal fragment containing the first marker, c is the ploidy, φk(xk|gk)
is the penetrance (defined below) for marker k, and tc,k(gk, gk+1) is the transition probability
from state gk at locus k to state gk+1 at locus k + 1. The transition probability, tc,k, can be
expressed as

tc,k(i, j) =
min{i,j}∑

l=max{0,i+j−c}

(
i

l

)
t1,k(1, 1)lt1,k(1, 0)i−l

×
(

c− i

j − l

)
t1,k(0, 1)j−lt1,k(0, 0)c−i−j+l.

where

t1,k(0, 0) = 1− θkrk+1

t1,k(0, 1) = θkrk+1

t1,k(1, 0) = θk(1− rk+1)
t1,k(1, 1) = 1− θk(1− rk+1)

where rk is the retention probability of any irradiated chromosomal fragment such that the kth

marker is the left-most marker. The likelihood in equation (1) can be evaluated rapidly using
Baum’s forward and backward algorithms (Baum, 1972) and can be maximized utilizing the EM
algorithm (Dempster et al., 1977) in concert with a useful update formula from Weeks and Lange
(1989). The equal retention model, r = r1 = . . . = rm, is merely a special case of the general
retention model given in equation (1). Details concerning the evaluation and maximization of
equation (1) are provided in Lange et al. (1995).

Three-point Likelihood

Let nijk represent the number of hybrid clones with X = (i, j, k) in the case where m = 3 markers
are typed without error or missing data. Note that the vector N = (n000, n001, . . . , n011, n111) is
an observation on a multinomial distributed variable with cell probabilities (p000, p001, p010, p011,
p100, p101, p110, p111) where each pijk is a function of r, θ1, θ2. The log-likelihood is given by

L(r, θ1, θ2|X = x) = K +
∑

i

∑

j

∑

k

nijk log pijk. (2)

The likelihood in equation (2) is maximized via the EM algorithm with two-point based
estimates used for initial parameter estimates. We employ a three-point equal-retention error-
free model (Markovian) but we evaluate the likelihood in a different manner than Lange et al.
(1995). Each pijk can be expressed as a polynomial function of r, θ1, θ2. These polynomial
functions as well as their first and second derivatives were derived using a subroutine that
was written in R (Ihaka and Gentleman, 1996). The polynomials were then passed to another
R subroutine which generated Fortran code that was dynamically loaded back into R. The
EM algorithm was coded in Fortran and also dynamically loaded in R. This approach coupled
the quick evaluation and maximization of the likelihood via Fortran with the powerful object-
oriented graphic front-end provided by R.
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Two-point Likelihood

Let nij represent the number of hybrid clones with X = (i, j) in the case where m = 2 markers
are typed without error or missing data. Note that the vector N = (n00, n01, n10, n11, n111) is
an observation on a multinomial distributed variable with cell probabilities (p00, p01, p10, p11)
where each pij is a function of r and θ. Specifically,

p00 = [(1− r)(1− θr)]c

p01 = p10

= (1− r)c − [(1− r)(1− θr)]c

p11 = 1− p00 − 2p01

where c is the ploidy of the data.The log-likelihood is given by

L(r, θ|X = x) = K +
∑

i

∑

j

nij log pij

where K is a constant. Lange et al. (1995) demonstrate that the likelihood is maximized by

r̂ = 1−
[
1− p̃11 + p̃00

2

] 1
c

θ̂ =
1− r − [p̃00]

1
c

r(1− r)

when p̃00p̃11 ≥ p̃2
10 where p̃ij = nijP

i

P
j nij

. If the p̃ij ’s do not satisfy p̃00p̃11 ≥ p̃2
10 then θ is set

to some number close to 1 and the EM algorithm is run until the likelihood converges to within
a given tolerance.

Missing Data

For the two-point and three-point models, hybrids with non-consensus or missing data are dis-
carded from the analysis. In the multi-point case, discarding hybrids with non-consensus or
missing data could result in substantial loss of data, so these hybrids are typically not dis-
carded. For the multi-point model presented in Lange et al. (1995) inclusion of hybrids with
non-consensus or missing data (i.e., with a score of Xk =?) is accomplished by setting φ(?|gk) = 1
for all hidden states gk.

Definitions of LOD, ∆LOD, and δLOD

The level of significance attached to a particular order for a subset of markers is often expressed
in LODs. The LOD scores have become popular because of their ease of interpretation: a LOD
j difference in likelihoods corresponds to a likelihood ratio of 10j : 1. We consider the analysis
of sets of three markers which we may also refer to as “triples” or “triplets”.

Suppose we label three markers Ma, Mb, and Mc. Under the equal retention model presented
by Lange et al. (1995), the three unique orderings of these three markers are {(Ma,Mb,Mc),
(Ma,Mc,Mb), (Mc,Ma, Mb)}. Note that, under the equal retention model, the orders (Ma,Mb,Mc)
and (Mc,Mb,Ma), the orders (Ma,Mc,Mb) and (Mb, Mc,Ma), and the orders (Mc, Ma,Mb)}
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and (Mb,Ma,Mc) provide likelihood functions that are identical to one another2. The LOD
score of marker order (Ma,Mb,Mc) compared to marker order (Ma,Mc,Mb) is given by

LOD(Ma,Mb,Mc):(Ma,Mc,Mb) = log10 e×
{

L(r̂, θ̂1, θ̂2|X = (xa, xb, xc)) (3)

−L(r̃, θ̃1, θ̃2|X = (xa, xc, xb)
}

(4)

where r̂, θ̂1, θ̂2 are the parameter MLEs under marker order (Ma,Mb,Mc) and r̃, θ̃1, θ̃2 are the
parameter MLEs under marker order (Ma,Mc,Mb).

By definition, the LOD score in equation (3) is meaningful only in the context of comparing
two different marker orderings. In practice, it is common to refer to the LOD score of a group of
markers or of a single marker ordering. The LOD score of a group of markers is the LOD score of
the best ordering of the group of markers compared to the second best ordering. The LOD score
of a single marker ordering is the LOD score of that ordering compared to the best ordering
from the set of possible alternative orderings. We define two distinct statistics to handle these
cases. First, we define the ∆LOD score of a set of three markers to be the value of the LOD
of the ordering with the highest likelihood compared to the ordering with the second highest
likelihood. Second, we define the δLOD score of a given marker ordering to be the LOD score of
that marker ordering compared to the most likely of the remaining two marker orderings. Note
that ∆LOD is non-negative by definition while δLOD may assume both negative and positive
values. A positive value of δLOD indicates that the marker ordering is superior to both remaining
orderings. A negative δLOD score indicates that the marker ordering is less likely than at least
one of the remaining orderings.

Results

Data-Sets

We apply our diagnostics to a real data-set which is comprised of a published RH map for Bos
taurus Autosome 5 (BTA5) (Womack et al., 1997) and an RH panel consisting of 90 bovine-
hamster hybrid cell lines typed for 85 markers on BTA5 (Womack et al., 1997). A copy of
the panel data can be found in the supplemental meterials. We will refer to this data-set as
W-BTA5.

We also apply our diagnostics to two simulated data sets which we label SDAT-N and SDAT-
E. Each simulated data-set is comprised of simulated RH panel data and a candidate marker
ordering (i.e., a candidate map or a candidate multi-point map). The simulated RH panel data
consists of 90 hybrid cell lines typed for 85 markers and were generated under the assumption
that the 85 markers are equally spaced along a chromosome of total length 2.5 Rays (i.e., markers
are located every 2.97cR)3. The panel data in SDAT-N was generated under the assumption
that markers were typed without error. The panel data in SDAT-E was generated under the
assumption that markers were typed with false positive and false negative error rates fixed at 0.05
for all markers except M50 and M60. M50 had 14 positive typing scores converted to negative
(i.e., a 57% false negative error rate). Marker M60 had 12 negative typing scores were converted

2The probability of a break between markers Ma and Mb is the same for marker ordering {(Ma, Mb, Mc)
and {(Mc, Mb, Ma). The same can be said for the probability of a break between markers Mb and Mc and the
probability of a break between markers Ma and Mc. Therefore, under the equal retention model, the likelihoods
must be identical.

3The sum of the estimated distances from the left-most marker to the center marker and from the center
marker to the right-most marker in the candidate map for W-BTA5 is approximately 2.5 Rays. Simulated
data-sets were designed to be similar to W-BTA5 in this respect.
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to positive (i.e., a 16% false positive error rate). The simulated data-set SDAT4 contains RH
panel data which was generated by applying simulated typing errors to the panel data used in
SDAT-E. The candidate marker ordering corresponding to SDAT-N is the true marker ordering.
The candidate marker ordering corresponding to SDAT-E was generated by subjecting the true
marker ordering to 50 sequentially applied random marker flips4. An inversion was then placed
in the map by inverting the order of the 21st through 30th markers. A complete listing of the
simulated data-sets is provided in the supplemental materials.

For each data-set, we label the markers M1,M2, . . . ,M85 in accordance with the order in
which they appear in that data-set’s candidate RH Map. For the real data-set, a table relating
these labels to their published names can be found in the supplemental materials.

Calculations

In this section, we discuss the calculations that were performed on the real and simulated data-
sets.

Multi-point Calculations

The RH panel data was analyzed with markers constrained to the ordering dictated by the
candidate map. The retention model in equation (1) was fitted to the data but the retention
parameters were constrained to be equal. Maximum likelihood estimates for r and θ1, θ2, . . . , θ84

were obtained. The MLEs for distance, d̂k = − log(1− θ̂k), k = 1, 84 were also calculated.
All possible inter-marker distances were estimated conditioned on the candidate map. Sup-

pose, as mentioned above, that the markers are labeled M1,M2, . . . , M85 in accordance with the
order in which they appear in the candidate map. Let di,j denote the distance between marker
i and marker j where i < j. The MLE for di,j is calculated

d̂i,j =
j−1∑

k=i

d̂k.

All
(
85
2

)
= 3570 values of d̂i,j were calculated conditioned on the candidate map.

Three-point Calculations

Maximum likelihood estimates for r3pt,i,j,k, θ3pt,i,j , and θ3pt,j,k, were calculated for each set of
unique combinations of i, j, k under the three-point equal retention model described above. The
MLEs for distance, d̂3pt,i,j = − log(1− θ̂3pt,i,j) and d̂3pt,j,k = − log(1− θ̂3pt,j,k) were also calcu-
lated. The maximum likelihoods were compared for the three unique marker orderings associated
with each set of values of i, j, k. Using these likelihood values, the observed ∆LOD and δLOD were
calculated. The δLOD scores were calculated with respect to the triplet marker ordering that
was consistent with the candidate RH Map. If we consider the three markers M1, M7, and M29

then, by definition, the marker ordering (M1, M7,M29) is the unique ordering consistent with
the candidate RH map. The δLOD is calculated as the difference between the maximum log10

likelihood associated with the marker ordering (M1, M7,M29) and the greater of the maximum
log10 likelihoods associated with the orderings of (M1,M29,M7) and (M29,M1,M7).

4The ith marker is randomly selected and the map positions of the ith and (i + 1)th markers are flipped
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Two-point Calculations

Maximum likelihood estimates for r2pt,i,j and θ2pt,i,j were calculated for each of the
(
85
2

)
= 3570

combinations of markers Mi and Mj , under the two-point equal retention model described above.
The MLEs for distance, d̂2pt,i,j = − log(1− θ̂i,j) also were calculated.

The Two-point Diagnostic Panel

The first diagnostic consists of a collection of m = 85 plots that assess whether the two-point
estimates for distance between markers, d̂2pt,i,j , are consistent with their multi-point counter-
parts, d̂i,j . In practice, we assess consistency of the two-point estimates for breakage probability
θ̂2pt,i,j = 1 − e−abs(bd2pt,i,j) with the multi-point distances d̂i,j = − log(1 − θ̂i,j) because scaling
the y-axis of the graphs with respect to θ̂2pt,i,j provides a graph that is easier to interpret than
one scaled with respect to d̂2pt,i,j . We call this collection of plots, a “Two-Point Diagnostic
Panel”.

Each plot within a Two-Point Diagnostic Panel corresponds to the selection of a single
marker as a reference marker. The plot is designed to compare the two-point and multi-point
estimates of distance between the reference marker and each of the m − 1 = 84 remaining
non-reference markers. The plot consists of m − 1 points corresponding to each of the m − 1
non-reference markers. The plotted points have an x-coordinate corresponding to the position
of the non-reference marker in the multi-point map5 and a y-coordinate corresponding to the
two-point estimates for the breakage probability with respect to the reference and non-reference
marker. In each plot, a dotted vertical line indicates the position of the reference marker as
estimated by the multi-point map and dashed lines indicate the two-point breakage probabilities
consistent with the candidate multi-point map. If the candidate map order were correct and
the RH panel were error free, we would expect the plotted points to be positioned close to the
dashed lines. Therefore, if a marker ordering is generally correct (i.e., mis-orderings are confined
to local regions of the chromosome) we expect the plot to display points in the general shape
of a convex function in the neighborhood of the minimum with the minimum occurring at the
position of the reference marker. If portions of the map have been inverted (block inversions)
then we expect that to see sections of the map where the plotted points form patterns discordant
with the expected convex pattern. Plotted points that are consistently positioned beneath the
dashed lines suggest that some, if not all, multi-point marker distance estimates may be inflated.

For the remainder of this section, we apply our diagnostic to the simulated and real example
data-sets. The simulated data-sets have been designed to illustrate how our diagnostic responds
to plausible errors in the map ordering and in the RH panel marker typing data. To establish a
point of reference, we begin by applying our diagnostic to a data-set (SDAT1) with a candidate
map that is correct and RH panel data that are error-free.

Figure 1 contains nine of the 85 plots from the two-point diagnostic panel for the simu-
lated data-set SDAT-E. In practice, all 85 plots would be generated and inspected. For clarity
of presentation, we have opted to include only the subset of plots corresponding to markers
M1,M11,M22, M33,M44,M55,M66,M77, and M85. The points in each of the graphs in Figure 1
lie close to the dashed lines in the neighborhood of the minima; indicating that the estimated
two-point breakage probabilities are consistent with the multi-point estimates.

5The position of a marker is quantified as the estimated distance in Rays from the left most marker in the
multi-point map.
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Figure 1: A two-point diagnostic panel with nine reference markers from simulated data-set
SDAT-E. Horizontal axes represent the position of markers in Rays as estimated by the multi-
point map. Vertical axes represent the estimated two-point breakage probability between the
reference and all non-reference markers. A dotted vertical line indicates the position of the
reference of marker as estimated by the multi-point map. Dashed lines indicate the two-point
breakage probabilities consistent with the multi-point map. The estimated map length is ap-
proximately equal to the true value of 2.5 Rays. The plotted points lie in close proximity to the
dashed lines; indicating that the estimated two-point breakage probabilities are consistent with
the multi-point estimate
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Figure 2 contains nine of the 85 plots from the two-point diagnostic panel for the simulated
data-set SDAT-E. The candidate marker ordering corresponding to SDAT-E was generated by
subjecting the true marker ordering to 50 sequentially applied random marker flips (i.e., the ith

marker is randomly selected and the map positions of the ith and (i + 1)st markers are flipped)
and by inverting the order of the 21st through 30th markers. Introducing the random marker
flips into the candidate map yields a map in which markers are positioned in the correct regions
of the map but not the correct order within regions. With the exception of 2(a) each of the
plots in Figure 2 contain regions where plotted points fall consistently below the dashed lines.
This indicates that the two-point estimates for distance (and breakage probability) are less than
their multi-point counterparts. The simulated map length for the data used in all simulated
data-sets was 2.5 Rays. A comparison of the x-axis scale in 2 reveals that the estimated map
length has been inflated by errors in the candidate map. Inverted markers are denoted by open
circles in Figure 2. Plotted points that correspond to inverted markers are discordant with the
convex shape expected under correct ordering in plots in Figure 2(a), 2(b), 2(d), 2(e), and
2(f). Marker M50 had 14 positive typing scores converted to negative (i.e., a 57% false negative
error rate). Marker M60 had 12 negative typing scores were converted to positive (i.e., a 16%
false positive error rate). Plotted points for markers M50 and M60 are highlighted in Figure 2
with gray squares and gray inverted triangles, respectively. Plotted points for markers M50 and
M60 appear as distinct outliers in Figure 2(f). We consider these points to be outliers based on
comparisons of their vertical positions with the vertical positions of the plotted points in the
regions of the map surrounding markers M50 and M60.

Figure 3 contains nine of the 85 plots from the two-point diagnostic panel of the example
data set W-BTA5. The plotted points lie beneath the dashed lines across all nine plots. The
general trend of the points between 0 to 4 Rays in Figure 3 (d) is similar to the patterns found
in Figure 2 for points corresponding to markers that were inverted in the simulated data-set. In
Figure 3, the plotted points for markers M36, M57, and M75 have been highlighted with open
circles, triangles and diamonds respectively. Figures 3(d), 3(g) and 3(h) all contain an outlying
plotted point corresponding to marker M36 (highlighted with open circles). In each figure,
the estimated two-point breakage probabilities associated with M36 is much higher than the
estimated breakage probabilities associated with most, if not all, other non-reference markers.
The behavior of marker M36 in these plots is similar to the behavior of the mistyped markers
M50 and M60 from SDAT4 in Figure 2.



10

 
  

  
  

   
 
 
  

   
 
 

      

 
 

 
 

     
  
 

       
     

   

 
 

 

   

 

 
  
                      

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

θ

 
 
  

 

 

  
  
 
 
  

   
 
 

 
 
 

   

 

 

 
 

     
  
 
    
   
 
 
 

          

 

 

 
  

  
                    

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

 
 
  

 
 

  
     
  

   
 

 

  
   

 

 

 
 

   
 
 

 

 

 
 
   
 
 
 
 
 
 

 

 

 
        

 

 

  

  

 

  
 
   
  
        
   

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

 

 

   
 

  
     
  

   
 
 

 
 
 

   

 

 

 
 

  
 
 

 

 

 
 
   

 
 
 
 
 
 

 

 

 
  
 
 
   

 

 

 

  

  

 

 

 
 
   
  
        
   

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

θ

    
 
 

  
     
  

   
 
 

 
 
 

   

 

 

  

   
 
 

  

 
 
     
 

 

 

 
 

 
  
  
 

  

 

 

 

  

  

 

 

 
 
   
  
        
   

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

    
 
   
     

  

    
 

   

   
 

 

  

   
 
 

 

 
 
 
   
 
 
 
 

 

 

 

 

 
  
 
 

  

 

 

 

  

 
 

 

 

 

 

 
 
 
  
        
   

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

               

    
 
 
 
    
 

 

  
     
  
     
   
 

 

 

 

 

   
 
 

 

   

 

 

  
 
  

 
  

 
 

 
 
 
     
 
 
   

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g)

Map Distance (Rays)

θ

     
        

  

    
 
 
 
      

       
  
     
   
 
 
 

 
 

   
 
 

 

   

 

 

   
 

 

 

 

 
 

 
  
 

 
    
 
 
 
  

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h)

Map Distance (Rays)

               

    
 
 
 
      

       
  
     
   
 
 
 

 
 

   
 
 

 

   

 

 

   
 

 

 
 

 
 

 
  
 

 
     
 
 
 
 

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i)

Map Distance (Rays)

Figure 2: A two-point diagnostic panel with nine reference markers from simulated data-set
SDAT-E. Horizontal axes represent the position of markers in Rays as estimated by the multi-
point map. Vertical axes represent the estimated two-point breakage probability between the
reference and all non-reference markers. A dotted vertical line indicates the position of the
reference of marker as estimated by the multi-point map. Dashed lines indicate the two-point
breakage probabilities consistent with the multi-point map. Plotted points for markers M50

and M60 are highlighted with gray squares and gray inverted triangles, respectively. Inverted
markers are denoted by open circles.
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Figure 3: A two-point diagnostic panel with nine reference markers from the example data-set
W-BTA5. Horizontal axes represent the position of markers in Rays as estimated by the multi-
point map. Vertical axes represent the estimated two-point breakage probability between the
reference and all non-non-reference markers. A dotted vertical line indicates the position of the
reference of marker as estimated by the multi-point map. Dashed lines indicate the two-point
breakage probabilities consistent with the multi-point map. The plotted points for markers M36,
M57, and M75 have been highlighted with open circles, triangles and diamonds respectively.
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Our two-point diagnostic plot also can be useful in estimating the locations of markers that
are not included in the candidate RH map. Figure 4 contains two-point diagnostic plots for
four positional candidate genes for meat tenderness. The dashed lines included in the previous
figures are not included in Figure 4 as the locations of the four markers are not specified by the
candidate marker map. We expect that these plots should be consistent with the the plots in
Figure 3 . For example, all plots in Figure 4 suggest a block inversion in the neighborhood of 0R
to 4R. The plot in Figure 4(b) corresponds to the marker MMP19 and exhibits provides strong
evidence for the placement of the marker in this putative region. We consider the evidence to
be strong because (1) the minimum estimated breakage probability is relatively small (which
indicates a close association with markers that have already been mapped) and, (2) the plotted
points form a convex pattern in the area of the minimum. The plot in Figure 4(c) corresponds
to marker MYF5TX. The possible block inversion may explain the discordant points in the area
of 0 Rays to 4 Rays. Otherwise Figure 4(c) indicates that MYF5TX maps to a position on the
map consistent with prior knowledge of this marker. The plots in Figure 4(a) and Figure 4(d)
correspond to markers WNT10B and WIF1, respectively. The patterns found in Figures 4(a)
4(d) may be explained by some or all of the following: (1) the possibility that the markers are
positioned is a sparse region of the map; (2) the possibility that the markers have significant
typing errors; and (3) the possibility that the markers are positioned in a region of the map
populated by a marker (or markers) with significant typing errors in the RH panel data.

Table 1: Information for selected points in Figure 6.

K # triplets with ∆LOD ≥ K Percent in Map

0 98770(100%) 57.303%
1 33375(33.791%) 65.567%
2 11005(11.142%) 70.023%
3 2861(2.897%) 66.32%
4 571(0.578%) 59.691%
5 80(0.081%) 42.5%
6 3(0.003%) 66.667%



13

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Map Distance (Rays)

θ

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Map Distance (Rays)
θ

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Map Distance (Rays)

θ

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
(d)

Map Distance (Rays)

θ

Figure 4: Two-point diagnostic plots for four positional candidate genes for meat tenderness.
Horizontal axes represent the position of markers in Rays as estimated by the multi-point
map. Vertical axes represent the estimated two-point breakage probability between the ref-
erence marker and non-reference markers. (a) Two-point diagnostic plot for candidate gene
WNT10B.(b) Two-point diagnostic plot for candidate gene MMP19. (c) Two-point diagnostic
plot for candidate gene MYF5.(d) Two-point diagnostic plot for candidate gene WIF1.
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The Three-point δLOD Diagnostic Plot

The remaining diagnostics were designed to assess whether the multi-point fit is consistent with
all possible three-point fits. The first such diagnostic utilizes the δLOD score which measures the
likelihood of the candidate map triplet ordering map relative to the best alternative ordering.
A negative δLOD score indicates inconsistency with the candidate map ordering. If a marker
is well positioned in the candidate map then we would expect that the number of triplets with
negative δLOD scores will not be significantly larger than the numbers associated with other well
placed markers. If the marker position is in error, then we expect the number of triplets with
negative δLOD scores will be larger than the numbers associated with well placed markers. For
our diagnostic, we calculate for each marker the number of triplets with δLOD less than or equal
to some number −K and compare these values across markers. We recommend re-examining
the placement of markers (or regions of markers) with the largest numbers of triplets having
δLOD ≤ −K. Since selection of an optimal value for K appears to be data dependent, we
recommend performing these calculations for several values of K.

Figure 5 contains three-point δLOD diagnostic plots for the eighty five markers in the example
data-set W-BTA5. Diagnostic plots are presented for values of K ∈ {1, 3, 5, 7}. The horizontal
axes represents the position of markers in Rays as estimated by the multi-point map. The
vertical axes represent a range of values for the number of the marker triplets with δLOD ≤ −K.
Many of the markers in the region of 0 Rays to 4 Rays are included in relatively large numbers
of triplets with negative δLOD scores. This is consistent with Figure 3 which suggests a possible
block inversion in that region of the candidate map. The plotted points for markers M36, M57,
and M75 have been highlighted as in Figure 3. Markers M57, and M75 appear as outliers across
many of the graphs in Figure 5; most notably marker M75 in plots 5(a) through 5(c). Marker
M36, which may have significant typing errors, does not behave as an outlier in Figure 5. It
is possible that marker M36 is relatively well placed within the candidate map despite having
significant typing errors.

The Three-point ∆LOD Diagnostic Plot

The ∆LOD score measures the likelihood of the optimal triplet ordering relative to the next best
alternative ordering. We calculate the proportion of triplets with ∆LOD ≥ K that are consistent
with the candidate map. By consistent we mean that the most likely ordering of a given triplet
is the ordering indicated by the candidate map. Assuming adequacy of the panel typing data,
then we expect that the proposition of triplets with ∆LOD ≥ K that are consistent with the
candidate map, given that ∆LOD ≥ K, will be close to 1 for all values of K. Figure ?? contains
a three-point ∆LOD diagnostic plot for eighty five markers in the simulated data-set SDAT1.
The horizontal axis represents range of values for ∆LOD across all 85!

82!3! = 98770 unique sets of
triplets.The vertical axis represents a range of values for the proportion of triplets included in
the multi-point map, given a ∆LOD greater than or equal to values specified by the horizontal
axis. Plotted vertical lines indicate observed quantiles of ∆LOD across all unique sets of triplets.

Figure 6 contains a three-point ∆LOD diagnostic plot for eighty five markers in the example
data-set W-BTA5 and Table 1 summarizes information for selected points. Table 1 reveals that
57.303% of the total set of triplets and only 42.5% (34 of 80) of the triplets with ∆LOD ≥ 4 were
consistent with the candidate map. Implications of these observations are discussed in Section
D.
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Figure 5: A δLOD diagnostic plot for eighty five markers in the example data-set W-BTA5. The
horizontal axis represents the position of markers in Rays as estimated by the multi-point map.
The vertical axis represents a range of values for the number of triplets with δLOD ≤ −K for
each marker. The plotted points for markers M36, M57, and M75 have been highlighted with
open circles, triangles and diamonds respectively. (a) K = 1. (b) K = 3. (c) K = 5. (d) K = 7.
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Figure 6: A three-point ∆LOD diagnostic plot for eighty five markers in the example data-set
W-BTA5. The horizontal axis represents range of values for ∆LOD across all 85!
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included in the multi-point map, given a ∆LOD greater than or equal to values specified by the
horizontal axis. Plotted vertical lines indicate observed quantiles of ∆LOD across all unique sets
of triplets.
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Discussion

We provided three diagnostic plots to assess the quality of a candidate Radiation Hybrid map.
The philosophy of our approach is to assess whether the multi-point fit is consistent with two-
point and three-point fits. We have applied our diagnostics to real and simulated data-sets. The
simulated data-sets were designed to illustrate how our diagnostics respond to realistic errors
in the map ordering and in the RH panel marker typing data. Our battery of diagnostic plots
responded informatively to each type of simulated error and demonstrated that our diagnostics
can be effective under realistic conditions. For example, the two-point diagnostic panel for the
real data-set W-BTA5 (Figure 3) exhibited many of the error-specific characteristics found in the
the two-point diagnostic panels for the simulated data-sets; lending credibility to the hypothesis
that the real data-set has local errors in marker position, significant errors of typing in at least
one marker and a block inversion in the region of 0 Rays to 4 Rays.

Map inflation is an expected consequence of introducing error into the RH map order and the
typing data. Although data-sets SDAT-N and SDAT-E were simulated with a map length of 2.5
Rays, the estimated map length for SDAT-E (the data-set with simulated errors) was severely
inflated. Application of our two-point diagnostic to SDAT-E (Figure 2) detected the presence of
this inflation. Inspection of the two-point diagnostic plots in Figure 3 supports the hypothesis
that the candidate map for W-BTA5 is significantly inflated. Since we have not established that
map inflation occurs only in presence of errors in the RH data-set (either with the candidate
map or with the marker typing data), we cannot interpret the inflation of the W-BTA5 map as
definitive evidence for errors in the candidate map. However, we can can conclude that evidence
of inflation is consistent with the presence of such errors and we recommend that the candidate
map and typing data be re-examined with this possibility in mind.

Block inversions of the type simulated in SDAT-E and presented in Figure 2 can generate
patterns that are clearly discordant with those expected in the two-point diagnostic plots. Fig-
ures 1(a) and 1(b), in which our diagnostic is applied to error-free data, each exhibit discordant
patterns in the region of 1.5 to 2.0 Rays. These patterns appear for points in which the esti-
mated two-point breakage probabilities are very large but do not appear in plots 1(d) through
1(i) which correspond to reference markers that are closer to the region of interest. For the
simulated data-set SDAT-E, in which a region of the candidate map was inverted, we see that
the discordant pattern associated with this region is clearly visible in the plots 2(d) and 2(e)
which correspond to reference markers that are relatively close to the region of interest. There-
fore, we recommend affording more credibility to discordant patterns that manifest themselves
in the two-point diagnostic plots for reference markers positioned close to, and possibly within,
the region of interest.

Inspection of the plots in Figure 3 reveals a pattern in the region of 0 Rays to 4 Rays which
is consistent with the pattern associated with our simulated block inversion in Figure 2. This
pattern appears in all plots except (perhaps) Figure 2 (b), which corresponds to a reference
marker in the middle of the possibly inverted region. We feel that this pattern indicates a
possible block inversion in the candidate map since the pattern is formed by many points and
is clearly defined in plots 2(c) and 2(d) which correspond to reference markers that are close to
the possibly inverted region.

The δLOD diagnostic plots in Figure 5 also provide strong evidence for a possible block
inversion between 0 Rays and 4 Rays, as many of the markers in this region are included in a
relatively large numbers of triplets with negative δLOD scores. Under the assumption that the
candidate map is correct one would expect that the markers involved in relatively large numbers
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of triplets with negative δLOD scores6 would be distributed approximately uniformly across the
map. Therefore, observing the majority of these markers in the area of 0 to 4 Rays is compelling
evidence that the candidate map is flawed in that region.

The plotted points for markers M57 have been highlighted with open triangles and the
plotted points for marker M77 have been highlighted with open diamonds in Figures 3 and 5.
The candidate map requires that marker M57 is positioned closer than M75 to the reference
markers in plots 3(a) through 3(f). In each instance, however, the two point estimates indicate
that the opposite is true (i.e., that M75 than is closer marker M57 to the reference marker).
The δLOD diagnostic plots in Figure 5 suggest that markers M57 and M75 are included in
relatively large numbers of triplets with negative δLOD scores. This evidence, in concert with
the observations from plots 3(a) through 3(f), indicate that the relative positions of these
markers in the candidate map is incorrect.

When a marker with significant levels of typing error is forced into the multi-point map, the
estimates of inter-marker distances with respect to that marker may be inflated. The end result
is that the portion of the map which is local to the mis-typed marker will appear to be sparsely
populated by markers and the marker will not appear to be close (i.e., the minimum two-point
breakage probability estimate across all m − 1 remaining markers will be large) to any of the
markers in the map.

Inspection of Figure 3 for M36 marker raises the question: ”Does the marker M36 map to
a sparse part of the candidate map, or is the map sparse because a marker (or markers) in
that region of map was (were) typed with significant error?” Since the points corresponding to
marker M36 (highlighted with open circles) are clearly outlying in plots 3(c), 3(d), 3(f), 3(g),
and 3(h), we suspect that the latter is true and would recommend that the typing data for M36

be inspected. We note that marker M36 can not be characterized as an outlier in any of the
δLOD diagnostic plots in Figure 5. The δLOD diagnostic is designed primarily for the detection
of errors in the candidate map while the two-point diagnostic is designed to detect both errors
in candidate map ordering and marker typing data.

Whereas the two-point and δLOD diagnostic plots are designed to identify specific markers
or regions of markers that are in error, the ∆LOD diagnostic is designed to provide an indication
of the overall goodness of fit of the candidate map to the RH panel data. Application of the
∆LOD diagnostic to the W-BTA5 data-set (presented in Figure 6 and summarized in Table 1)
reveals that more than half of the triplets with ∆LOD ≥ 5 are inconsistent with the map. An
examination of the entire set of optimal triplet orderings reveals that only 57% are consistent
with the multi-point map. Clearly, Figure 6 and Table 1 support the contention that the
candidate map is not consistent with the RH panel data.

We have applied our diagnostics to data-sets with 85 markers. For this number of markers,
it is possible to evaluate δLOD and ∆LOD scores across the entire set of 98770 unique marker
triplets. In cases where the number of markers is so large that it is impractical to evaluate the
the δLOD and ∆LOD scores across all unique marker orderings, we recommend partitioning the
candidate map into overlapping regions containing manageable numbers of markers and then
applying our diagnostics in each of these regions.

We have employed parametric equal retention models equivalent to those presented in Lange
et al. (1995). Our diagnostics can be used in conjunction with other parametric models, provided
that they do not require more degrees of freedom than are available in the two and three-point
cases. It is unclear how our diagnostics are effected by model mis-specification (e.g., assuming
an equal retention probability model when is is not true), but is the subject of future research.

6We say ’relatively large’ since the number is large relative to the distribution of numbers across the markers
in the map.
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A Appendix

A.1 Calculating the Polyploid Radiation Hybrid Likelihood and Its Derivatives

The likelihood presented in Lange et al. (1995) is given by

P = Pr(X = (x1, . . . , xm))

=
∑
g1

· · ·
∑
gm

(
c

g1

)
rg1
1 (1− r1)c−g1

m−1∏

k=1

tc,k(gk, gk+1)
m∏

k=1

φk(xk|gk)

where gk is the number of copies of marker k present in the clone, r1 is the retention probability
of any irradiated chromosomal fragment containing the first marker, c is the ploidy, φk(xk|gk)
is the penetrance (defined below) for marker k, and tc,k(gk, gk+1) is the transition probability
from state gk at locus k to state gk+1 at locus k + 1. The transition probability, tc,k, can be
expressed as

tc,k(i, j) =
min{i,j}∑

l=max{0,i+j−c}

(
i

l

)
t1,k(1, 1)lt1,k(1, 0)i−l

×
(

c− i

j − l

)
t1,k(0, 1)j−lt1,k(0, 0)c−i−j+l.

with

t1,k(0, 0) = 1− θkrk+1

t1,k(0, 1) = θkrk+1

t1,k(1, 0) = θk(1− rk+1)
t1,k(1, 1) = 1− θk(1− rk+1)

The likelihood is evaluated recursively using Baum’s forward algorithm to evaluate the proba-
bilities

fk(gk) = Pr(X1 = x1, . . . , Xk−1 = xk−1, Gk = gk)

and the backwards algorithm to evaluate the probabilities.

bk(gk) = Pr(Xk+1 = xk+1, . . . , Xm = xm|Gk = gk)

The forward update of fk(gk) is

fk+1(gk+1) =
∑
gk

fk(gk)φk(xk|gk)tc,k(gk, gk+1)

with initial condition

f1(g1) = Pr(G1 = g1) =
(

c

g1

)
rg1
1 (1− r1)c−g1 .

The backward update of bk(gk) is

bk−1(gk−1) =
∑
gk

tc,k−1(gk−1, gk)φk(xk|gk)bk(gk)
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with initial condition bm(gm) = 1. The likelihood can be constructed from the probabilities of
the RH vector, P ,

P =
∑
gm

fm(gm)φm(xm|gm)

or
P =

∑
g1

f1(g1)φ1(x1|g1)b1(g1)

A. Evaluation of First Derivatives

The first derivatives are of three forms. Each form can be evaluated as follows.

First Derivatives of the form d
dθk

P :

d

dθk
P =

∑
gk

∑
gk+1

fk(gk)φk(xk|gk)
d

dθk
tc,k(gk, gk+1)

× φk+1(xk+1|gk+1)bk+1(gk+1).

First Derivatives of the form: d
drk

P ,(k > 1)

d

drk
P =

∑
gk−1

∑
gk

fk−1(gk−1)φk−1(xk−1|gk−1)

× d

drk
tc,k−1(gk−1, gk)φk(xk|gk)bk(gk).

First Derivatives of the form: d
dr1

P

d

dr1
P =

∑
g1

d

dr1
f1(g1)φ1(x1|g1)b1(g1)

If an equal retention model is assumed, the derivative of the likelihood with respect to
the retention probability r = r1 = . . . = rm can be calculated by applying the chain rule.
Specifically,

d

dr
P =

∑

k

d

drk
P.

B. Evaluation of Second Derivatives

We extend work presented in Lange et al. (1995) to provide for the evaluation of the second
derivatives of P . To compute these second derivatives, we first define:

f∗k,k+j(gk, gk+j) =
∑

gk+j−1

f∗k,k+j−1(gk, gk+j−1)tc,k+j−1(gk+j−1, gk+j)φk+j(xk+j |gk+j)
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with initial condition

f∗k,k+1(gk, gk+1) = tc,k(gk, gk+1)φk+1(xk+1|gk+1).

The equations for the evaluation of each of the second derivatives of P with respect to θk, (k =
1, . . . , m− 1) and rk′ , (k′ = 1, . . . ,m) can be categorized as belonging to one of sixteen distinct
cases.

Evaluation of second derivatives of the form d2

dθkdθk′
:

case 1: k′ = k

d2

dθ2
k

P =
∑
gk

∑
gk+1

fk(gk)φk(xk|gk)
d2

dθ2
k

tc,k(gk, gk+1)

× φk+1(xk+1|gk+1)bk+1(gk+1).

case 2: k′ = k + 1

d2

dθkdθk+1
P =

∑
gk

∑
gk+1

{
fk(gk)φk(xk|gk)

d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)

×
∑
gk+2

d

dθk+1
tc,k+1(gk+1, gk+2)φk+2(xk+2|gk+2)bk+2(gk+2)

}

case 3: k′ = k + j, (j ≥ 2)

d2

dθkdθk+j
P =

∑
gk

∑
gk+1

{
fk(gk)φk(xk|gk)

d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)

×
∑
gk+j

∑
gk+j+1

f∗k+1,k+j(gk+1, gk+j)
d

dθk+j
tc,k+j(gk+j , gk+j+1)

× φk+j+1(xk+j+1|gk+j+1)bk+j+1(gk+j+1)

}

Evaluation of second derivatives of the form d2

drkdrk′
:

case 4: k′ = k = 1
d2

d2r1
P =

∑
g1

d2

d2r1
f1(g1)φ1(x1|g1)b1(g1)

case 5: k = 1, k′ = 2

d2

dr1dr2
P =

∑
g1

∑
g2

d

dr1
f1(g1)φ1(x1|g1)

× d

dr2
tc,1(g1, g2)φ2(x2|g2)b2(g2)
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case 6: k = 1, k′ = k + j, (j ≥ 2)

d2

dr1drj+1
P =

∑
g1

{
d

dr1
f1(g1)φ1(x1|g1)

×
∑

gk+j−1

∑
gk+j

f∗1,k+j−1(g1, gk+j−1)

× d

drk+j
tc,k+j−1(gk+j−1, gk+j)φk+j(xk+j |gk+j)bk+j(gk+j)

}

case 7: k′ = k, (k ≥ 2)

d2

dr2
k

P =
∑
gk−1

∑
gk

fk−1(gk−1)φk−1(xk−1|gk−1)
d2

dr2
k

tc,k−1(gk−1, gk)

× φk(xk|gk)bk(gk).

case 8: k, k′ = k + 1, (k ≥ 2)

d2

drkdrk+1
P =

∑
gk−1

∑
gk

{
fk−1(gk−1)φk−1(xk−1|gk−1)

d

drk
tc,k−1(gk−1, gk)

× φk(xk|gk)bk(gk)
∑
gk+1

d

drk+1
tc,k(gk, gk+1)

× φk+1(xk+1|gk+1)bk+1(gk+1)

}

case 9: k, k′ = k + j, (k ≥ 2, j ≥ 2)

d

drk
P =

∑
gk−1

∑
gk

{
fk−1(gk−1)φk−1(xk−1|gk−1)

d

drk
tc,k−1(gk−1, gk)

× φk(xk|gk)
∑

gk+j−1

∑
gk+j

f∗k,k+j−1(gk, gk+j−1)

× d

drk+j
tc,k+j−1(gk+j−1, gk+j)φk+j(xk+j |gk+j)bk+j(gk+j)

}

Evaluation of cross derivatives of the form d2

drk′dθk
:

case 10: k = 1, k′ = 1

d2

dr1dθ1
P =

∑
g1

∑
g2

d

dr1
f1(g1)φ1(x1|g1)

d

dθ1
tc,1(g1, g2)

× φ2(x2|g2)b2(g2).
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case 11: k ≥ 2, k′ = 1

d2

dr1dθk
P =

∑
g1

{
d

dr1
f1(g1)φ1(x1|g1)

×
∑
gk

∑
gk+1

f∗1,k(g1, gk)

× d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)bk+1(gk+1)

}

case 12: k, k′ = k + 1, (k ≥ 1)

d2

drk+1dθk
P =

∑
gk

∑
gk+1

fk(gk)φk(xk|gk)
d2

drk+1dθk
tc,k(gk, gk+1)

× φk+1(xk+1|gk+1)bk+1(gk+1).

case 13: k, k′ = k + 2, (k ≥ 1)

d2

drk+2dθk
P =

∑
gk

∑
gk+1

{
fk(gk)φk(xk|gk)

d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)

×
∑
gk+2

d

drk+2
tc,k+1(gk+1, gk+2)φk+2(xk+2|gk+2)bk+2(gk+2)

}

case 14: k, k′ = k + j, (j ≥ 3)

d2

drk+jdθk
P =

∑
gk

∑
gk+1

{
fk(gk)φk(xk|gk)

d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)

×
∑
gk+j

∑
gk+j+1

f∗k+1,k+j(gk+1, gk+j)
d

drk+j+1
tc,k+j(gk+j , gk+j+1)

× φk+j+1(xk+j+1|gk+j+1)bk+j+1(gk+j+1)

}

case 15: k, k′ = k, (2 ≤ k ≤ (m− 1))

d2

drkdθk
P =

∑
gk−1

∑
gk

{
fk−1(gk−1)φk−1(xk−1|gk−1)

d

drk
tc,k−1(gk−1, gk)φk(xk|gk)

∑
gk+1

d

dθk
tc,k(gk, gk+1)φk+1(xk+1|gk+1)bk+1(gk+1)

}
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case 16: k, k′, (3 ≤ k ≤ (m− 1), 2 ≤ k′ ≤ (k − 1))

d2

drk′dθk
P =

∑
gk−j−1

∑
gk−j

{
fk−j−1(gk−j−1)φk−j−1(xk−j−1|gk−j−1)

× d

drk−j
tc,k−j−1(gk−j−1, gk−j)φk−j(xk−j |gk−j)

×
∑
gk

∑
gk+1

f∗k−j,k(gk−j , gk)
d

dθk
tc,k(gk, gk+1)

× φk+1(xk+1|gk+1)bk+1(gk+1)

}

C. Evaluation of Second Derivatives for Six Markers

Let γ represent a vector of length p which contains the retention and breakage probability
parameters. For m markers and the retention model given in equation A-1,

γ = [γ1 γ2 . . . γp]
T = [r1 . . . rm θ1 θ1 . . . θm−1]

T
.

where p = 2m − 1 in this case. Table 2 contains, as entries, the case numbers described in the
previous section which correspond to the evaluation of all possible second derivatives, d2

dγidγj
P .

Table 2: Cases for the evaluation of second derivatives for six marker. Row and column headings
denote the parameters γi and γj , respectively. Tabled numbers refer to the second derivative
case (described in the text) which corresponds to the evaluation of d2

dγidγj
P .

γj

γi θ1 θ2 θ3 θ4 θ5 r1 r2 r3 r4 r5 r6

θ1 1 2 3 3 3 10 12 13 14 14 14
θ2 2 1 2 3 3 11 15 12 13 14 14
θ3 3 2 1 2 3 11 16 15 12 13 14
θ4 3 3 2 1 2 11 16 16 15 12 13
θ5 3 3 3 2 1 11 16 16 16 15 12
r1 10 11 11 11 11 4 5 6 6 6 6
r2 12 15 16 16 16 5 7 8 9 9 9
r3 13 12 15 16 16 6 8 7 8 9 9
r4 14 13 12 15 16 6 9 8 7 8 9
r5 14 14 13 12 15 6 9 9 8 7 8
r6 14 14 14 13 12 6 9 9 9 8 7
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D. Maximization of the Likelihood

Given the that the first derivatives d
dγk

P, (k = 1, . . . , 2m−1), the corresponding contribution
to the score function is equal to

d

dγk
log P =

d
dγk

P

P
.

The log-likelihood can then can be maximized utilizing the EM algorithm (Dempster et al.,
1977) in concert with the following useful update formula from Weeks and Lange (1989):

γn+1
k =

E(#success|X, γn)
E(#trials|X, γn)

= γn
k +

γn
k (1− γn

k )dL(γn)
dγk

E(#trials|X, γn)
.

If γk corresponds to a breakage probability or to the retention probability r1, then E(#trials|X, γn) =
nhybc. If γk corresponds to the retention probability rj where j 6= 1, then E(#trials|X, γn) =
nhybcθ

n+1
j .

A.2 Three-point RH Vector Probabilities Expressed as Polynomial Functions of θ1, θ2, and
r.

The parameter θk is the probability of at least one break occurring between markers k and k+1.
The breakage probability is related to the scaled distance,dk, by:

θk = 1− e−dk (A-1)

Let blm represent the breakage state of an irradiated chromosome with respect to three
marker loci. The index l equals zero if no breaks have occurred between the first and second
marker, and one otherwise. The index m equals zero if no breaks have occurred between the
second and third marker, and one otherwise. Let fijk represent the retention fingerprint of an
irradiated chromosome for a given clone and with respect to three marker loci. The indices
i, j and k equal one if the ith, jth, and kth marker loci, respectively, is retained in the clone,
and zero otherwise. The probability of observing a given retention fingerprint for a irradiated
chromosome depends upon the underlying breakage state. Table 3 provides the conditional
probabilities of all possible retention fingerprints given the underlying breakage state.
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Table 3: The probabilities of observing retention fingerprints conditioned upon the underlying
breakage state. The breakage state of an irradiated chromosome with respect to three marker
loci is labeled blm. The indices l and m indicate the breakage states between the first and second
markers, and the second and third markers, respectively. A breakage state index value of one
indicates a break and is zero otherwise. The retention fingerprint of an irradiated chromosome
for a given clone and with respect to three marker loci is labeled fijk. The indices i, j and k equal
one if the ith, jth, and kth marker loci, respectively, is retained in the clone, and zero otherwise.
The last column provides values for the conditional probabilities, P (f = fijk|b = blm), of all
possible retention fingerprints given the underlying breakage state. the parameters θ1 and θ2

are the breakage probabilities the first and second markers, and the second and third markers,
respectively. The parameter r is the retention probability.

breakage state retention fingerprint

blm P (b = blm) fijk P (f = fijk|b = blm)

b00 (1− θ1)(1− θ2) f000 (1− r)
f111 r

b01 (1− θ1)θ2 f000 (1− r)2

f001 (1− r)r
f110 r(1− r)
f111 r2

b10 θ1(1− θ2) f000 (1− r)2

f011 (1− r)r
f100 r(1− r)
f111 r2

b11 θ1θ2 f000 (1− r)3

f001 r(1− r)2

f010 r(1− r)2

f100 r(1− r)2

f011 r2(1− r)
f110 r2(1− r)
f101 r2(1− r)
f111 r3

Let X = (X1, X2, X3) denote the RH vector. If no markers are present at locus k, then
Xk = 0. If one or more markers are present, then Xk = 1. Let hijk represent the probability of
observing RH vector X = (i, j, k) in an RH experiment using haploid cells, so that:

hijk =
1∑

l=0

1∑
m=0

P (f = fijk|b = blm)P (b = blm) (A-2)
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Specifically, the haploid probabilities are given by

h000 = 1− r − rθ2 − rθ1 + r2θ2 + r2θ1 + r2θ1θ2 − r3θ1θ2

h001 = rθ2 − r2θ2 − r2θ1θ2 + r3θ1θ2

h010 = rθ1θ2 − 2r2θ1θ2 + r3θ1θ2

h011 = rθ1 − rθ1θ2 − r2θ1 + 2r2θ1θ2 − r3θ1θ2

h100 = rθ1 − r2θ1 − r2θ1θ2 + r3θ1θ2

h101 = r2θ1θ2 − r3θ1θ2

h110 = rθ2 − rθ1θ2 − r2θ2 + 2r2θ1θ2 − r3θ1θ2

h111 = r − rθ2 − rθ1 + rθ1θ2 + r2θ2 + r2θ1 − 2r2θ1θ2 + r3θ1θ2.

In the case of diploid cells we must define probabilities as follows. Let pijk represent the probabil-
ity of observing X = (i, j, k) in an RH experiment using diploid cells. These diploid probabilities
are related to haploid probabilities as:

pijk =
∑

l

∑
m

∑
n

∑

l′

∑

m′

∑

n′
hlmnhl′m′n′φi,l,l′φj,m,m′φk,n,n′ (A-3)

where

φa,b,b′ =

{
1 iff a = min(1, b + b′)
0 otherwise

(A-4)
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if measurements are made without error. The diploid probabilities are given by

p000 = 1− 2r − 2rθ2 − 2rθ1 + r2 + 4r2θ2 + r2θ2
2 + 4r2θ1 + 4r2θ1θ2 + r2θ2

1 − 2r3θ2

−2r3θ2
2 − 2r3θ1 − 8r3θ1θ2 − 2r3θ1θ

2
2 − 2r3θ2

1 − 2r3θ2
1θ2 + r4θ2

2

+4r4θ1θ2 + 4r4θ1θ
2
2 + r4θ2

1 + 4r4θ2
1θ2 + r4θ2

1θ
2
2 − 2r5θ1θ

2
2

−2r5θ2
1θ2 − 2r5θ2

1θ
2
2 + r6θ2

1θ
2
2

p001 = 2rθ2 − 4r2θ2 − r2θ2
2 − 4r2θ1θ2 + 2r3θ2 + 2r3θ2

2 + 8r3θ1θ2 + 2r3θ1θ
2
2

+2r3θ2
1θ2 − r4θ2

2 − 4r4θ1θ2 − 4r4θ1θ
2
2 − 4r4θ2

1θ2 − r4θ2
1θ

2
2

+2r5θ1θ
2
2 + 2r5θ2

1θ2 + 2r5θ2
1θ

2
2 − r6θ2

1θ
2
2

p010 = 2rθ1θ2 − 6r2θ1θ2 − 2r2θ1θ
2
2 − 2r2θ2

1θ2 + r2θ2
1θ

2
2 + 6r3θ1θ2

+6r3θ1θ
2
2 + 6r3θ2

1θ2 − 2r3θ2
1θ

2
2 − 2r4θ1θ2 − 6r4θ1θ

2
2

−6r4θ2
1θ2 + 2r5θ1θ

2
2 + 2r5θ2

1θ2 + 2r5θ2
1θ

2
2 − r6θ2

1θ
2
2

p011 = 2rθ1 − 2rθ1θ2 − 4r2θ1 + 6r2θ1θ2 + 2r2θ1θ
2
2 − r2θ2

1 + 2r2θ2
1θ2

−r2θ2
1θ

2
2 + 2r3θ1 − 6r3θ1θ2 − 6r3θ1θ

2
2 + 2r3θ2

1 − 6r3θ2
1θ2

+2r3θ2
1θ

2
2 + 2r4θ1θ2 + 6r4θ1θ

2
2 − r4θ2

1 + 6r4θ2
1θ2 − 2r5θ1θ

2
2

−2r5θ2
1θ2 − 2r5θ2

1θ
2
2 + r6θ2

1θ
2
2
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p100 = 2rθ1 − 4r2θ1 − 4r2θ1θ2 − r2θ2
1 + 2r3θ1 + 8r3θ1θ2 + 2r3θ1θ

2
2 + 2r3θ2

1

+2r3θ2
1θ2 − 4r4θ1θ2 − 4r4θ1θ

2
2 − r4θ2

1 − 4r4θ2
1θ2 − r4θ2

1θ
2
2

+2r5θ1θ
2
2 + 2r5θ2

1θ2 + 2r5θ2
1θ

2
2 − r6θ2

1θ
2
2

p101 = 4r2θ1θ2 − 8r3θ1θ2 − 2r3θ1θ
2
2 − 2r3θ2

1θ2 + 4r4θ1θ2 + 4r4θ1θ
2
2

+4r4θ2
1θ2 + r4θ2

1θ
2
2 − 2r5θ1θ

2
2 − 2r5θ2

1θ2 − 2r5θ2
1θ

2
2

+r6θ2
1θ

2
2

p110 = 2rθ2 − 2rθ1θ2 − 4r2θ2 − r2θ2
2 + 6r2θ1θ2 + 2r2θ1θ

2
2 + 2r2θ2

1θ2

−r2θ2
1θ

2
2 + 2r3θ2 + 2r3θ2

2 − 6r3θ1θ2 − 6r3θ1θ
2
2 − 6r3θ2

1θ2

+2r3θ2
1θ

2
2 − r4θ2

2 + 2r4θ1θ2 + 6r4θ1θ
2
2 + 6r4θ2

1θ2 − 2r5θ1θ
2
2

−2r5θ2
1θ2 − 2r5θ2

1θ
2
2 + r6θ2

1θ
2
2

p111 = 2r − 2rθ2 − 2rθ1 + 2rθ1θ2 − r2 + 4r2θ2 + r2θ2
2 + 4r2θ1 − 6r2θ1θ2

−2r2θ1θ
2
2 + r2θ2

1 − 2r2θ2
1θ2 + r2θ2

1θ
2
2 − 2r3θ2 − 2r3θ2

2 − 2r3θ1

+6r3θ1θ2 + 6r3θ1θ
2
2 − 2r3θ2

1 + 6r3θ2
1θ2 − 2r3θ2

1θ
2
2 + r4θ2

2

−2r4θ1θ2 − 6r4θ1θ
2
2 + r4θ2

1 − 6r4θ2
1θ2 + 2r5θ1θ

2
2 + 2r5θ2

1θ2

+2r5θ2
1θ

2
2 − r6θ2

1θ
2
2.
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A.3 Radiation Hybrid Panel Data-set W-BTA5

Table 4: Marker names for data-set W-BTA5. Data-set W-BTA5 is comprised of a published
RH map for Bos taurus Autosome 5 (BTA5) (Womack et al., 1997) and an RH panel consisting
of 90 bovine-hamster hybrid cell lines typed for 85 markers on BTA5 (Womack et al., 1997).The
90 hybrid cell lines in our example also were typed for four positional candidate genes for meat
tenderness which were developed in Hansen (2003). For each dataset, we label the markers
M1,M2, . . . ,M85 in accordance with the order in which they appear in that data-set’s candidate
RH Map. Markers labeled MG1, MG2,MG3, and MG4 correspond to the four positional candidate
genes.

label Name label Name label Name label Name label Name
M1 BMS1095 M19 EST0110 M37 RM500 M55 BM1248 M73 NOL1
M2 ILSTS042 M20 PDES1B M38 BR2936 M56 BM8230 M74 REA
M3 BM6026 M21 ILSTS022 M39 SILV M57 EST1034 M75 BM2830
M4 MYF5 M22 BMC1009 M40 RDH5 M58 M6PR M76 MAF48
M5 BP1 M23 K03534 M41 AGLA254 M59 OLR1 M77 BM733
M6 BMS610 M24 EST0012 M42 K02818 M60 BM315 M78 EST0260
M7 NTS M25 SP1 M43 EST1396 M61 BMS1658 M79 ACO2
M8 BL23 M26 TEGT M44 ETH10 M62 GUCY2C M80 IDVGA9
M9 BTG1 M27 CSSM034 M45 CDK2 M63 URB052 M81 ETH152
M10 DCN M28 COL2A1 M46 ILSTS066 M64 MAGP2 M82 BMS597
M11 KERA M29 U63110 M47 PHC M65 TNFRSF1A M83 URB060
M12 LUM M30 K-ALPHA-1 M48 IGF1 M66 ETH2 M84 BM8126
M13 UBE2N M31 LYZ M49 TIMP3 M67 EST1389 M85 ACR
M14 EST1320 M32 AF016589 M50 MB M68 SCNN1A MG1 WNT10B
M15 BMS1315 M33 BL4 M51 BM1819 M69 BMS772 MG2 MMP19
M16 OARFCB5 M34 BL37 M52 TST M70 CD9 MG3 MYF5TX
M17 X75935 M35 IFNG M53 EST0328 M71 CCND2 MG4 WIF1
M18 EST0062 M36 EST0373 M54 EST1290 M72 EST0179
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The panel data for Data-set W-BTA5 is listed below. Each row consists of an RH vector for
a radiation hybrid clone. The RH vectors are scored in the following order: M1,M2, . . . ,M85,
MG1,MG2,MG3,MG4.

hybrid
1 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
2 000000000000000000?0000000000000000000000000000000000000000000000000000000000000000000000
3 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
4 000000000000000000?0000000000000000001000000000000000000000000000000000000000000000000000
5 1111110000?000000000000000000000000000000000000000000000000000000000000000000000000000010
6 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
7 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
8 00000000000000000000000000000000000000?111?111000000000000000000000000?000000000000000100
9 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

10 0000000000000000000000000001000000000011111111100?000000000000000000000000000000000000100
11 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
12 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
13 0000000000?000000000000000000000000000000000000000000000000000000000000000000000000010000
14 11010100000000000000000000000000000000000000000000000000000000000000000000000000111110000
15 1100000000000000000000000000000000000000000000000000000000000000000?000000000000000000000
16 000000000000000000?0000000000000000101000000100000000000000000000000000000111111100000000
17 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
18 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
19 00000000000000000000000000000000000001000000000000000000000000000000000000000000000000000
20 000101100000000000000000000000101000000001000000000000000000000100000000000000110000000?0
21 11100011111111111101111111111110111011111011111110100000000000000100001000111111111111101
22 00000000000000000000000000000000000000000000000000000001000000000000000000000011000000000
23 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
24 00000011111111111111111?1111110000000100000000000000000000000000000000000000000000000?000
25 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
26 0000000000000000000000000000000000000000000000000?000000000000000000000000000000000000000
27 11111111111111111111111011111111111111111111111111111111111111111111111111111111111110111
28 00000000000001111111111111110010000000000000000111110?1100000000?111111111111111111110000
29 00000000000000000000000?00000000000000?0000001111111111111111111?111111111111111111110000
30 0000000000000000000000000000000000000001000000?000000000000000000000000000000000000000000
31 00000000000000000000000000000100000000010000000000000000000000000000000000000000011110000
32 00000000000000000000000000000000000001110111111111111111011111111111111111111111111110100
33 000000000000000000000000000000000000000?0000000000000000000000000000000000000000000000000
34 1111111110001111111111111111111111100100000000000000000000?000000000000000000000000000010
35 10000000000000000000000010000000000000000000000000000000000000000000000000010011000000000
36 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000010
37 00000000000000000000000000000000000000000000000000000000000000000000000000000000111100000
38 011111?11100111111?111111111111001000100000000000000000000000000111111111111111111111?010
39 0000000000000000000000000000000000000000000000000000000000000000000000?000000000000000000
40 00011111111111111111111111000000000000000000000000000000?00000000000000000000000000000010
41 00000000000000000000000000000000000000000000000000000000111111111111111111111111111110000
42 10000000000000000000000000000000000000000000000000000000000000000000000000000000111110000
43 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
44 00000000000000000000000000000010110111111111110000000100000000000000000000000011111110100
45 11111111111111111111111111111100000000000000000000000000000000011111111111111100000001010
46 11111111111111111111111111111100000000000000000000000000000000000000000?00000000000001010
47 11111111111100000000111111111111111111111111111111100000000000000000000000000000000011111
48 00000000000?00000000000000000000000000000000000000000000000000000000000000000000000000000
49 00000000000000000000000000000000100001111111100000000001000000001111111111000000000000100
50 0000000000000?000000000000000000000000000000000000000000000000000000000000000000000000000
51 11111111111111111111111111000011111111111111111000000000000000000000000000000000000000111
52 100000?00000000000000000000000000000000000000000000000000000000?0000000000000000111110000
53 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
54 0000000000000000000000000000001001001100010011?00010001000000000000000?000000000000000000
55 0000000000000000000000000000000000000000000000?001111111011111111111111111111111111110000
56 1000000000000?000000000000000000000000000000000000000000000000000000000000000000111110000
57 0000000000000?000000000000000000000110110111100000000000000000000000000000000000000000?01
58 00000001111111111111111111111100000000000000000000000000000000000000000000111111111110000
59 00000000000000000000000000000000000100000000000000000000000000000000000000000011111110000
60 00000000000000000000000000000000000000000000000000000000000000000000000000000000000010000
61 00000000000000000000000000000000000000000000000000000000000000000000000000000?00000000000
62 00000100000?01011111111111111110000000000000000000000011000001100100001000100000000001000
63 0000000000?00000000000000000000000000000000000000000000000000000000000?000000000000000000
64 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
65 0000000000000?00000000000000000000000000000000?000000000000000000000000000000000111110000
66 00000000000001000000000000000000000000000000000000000000000000000000000000000000000000000
67 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
68 11111111111111111111111111111111111?11111111111111111100111111111111111111111111111110110
69 111111110?000?11100001111110001011001000000000000010??11000000000000001?11101111000010000
70 0011110111111000000000000000000000000000000000000000000000000000000000??00000000000000010
71 00000000000000000000000000000?00000000000000000011110000000000000000000000000000000000000
72 000011000000000000000000000000000000011111111100000000000000000?00000000000000000000000?0
73 00000000000000000000000000000000000000000000000000000000000000000000000000000000000010000
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74 1111111111110000000011111111111111111111111111111110000000000000000000000000000011111?111
75 11111111111100000000111111100111111011111111111111100000000000000000000000000000111110110
76 11100000000000000000000000000000000000000000000000001111000000000000000000000000000000000
77 0000000000000000000000000000000000000000000000000000000000000000000?000000000000000000000
78 0000000000000000000000000000000000000010000000000?000000000000000000000000000000000000000
79 11111111110?00111?10111?11111011111?110111?1111111111100010000010000000000100011000010110
80 00111111110?00111?00111111100000000000000000000000000000000000000000000000000000000000000
81 11111110000000011111111111111111111?11111111111111111111111111111111111111111111111111111
82 00000000000000000000000000000000000000000000000000000000000000000000001000000000000000000
83 000000111111111111111111100000000000000000000000000000000000000?0000000000111111111110000
84 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
85 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
86 00010000000000000000000000000000000000000000000000000000000000000000000000000000000010010
87 00110000000000000000000000000000000?00000000000000000000000000000000000000000000000010010
88 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
89 00011100010000000000000000000010001111111111111100000000000000000000000000000011110000111
90 1111111000?000011111111111111111111011111111111111111111011111111111111111111111111110111


