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Abstract

Genome and transcriptome studies using microarray and RNA-seq technologies often involve simul-
taneous hypothesis testing of thousands of genes or transcripts. A key step determining significant
differential expression in such large-scale testing is obtaining the null distribution of the test statistics.
We show by examples that the asymptotic null is often inappropriate for many of the χ2 tests in RNA-seq
analysis. Instead we propose a Gamma mixture model and new methods based on maximum likelihood
and characteristic functions to estimate an empirical null distribution in these settings. We show by
simulations and applications that our proposed methods perform favorably compared with other existing
methods.

1 Introduction

Genome and transcriptome studies present thousands of genes for simultaneous hypothesis testing. The
goal of these studies is to obtain a list of genes worth further investigation and meanwhile keep the number
of type I errors low. A traditional way is to control the family-wise error rate (FWER), the probability
of making one or more type I errors. FWER approach is usually considered too stringent for biological
experiments. Alternatively, the k-FWER approach controls the probability of making k or more type I
errors. Alternatively we can control the false discovery rate (FDR) (Benjamini and Hochberg, 1995), which
is the expected proportion of type I errors. A key step in error control is to estimate the null distribution of
the test statistics. It is pointed out that the test statistics in large scale testings may not accurately follow the
theoretical null distribution (Efron, 2004). The large number of genes/transcripts in genome/transcriptome
studies renders the possibility of estimating the density of the null distribution. For microarray experiments
based on t-tests a normal mixture model is employed to estimate the empirical null distribution and two
methods are proposed: maximum likelihood and mode matching (Efron, 2004). Adopting the same normal
mixture model, Jin and Cai (2007) propose a method to estimate the empirical null based on characteristic
functions.

Previous methods in (Efron, 2004; Jin and Cai, 2007) are based on a normal mixture model in application
to microarray data. However in many other problems such as RNA-seq, the Chi-squared tests are commonly
used (Li et al., 2012). The goal in many of these RNA-seq experiments is to find the genes that are
significantly different between two (or more) conditions. Further, it is believed a priori that many of the
genes are unchanged between the two conditions suggesting that many of the statistics should follow the
null distribution. We show by four RNA-seq examples that the test statistics in these Chi-squared tests do
not match the theoretical null distribution well. The first example is the B-cells RNA-Seq data (Cheung
et al., 2010) containing transcriptome profiles of 17 male and 24 female immortalized B-cells samples. We
perform Chi-squared tests to compare males and females by R package PoissonSeq (Li et al., 2012) and obtain
9688 score statistics. For two group comparison, the test statistics follows χ2

1 theoretically under the null
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hypothesis (Figure 1(a)). The data matches the the theoretical null fairly well, although it shows a heavy
tail, i.e. 6% of the test statistics are greater than the 99% percentile of χ2

1. Next we look at the prostate
cancer data (Ren et al., 2012). The data contains the RNA-seq transcriptome profiles of 11 primary prostate
cancer and 12 normal samples. We compare primary prostate cancer with normal tissue samples and obtain
33575 Chi-squared test statistics by PoissonSeq (Figure 1(b)). The data is over-dispersed compared to χ2

1.
One percent of the test statistics have very large values (> 50), making it a much heavier tail than χ2

1. The
third dataset we look at is the LNCap (lymph node carcinoma of the prostate) cells data (Li et al., 2008),
which compare 3 androgen treated LNCap cells samples with 4 control samples. The 17162 test statistics
obtained by PoissonSeq for the LNCap vs. control samples show a similar over-dispersion from χ2

1 (Figure
1(c)). The fourth dataset is a human liver and kidney data (Marioni et al., 2008), which contains 7 technical
replicates of a human liver sample and 7 technical replicates of a human kidney sample. The test statistics
from a liver vs. kidney comparison are much more dispersed than χ2

1 (Figure 1(d)). On the surface, these
examples suggest that many of the statistics do not follow the null distribution. Hence, we propose new
methods to empirically estimate null distributions.

The Chi-squared tests are also used for testing single nucleotide polymorphisms (SNPs) in genome-
wide association studies (Schwartzman, 2008). Schwartzman (2008) has derived a method based on mode
matching (MM) to estimate the empirical null distribution in general exponential families. In this manuscript,
we propose the Gamma mixture model for the Chi-squared tests in large scale testing. We derive two
estimation procedures based on maximum likelihood (MLE) and a characteristic function (CF) approach to
estimate the null parameters in the Gamma mixture model. We also propose an adjustment approach based
on local polynomial regression for the CF method to achieve better performance. We will discuss the MLE
method in Section 2, our implementation of the MM method for Gamma distribution in Section 3 and the
methods based on CF in Section 4. In Section 5 we conduct simulation studies to investigate the numerical
performance of our proposed methods. In Section 6 we apply our methods to the four previously described
RNA-seq datasets. We end with a discussion and conclusion.

2 Estimating empirical null by maximum likelihood

For all of the methods to estimate empirical null distributions we assume the test statistics follow a mixture
model distribution. Mixture models have been commonly used to identify the empirical null distribution for
FDR analysis (Efron, 2004) and k-FWER analyses (Miecznikowski and Gaile, 2014). To form the mixture
model, we let xi, i = 1, . . . , n be the collection of test statistics of n independent hypotheses testing and let
f be the density of xi. Then f can be considered as a mixture of two parts, a large proportion (p0) of the
null density f0 and a small proportion (p1 = 1− p0) of the non-null density f1,

f = p0f0 + p1f1 . (1)

Efron (2004) describes the framework for maximum likelihood method to estimate the null distribution
of normal mixtures, i.e. f0 belongs to the normal family. The mixture model parameter estimation is via
a straightforward maximization of a likelihood derived from a normal mixture model. We extend the MLE
method to Gamma mixture model in which f0 is a Gamma density. Let S = {s1, . . . , sn} be the collection
of n Chi-squared test statistics in an RNA-seq experiments. To estimate the empirical null, we adopt the
mixture model in (1) and assume f0 belongs to the Gamma family with shape parameter k0 and scale
parameter θ0,

f0(x|k0, θ0) =
xk0−1e−x/θ0

θk00 Γ(k0)
, (2)

where Γ() is the Gamma function. The goal throughout the remainder of the manuscript is estimate k0

and θ0. Note this null family also includes the Chi-squared family. Specifically, when 2k0 is an integer the
Gamma distribution can be considered as a scaled Chi-squared distribution with degree of freedom 2k0. In
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Figure 1: The Chi-squared test statistics for B-cells data (a), prostate cancer data (b), LNCaP cells data (c)

and liver and kidney data (d). The solid curve is the density of χ2
1, and the dashed curve is p̂0f̂0 obtained

by MLE (see Section 2).
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particular, Gamma(k02 , 2) is the same as Chi-squared distribution with k0 degrees of freedom. To estimate
k0 and θ0 by maximum likelihood, we must make a zero assumption in interval A0

p1f1(x) = 0 ∀ x ∈ A0 , (3)

where A0 is an interval (0, q) for sample quantile q, e.g. in this manuscript we let q be the 3rd quartile. This
zero assumption is necessary for identifiably of the mixture model. For any si ∈ A0, it follows a truncated
Gamma distribution:

fsi(x) =
f0(x)

FΓ(q|k0, θ0)
∀ x ∈ A0 , (4)

where FΓ(·|k, θ) is the CDF of Gamma distribution with shape k0 and scale θ0. We fit si within A0 to

(4) by maximum likelihood to obtain the estimates k̂0 and θ̂0, which can be done by R package fitdistrplus
(Delignette-Muller et al., 2014),

(k̂0, θ̂0) = argmaxk0,θ0

∑
j,sj<q

log
[
f0(sj |k0, θ0)

]
. (5)

In addition, let n0 be the number of statistics in (0, q), then p0 can be estimated by

p̂0 =
n0

nFΓ(q|k̂0, θ̂0)
. (6)

Thus the estimators in (5) and (6) will be our MLE estimators of the parameters in the null distribution
and the proportion of the null effect.

3 Estimating empirical null by mode matching

Schwartzman (2008) proposes the mode matching (MM) method to estimate the parameters in general
exponential families with the form,

f0(x) = g0(x) exp(T (x)T η −m(η)) , (7)

where g0(x) is the base density, T (x) is the sufficient statistic, η is the vector of canonical parameters, and
m(η) is the cumulant generating function. In the mode matching method the test statistics are partitioned
into B bins of equal width d. Denote Xb as the bth bin, and let yb be the number of test statistics in Xb

(yb = #{xi ∈ Xb}), cb be the center point of Xb and vb be the expected value of yb, then

vb ≈ ndp0f0(cb) ∀ cb ∈ A0 , (8)

where A0 is the zero assumption interval same as (3). Thus

log(vb) = T (cb)
T η + log p0 −m(η) + log(ndg0(cb)) ∀ cb ∈ A0 . (9)

Assume a Poisson model for yb that

yb
ind∼ Poi(vb) . (10)

Fitting (10) by Poisson regression yields the estimate η̂ and p̂0.
We have implemented the MM method for our Gamma mixture model in R. For Gamma distribution

with parameter k0 and θ0, g0(x) = 1, T (x) = (x, log x), η = (−θ−1
0 , k0 − 1) and m(η) = k0 log θ0 + log Γ(k0).

Therefore we fit the following generalized linear model with Poisson distribution by R function glm.

log(vb) = β0 + β1cb + β2 log cb ∀ cb ∈ A0 . (11)
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We obtain β̂0, β̂1 and β̂2, so that the moment matching estimators for the parameters in (2) are

k̇0 = β̂2 + 1 ,

θ̇0 = −β̂−1
1 ,

ṗ0 =
eβ̂0Γ(k̇0)θ̇k̇00

nd
.

(12)

As discussed in (Schwartzman, 2008), a source of bias of the MM method is the approximation in (8).
By a Taylor series expansion, we have

vb − ndp0f0(cb) ≈
f ′′0 (cb)

24
nd4 ∀ cb ∈ A0 , (13)

For a Gamma distribution,

f ′′0 (x) = −θ−k00 Γ(k0)−1e−
x
θ0

{
(k0 − 2)(k0 − 1)xk0−3 + 2θ−1

0 (k0 − 1)xk0−2 + θ−2
0 xk0−1

}
. (14)

The second derivative f ′′0 (x) is unbounded at x = 0 for k0 < 3 except k0 = 1, meaning the error of the
approximation in (8) large for the bins near 0.

4 Estimating empirical null by characteristic functions

Following the mixture model by Efron (2004), Jin and Cai (2007) propose a method to estimate the null
distribution via the characteristic functions for a normal distribution. The authors show the CF estimators
are consistent and perform better than the MLE method when the proportion of the non-null effect is not
small, e.g. p0 < 0.9. Their method is based on interpreting the mixture model in (1) in the form of the
characteristic functions,

ψ(t) = p0ψ0(t) + p1ψ1(t) , (15)

where ψ0(t), ψ1(t) and ψ(t) are the characteristic functions of the null, non-null and all genes respectively.
Given a sample x1, . . . , xn, the empirical characteristic function ψn(t) is defined as,

ψn(t) =
1

n

n∑
j=1

eitxj . (16)

In large scale testings ψn(t) ≈ ψ(t) and at properly chosen to such that p0ψ0(to) >> p1ψ1(to), we have

ψn(to) ≈ ψ(to) ≈ p0ψ0(to) . (17)

This provides the basis for the CF estimators. To determine an appropriate to, Jin and Cai (2007) propose
the following criterion that is adaptive to the magnitude of ψn(t),

to = t̂(γ) = inf{t : |ψn(t)| = n−γ , 0 < t < log n} , (18)

where γ is a tuning parameter.

4.1 The CF estimator for Gamma mixture model

Inspired by the work of Jin and Cai (2007), we propose the CF method to estimate the null parameters for
Gamma mixture model. We derive two functionals,

θ(f(t)) =
−|f(t)| · ddt |f(t)|

t[Re(f(t))Im(f ′(t))− Re(f ′(t))Im(f(t))]
,

k(f(t)) = −t|f(t)|−1
{ |f(t)|−2

[
Re(f(t))Im(f ′(t))− Re(f ′(t))Im(f(t))

]2
d
dt |f(t)|

+
d

dt
|f(t)|

}
where,

(19)
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evaluating these functionals at the characteristic function of Gamma(k0, θ0) (ψ0(t) = (1 − iθ0t)
−k0) yields

the following solutions for θ0 and k0 ,
θ(p0ψ0(t)) = θ0 ,

k(p0ψ0(t)) = k0 .
(20)

This situation is summarized in the following theorem:

Theorem 1. If we assume the mixture model in (1) with f0 specified in (2) and consider the characteristic
function for a Gamma distribution ψ0(t) = (1 − iθ0t)

−k0 then evaluating the functionals in (19) at p0ψ0(t)
is such that

θ(p0ψ0(t)) = θ0 ,

k(p0ψ0(t)) = k0 .
(21)

Proof. Let x = tan−1(θt), then dx
dt = θ

1+θ2t2 ,

ψ0(t) = (1− iθt)−k

= [
√

1 + θ2t2(cosx− isinx)]−k

= (1 + θ2t2)−
k
2 [cos(−x) + isin(−x)]−k

= (1 + θ2t2)−
k
2 [cos(kx) + isin(kx)] ,

(22)

|ψ0(t)| = (1 + θ2t2)−
k
2

d

dt
|ψ0(t)| = −k

2
(1 + θ2t2)−

k
2−12θ2t

= −(1 + θ2t2)−
k
2−1kθ2t ,

(23)

Re(ψ0(t))Im(ψ′0(t)) = (1 + θ2t2)−
k
2 cos(kx)

[
− k

2
(1 + θ2t2)−

k
2−12θ2t · sin(kx) + (1 + θ2t2)−

k
2 cos(kx)k

θ

1 + θ2t2

]
= (1 + θ2t2)−k−1kθcos(kx)[−tanx · sin(kx) + cos(kx)]

= (1 + θ2t2)−k−1kθ
cos(kx)

cosx
[cosx · cos(kx)− sinx · sin(kx)]

= (1 + θ2t2)−k−1kθ
cos(kx)

cosx
cos(kx+ x) ,

(24)

Re(ψ′0(t))Im(ψ0(t)) = (1 + θ2t2)−
k
2 sin(kx)

[
− k

2
(1 + θ2t2)−

k
2−12θ2t · cos(kx)− (1 + θ2t2)−

k
2 sin(kx)k

θ

1 + θ2t2

]
= −(1 + θ2t2)−k−1kθsin(kx)[tanx · cos(kx) + sin(kx)]

= −(1 + θ2t2)−k−1kθ
sin(kx)

cosx
[sinx · cos(kx) + cosx · sin(kx)]

= −(1 + θ2t2)−k−1kθ
sin(kx)

cosx
sin(kx+ x) .

(25)
Therefore,

Re(ψ0(t))Im(ψ′0(t))− Re(ψ′0(t))Im(ψ0(t)) = (1 + θ2t2)−k−1kθ
cos(kx+ x) · cos(kx) + sin(kx+ x) · sin(kx)

cosx

= (1 + θ2t2)−k−1kθ
cosx

cosx

= (1 + θ2t2)−k−1kθ .
(26)
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θ(ψ0(t)) =
−|ψ0(t)| · ddt |ψ0(t)|

t[Re(ψ0(t))Im(ψ′0(t))− Re(ψ′0(t))Im(ψ0(t))]

=
−(1 + θ2t2)−

k
2

[
− (1 + θ2t2)−

k
2−1kθ2t

]
(1 + θ2t2)−k−1kθt

= θ ,

(27)

k(ψ0(t)) = −t|ψ0(t)|−1
{ |ψ0(t)|−2

[
Re(ψ0(t))Im(ψ′0(t))− Re(ψ′0(t))Im(ψ0(t))

]2
d
dt |ψ0(t)|

+
d

dt
|ψ0(t)|

}
= −t(1 + θ2t2)

k
2

{ (1 + θ2t2)k
[
(1 + θ2t2)−k−1kθ

]2
−(1 + θ2t2)−

k
2−1kθ2t

− (1 + θ2t2)−
k
2−1kθ2t

}
= t(1 + θ2t2)

k
2

[
(1 + θ2t2)−

k
2−1kt−1 + (1 + θ2t2)−

k
2−1kθ2t

]
= (1 + θ2t2)−1(k + kθ2t2)

= k .

(28)

End of proof.
At properly chosen to that satisfies (17), plugging ψn(t) in (19) yields the CF estimates of θ0 and k0,

θ̃0 = θ(ψn(to)) ,

k̃0 = k(ψn(to)) .
(29)

4.2 Choice of γ and to

We use the criterion in (18) to determine to. As t increases from 0, the second approximation in (17)
becomes more accurate but the first one becomes less accurate, hence to must be chosen from an interval
where both approximations are reasonable. For our estimator of θ in (19), there is another issue that the
denominator Re(ψn(t))Im(ψ′n(t)) − Re(ψ′n(t))Im(ψn(t)) approaches 0 as t increases, which will make our
estimator unstable. Therefore the candidate interval for to should be restricted in a smaller interval. We
investigate the effect of γ in (18) via a simulation study. Let n = 10000, p0 = 0.9, k0 = 1, θ0 = 3 and
a = 1.75, 2, 2.25, 2.5, where we simulate data as follows,
1) generate np0 null statistics from f0 = Gamma(k0, θ0),
2) generate n(1− p0) pairs of (kj , σj) with kj from Unif(0.5, 1) and σj from Unif(a, a+ 0.5),
3) let θj = σ2

j and generate a statistic from Gamma(kj , θj) for each pair of (kj , θj).

We compute k̃ and θ̃ at different values of γ and examine the mean squared error (mse). Based on
1000 simulations, the mse results suggest that the best choice of γ is in an interval around 0.05. The errors
are fairly consistent in this interval and to different values of a (Figure 2). Therefore we choose γ = 0.05
throughout the rest of the manuscript, i.e. to = t̂(0.05) in (18).
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Figure 2: The mse for k̃0 and θ̃0 at different γ. Some points are not shown since the mse is out of range.

4.3 Smoothed estimators for the CF method

Since the estimator in (19) involves the derivative of ψn(t), we also need the approximation that

ψ′n(t) ≈ ψ′(t) . (30)

For data following a Gamma mixture model the approximation in (30) is not accurate even under moderately
large sample size. To illustrate this problem, we simulate n = 10000 statistics from the mixture density in
(1) where f0 = Gamma(1, 2), f1 = Gamma(2, 5) and p0 = 0.9. Although ψn(t) is very close to ψ(t), its
derivative is variable (Figure 3) and thus increases the variance of our estimator. To address this issue, we
propose a smoothed version of the CF estimators based on local polynomial regression (Wand and Jones,
1994). We take a large number of equally spaced points ti from 0 to logN . Then we fit a local polynomial
ψs(t) of order J to the pairs of ti and ψn(ti), which is implemented in R package KernSmooth (Wand, 2013).
In particular, at given t and bandwidth h, the algorithm minimizes the following quantity over βj ,

∑
i

φ
( ti − t

h

)(
ψn(ti)−

J∑
j=0

βjt
j
)2
, (31)

where φ( ti−th ) is the normal kernel. We obtain β̂j , so that

ψs(t) =

J∑
j=0

β̂jt
j

ψ′s(t) =

J∑
j=1

jβ̂jt
j−1

(32)
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The smoothed derivative ψ′s(t) is much closer to p0ψ
′(t) (Figure 3). Replacing ψ′n(t) by ψ′s(t) of the CF

estimator in (29) yields the smoothed CF estimators, denoted by k̃∗ and θ̃∗,

θ̃∗ = − Re(ψn(t))Re(ψ′s(t)) + Im(ψ′s(t))Im(ψn(t))

t[Re(ψn(t))Im(ψ′s(t))− Re(ψ′s(t))Im(ψn(t))]
,

k̃∗ = −t|ψn(t)|−2
{[Re(ψn(t))Im(ψ′s(t))− Re(ψ′s(t))Im(ψn(t))

]2
Re(ψn(t))Re(ψ′s(t)) + Im(ψ′s(t))Im(ψn(t))

+ Re(ψn(t))Re(ψ′s(t)) + Im(ψ′s(t))Im(ψn(t))
}
.

(33)
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Figure 3: Comparison of p0ψ0(t) (black) and ψn(t) (red) (Panel (a)) and their derivatives (Panel (b)). The
solid and dashed curves represent the real parts and imaginary parts of the functions. The green curves in
Panel (b) are the smooth derivatives obtained by local polynomial regression. The smoothed derivative is
much closer to the true derivative.

We investigate the accuracy of the smoothed derivatives ψ′s(t) under different polynomial order J and
kernel bandwidth h via simulations. To do so, we fix the parameters in the non-null distribution so that ψ′(t)
can be derived numerically. In this simulation we let k0 = 1 and θ0 = 3 and set n = 10000, p0 = 0.9, k1 = 0.8
and θ1 = 6. We simulate np0 statistics from Gamma(k0, θ0) and n(1 − p0) statistics from Gamma(k1, θ1).
The theoretical derivative is

ψ′(to) = ip0k0θ0(1− iθ0to)
−k0−1 + i(1− p0)k1θ1(1− iθ1to)

−k1−1 . (34)

We obtain the smoothed derivative ψ′s(to) and compute the error ψ′s(to) − ψ′(to). The real and imaginary
parts of the errors are divided by Re(ψ′(to)) and Im(ψ′(to)) respectively so they can be compared on the
same scale. Based on 1000 simulations, results show that the errors of the imaginary part are significantly
higher than the real part (Table 1). We choose J = 4 and h = 0.2 for our smoothed estimator as it has the
smallest error for imaginary part and also fairly small error for the real part.
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Re J=1 J=2 J=3 J=4 J=5
h = 0.10 1.15× 10−3 1.16× 10−3 1.10× 10−3 1.10× 10−3 9.39× 10−4

h = 0.20 3.72× 10−3 7.57× 10−4 7.13× 10−4 5.06× 10−3 2.11× 10−3

h = 0.30 4.09× 10−2 5.02× 10−4 1.76× 10−3 1.42× 10−3 5.50× 10−3

h = 0.40 1.11× 10−1 1.49× 10−3 2.57× 10−3 1.46× 10−3 2.66× 10−3

h = 0.50 1.93× 10−1 7.49× 10−3 2.60× 10−3 4.06× 10−3 7.39× 10−4

Im
h = 0.10 0.342 0.342 0.022 0.0224 0.0268
h = 0.20 1.534 2.735 0.178 0.0137 0.0148
h = 0.30 1.070 3.771 1.318 0.0620 0.0150
h = 0.40 0.616 3.226 2.651 0.0479 0.0334
h = 0.50 0.383 2.326 3.294 1.295 0.164

Table 1: The mse of ψ′s(to) (real part and imaginary part) at different polynomial order J and kernel
bandwidth h.

4.4 Smoothing

The smoothing strategy described in Section 4.3 yields an improved estimate of ψ′(t) under moderate sample
size n or when p0 is not close to 1. When n is sufficiently large or p0 is very close to 1, ψ′n(t) is very smooth
and the smoothing may not help and may even increase error slightly. To show this, we simulate n = 640000
statistics from the mixture density in 1 where f0 = Gamma(1, 2), f1 = Gamma(2, 5) and p0 = 0.95. The
imaginary part of the non-smoothed derivative ψ′n(t) is closer to the true derivative than the smoothed ψ′s(t),
while the real part errors of the two are similar (Figure 4). We provide further advice in the Discussion
section for when to consider using the smoothed version of the characteristic function estimators.
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Figure 4: The issue of over-smoothing when n is very large and p0 is close to 1. The solid and dashed curves
represent the real parts and imaginary parts of the functions. Panel (b) is a zoom-in of (a) around to. The
imaginary part of derivative ψ′n(t) has less error than the smoothed ψ′s(t), while the errors of the real part
of the two are similar.

5 Simulations

We conduct four simulation studies to compare the MLE, CF, smoothed CF and MM method. The R
code is available at http:// sphhp.buffalo.edu/ biostatistics.html . For the MLE and MM, we let A0 = (0, q)
where q is the 3rd sample quartile and let the bin width d = 0.1 for MM. For CF and smoothed CF we
choose γ = 0.05 and set J = 4, h = 0.2 for smoothed CF. In Simulation 1 we consider the setting that
f0 = Gamma(0.5, 2) which is a standard Chi-squared distribution with degree of freedom 1. In Simulations
2 - 4 we let f0 = Gamma(1, 3) and for the non-null density we consider three settings 1) k1 = 2 and
θ1 = 15 (Simulation 2) under this setting the zero assumption in (3) is valid. In Simulation 3 we set
k1 = 0.7 and θ1 = 10, which violates the zero assumption slightly and in Simulation 4 the zero assumption is
slightly violated and f1 is not identical for non-null statistics. The difference in the null distribution between
Simulations 2 and 3 are shown in Figure 5, where (1 − p0)f1 ≈ 0 within the 3rd quartile of the data for
Simulation 1 while (1− p0)f1 > 0 for Simulation 2.
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Figure 5: Comparison of p0f0 with (1− p0)f1 for p0 = 0.9 when the zero assumption holds (green) and the
zero assumption is violated (red). The interval (0, q) is the zero assumption interval A0.

5.1 Simulation 1

We let f0 = Gamma(0.5, 2) and f1 = Gamma(2, 6). For n = 10000 and p0 = 0.8, 0.85, 0.9, 0.95 we simulate
np0 statistics from f0 and n(1 − p0) statistics from f1. We use the mse of 1000 simulations to summarize
our results (see Table 2). The MLE estimator has significantly smaller mse than the other three estimators
for k0. MLE and smoothed CF have similar performance on θ0. The MM method has significantly larger
mse for both parameters and the mse increase as p0 increases, suggesting the MM method has a significant
bias for the null parameters when k0 = 0.5.

p0 = 0.80 0.85 0.90 0.95

k̂0 8.92× 10−5 6.00× 10−5 6.04× 10−5 6.96× 10−5

k̃0 7.19× 10−3 6.44× 10−3 3.03× 10−3 2.49× 10−3

k̃∗0 8.18× 10−3 1.17× 10−3 5.72× 10−4 4.23× 10−4

k̇0 3.49× 10−2 3.73× 10−2 4.08× 10−2 4.30× 10−2

θ̂0 1.11× 10−1 4.14× 10−2 3.05× 10−2 3.19× 10−2

θ̃0 7.82× 10−1 6.72× 10−1 3.70× 10−1 3.38× 10−1

θ̃∗0 6.78× 10−2 3.51× 10−2 4.47× 10−2 4.55× 10−2

θ̇0 3.45 4.14 5.89 11.9

Table 2: The mse for MLE (k̂0, θ̂0), CF (k̃0, θ̃0), smoothed CF (k̃∗0 , θ̃
∗
0) and MM (k̇0, θ̇0) for k0 = 0.5, θ0 = 3,

k1 = 2 and θ1 = 6.

5.2 Simulation 2

In the next simulation we set k0 = 1 so that f0 = Gamma(1, 3) and f1 = Gamma(2, 15). For n = 10000
and p0 = 0.8, 0.85, 0.9, 0.95 we simulate np0 statistics from f0 and n(1− p0) statistics from f1. Contrary to
Simulation 1, the accuracy of the MM estimator is improved (Table 3) for the k0 estimate, the mse of MLE
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and MM are much smaller than the CF and smoothed CF by approximately one to two magnitudes. For
θ0, the CF estimator has the largest mse while the other three estimators have similar performance. The
smoothed CF approach reduces the estimation errors under most of the settings, suggesting smoothing is
effective when the sample size is moderately large. The mse of CF estimator for k0 and θ0 both decrease as p0

increases. However this is not the case for the other three methods. For k0, the mse of k̂0 does not decrease,
indicating a non-negligible bias for the MLE method. The mse of k̇0 surprisingly increases, suggesting an
increase of bias.

p0 = 0.80 0.85 0.90 0.95

k̂0 3.93× 10−4 3.27× 10−4 3.87× 10−4 3.46× 10−4

k̃0 1.67× 10−2 1.16× 10−2 9.51× 10−3 3.59× 10−3

k̃∗0 2.75× 10−2 8.66× 10−3 6.09× 10−4 2.08× 10−3

k̇0 4.57× 10−4 4.26× 10−4 5.21× 10−4 6.22× 10−4

θ̂0 5.74× 10−2 3.02× 10−2 3.11× 10−2 2.13× 10−2

θ̃0 3.26× 10−1 2.16× 10−1 1.59× 10−1 8.28× 10−2

θ̃∗0 6.76× 10−2 1.46× 10−2 2.74× 10−2 1.64× 10−2

θ̇0 4.37× 10−2 2.16× 10−2 2.87× 10−2 3.99× 10−2

Table 3: The mse for MLE (k̂0, θ̂0), CF (k̃0, θ̃0), smoothed CF (k̃∗0 , θ̃
∗
0) and MM (k̇0, θ̇0) when the zero

assumption holds.

5.3 Simulation 3

Next we consider the scenario that the zero assumption is slightly violated. We let f0 = Gamma(1, 3) and
f1 = Gamma(0.7, 10). For n = 10000 and p0 = 0.8, 0.85, 0.9, 0.95 we simulate np0 samples from f0 and
n(1− p0) samples from f1. Based on 1000 simulations, results show that smoothed CF has smallest mse for
both k and θ0 when p0 ≤ 0.9. Similar to simulation 1, the mse of k̃∗0 increases when p0 = 0.95, suggesting
the issue of over-smoothing. In this case the mse of MLE is the smallest for k0 and about the same as CF
for θ0.

p0 = 0.80 0.85 0.90 0.95

k̂0 3.43× 10−3 1.78× 10−3 7.54× 10−4 1.71× 10−4

k̃0 4.86× 10−3 2.34× 10−3 1.01× 10−3 1.64× 10−4

k̃∗0 1.01× 10−3 1.08× 10−4 2.01× 10−4 3.84× 10−3

k̇0 2.28× 10−3 9.63× 10−3 1.93× 10−4 5.57× 10−5

θ̂0 2.17× 10−1 1.08× 10−1 3.81× 10−2 9.41× 10−3

θ̃0 1.26× 10−1 4.89× 10−2 2.54× 10−2 3.79× 10−3

θ̃∗0 1.15× 10−1 5.90× 10−2 2.06× 10−2 6.20× 10−4

θ̇0 8.18× 10−2 2.72× 10−2 5.36× 10−5 9.66× 10−3

Table 4: The mse for MLE (k̂0, θ̂0), CF (k̃0, θ̃0), smoothed CF (k̃∗0 , θ̃
∗
0) and MM (k̇0, θ̇0) when the zero

assumption strictly is slightly violated.

5.4 Simulation 4

In practice it is unlikely that all non-null statistics follow the same distribution, therefore we look into a
more realistic setting that allows the non-null samples generated from non-identical distributions. We keep
f0 = Gamma(1, 3). For p0 = 0.8, 0.85, 0.9, 0.95 and n = 10000, 40000, 160000, 640000, we simulate n samples
in the same fashion as Section 4.2. We first generate np0 null statistics from f0 = Gamma(k0, θ0). Then we
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generate n(1 − p0) pairs of (kj , σj) with kj from Unif(0.5, 1) and σj from Unif(3.5, 4). Let θj = σ2
j and

generate a statistic from Gamma(kj , θj) for each pair of (kj , θj). This setting is similar to simulation 2 such
that the zero assumption is slightly violated.

From examining Table 5 all three estimators proposed have significantly better accuracy than MM. The
mse of all estimators are about one or two magnitude smaller than MM in most of the settings. Under the
same p0, the mse of MM does not decrease as sample size n increases, which indicates a significant bias,
especially when p0 is not close to 1. The MLE estimate shows a similar but less significant bias, i.e. at
p0 = 0.8, the mse of k̂ are 3.04× 10−3, 3.14× 10−3, 2.91× 10−3, 2.94× 10−3 at 4 values of n. On the other
hand the error for CF always reduces as n increases, suggesting that it is more consistent than MLE and
MM.

Smoothing reduces the estimation errors for the CF method under moderate n and smaller p0, i.e. at
n = 10000 and p0 = 0.8, θ̃∗0 is two magnitudes better than θ̃0 (4.23 × 10−3 vs. 2.11 × 10−1). Similar to
the previous simulations, however, when n is very large or when p0 is close to 1, over-smoothing can cause
increased error, i.e. for n = 640000 and p0 = 0.95 k̃∗0 is two magnitudes worse than k̃0 (1.12 × 10−2 vs.
1.23× 10−4).

Overall the MLE, CF and smoothed CF estimators have similar performance. In particular their perfor-
mances depend on p0. When p0 is not close to 1 smoothed CF is the most accurate for both k and θ, while
under large p0 MLE and CF are better. With p0 close to 1, MLE is best under moderate n and CF is best
under very large n.
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n p0 = 0.80 0.85 0.90 0.95

104

k̂0 3.04× 10−3 1.97× 10−3 9.71× 10−4 4.37× 10−4

k̃0 8.14× 10−3 6.13× 10−3 2.57× 10−3 1.66× 10−3

k̃∗0 1.96× 10−3 7.21× 10−4 3.87× 10−4 1.81× 10−3

k̇0 2.70× 10−3 1.71× 10−3 7.95× 10−4 5.48× 10−4

4× 104

k̂0 3.14× 10−3 1.79× 10−3 8.19× 10−4 2.94× 10−4

k̃0 5.86× 10−3 2.57× 10−3 1.24× 10−3 5.22× 10−4

k̃∗0 2.77× 10−3 2.83× 10−4 7.61× 10−4 4.14× 10−3

k̇0 2.59× 10−3 1.05× 10−3 4.58× 10−4 1.56× 10−4

16× 104

k̂0 2.91× 10−3 1.63× 10−3 7.08× 10−4 1.89× 10−4

k̃0 3.54× 10−3 1.89× 10−3 8.48× 10−4 2.82× 10−4

k̃∗0 1.51× 10−3 1.20× 10−4 3.12× 10−3 4.18× 10−3

k̇0 2.55× 10−3 8.44× 10−4 1.54× 10−4 4.42× 10−5

64× 104

k̂0 2.94× 10−3 1.61× 10−3 7.36× 10−4 1.87× 10−4

k̃0 2.65× 10−3 1.46× 10−3 5.67× 10−4 1.23× 10−4

k̃∗0 7.50× 10−5 9.23× 10−4 2.56× 10−3 1.12× 10−2

k̇0 2.53× 10−3 8.77× 10−4 1.27× 10−4 2.08× 10−5

104

θ̂0 2.50× 10−1 1.47× 10−1 7.83× 10−2 3.34× 10−2

θ̃0 2.11× 10−1 1.54× 10−1 7.58× 10−2 3.82× 10−2

θ̃∗0 4.23× 10−3 1.18× 10−2 1.93× 10−2 4.39× 10−2

θ̇0 1.33× 10−1 8.97× 10−2 5.25× 10−2 4.41× 10−2

4× 104

θ̂0 2.37× 10−1 1.28× 10−1 5.87× 10−2 2.22× 10−2

θ̃0 1.52× 10−1 6.44× 10−2 3.42× 10−2 1.57× 10−2

θ̃∗0 2.51× 10−2 2.46× 10−3 5.79× 10−3 2.45× 10−2

θ̇0 1.30× 10−1 3.77× 10−2 2.42× 10−2 2.01× 10−2

16× 104

θ̂0 2.16× 10−1 1.15× 10−1 4.54× 10−2 1.28× 10−2

θ̃0 8.79× 10−2 5.22× 10−2 1.83× 10−2 6.96× 10−3

θ̃∗0 6.79× 10−2 1.31× 10−2 9.46× 10−4 1.04× 10−3

θ̇0 1.21× 10−1 1.81× 10−2 5.34× 10−3 1.72× 10−2

64× 104

θ̂0 2.20× 10−1 1.11× 10−1 4.77× 10−2 1.17× 10−2

θ̃0 7.55× 10−2 3.93× 10−2 1.61× 10−2 3.41× 10−3

θ̃∗0 7.79× 10−2 5.04× 10−2 4.80× 10−2 5.27× 10−3

θ̇0 1.20× 10−2 1.79× 10−2 2.16× 10−3 1.72× 10−2

Table 5: The mse for MLE (k̂0, θ̂0), CF (k̃0, θ̃0), smoothed CF (k̃∗0 , θ̃
∗
0) and MM (k̇0, θ̇0) at different sample

size n and null proportion p0 when the zero assumption is violated.

6 Applications to RNA-seq analysis

We apply the proposed empirical null estimation procedures to the analysis of the B-cells data discussed in
Section 1. The dataset contains transcriptome profiles of 17 male and 24 female immortalized B-cells samples.
We make comparison between genders by PoissonSeq and obtain 9688 score statistics. The theoretical null
distribution is Chi-squared with 1 degree of freedom (Gamma(0.5, 2)). We estimate the null parameters for
the score statistics using each of the proposed methods. For the MLE and MM method we let A0 = (0, q)
where q is the 3rd quartile of the test statistics and let bin width d = 0.1 for MM. For the CF method
we set γ = 0.05 and for smoothing we let J = 4 and h = 0.2. The estimates are: (k̂0, θ̂0) = (0.488, 2.46),
(k̃0, θ̃0) = (0.473, 5.27) and (k̃∗0 , θ̃

∗
0) = (0.480, 2.71). The estimate θ̃0 is quite different from the other two,
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suggesting it may be affected by the non-smoothness of ψ′n(t).
Next we estimate the proportion of the null density p0 using (6). This yields p̂0 = 0.941, p̃0 = 1.19 and

p̃∗0 = 0.962. Obviously the non-smoothness of the empirical characteristic function makes the CF estimator
unstable. Therefore we only consider MLE and smoothed CF for FDR analysis. At given test statistic value
x, the FDR can be estimated by

F̂DR(x) = p0
1− FΓ(x|k0, θ0)

1− F̂ (x)
. (35)

To control the tail FDR, we find the minimum x0 such that the F̂DR(x0) < 0.1 and report the test statistics
greater than x0. The MLE method reports total 302 discoveries while the smoothed CF yields 232. In
comparison, if we choose the theoretical null parameter k0 = 0.5, θ0 = 2, the number of total discoveries is
474.

Similarly we apply the estimators to the other three datasets in Section 2. For the prostate cancer
data (k̂0, θ̂0, p̂0) = (0.499, 6.00, 0.954), (k̃0, θ̃0, p̃0) = (0.460, 6.81, 0.927) and (k̃∗0 , θ̃

∗
0 , p̃
∗
0) = (0.514, 5.75, 0.967).

Controlling for tail FDR at 0.1, the three methods yield 1141, 890 and 1226 discoveries out of 33575 genes
respectively.

For the LNCap data (k̂0, θ̂0, p̂0) = (0.483, 6.10, 0.935), (k̃0, θ̃0, p̃0) = (0.410, 5.48, 0.769) and (k̃∗0 , θ̃
∗
0 , p̃
∗
0) =

(0.478, 6.86, 0.979). Out of 17162 genes, the number of discoveries by the three methods are 618, 1001 and
495 respectively.

For the liver and kidney data (k̂0, θ̂0, p̂0) = (0.501, 17.9, 0.878), (k̃0, θ̃0, p̃0) = (0.526, 18.5, 0.975) and
(k̃∗0 , θ̃

∗
0 , p̃
∗
0) = (0.571, 12.6, 0.913). Out of 18173 genes, the number of discoveries are 1720, 1557 and 2492

respectively.

7 Discussion

We have derived estimators based on maximum likelihood and characteristic functions to estimate the
null density for Gamma distributions in large scale multiple testings.The methods are applied to RNA-seq
experiment data. We show by examples that the theoretical null in RNA-seq analysis does not accurately
match the test statistics and over-dispersion relative to a standard Chi-squared distribution is common in
practice. We therefore propose to use the Gamma family of distributions to model the null distributions
in RNA-seq experiments. Further we can use empirical methods to estimate the null parameters of the
Gamma distribution in a two-class mixture setting. The empirical null provides better FDR control and it
will greatly reduce the number of false discoveries.

Our MLE method follows the framework by Efron (2004) for normal data. It is easy to implement and
fairly robust to different data structures. On the other hand it can be biased when the proportion of the
non null effect is not small. Under smaller p0 the CF estimator has shown superior performance, however
it is heavily dependent on on choosing an appropriate t value for the characteristic function, which can be
difficult for some data.

The CF estimator relies on the approximation of the characteristic function as well as its derivative. The
empirical characteristic function usually provides good approximation to the true characteristic function,
however its derivative can be noisy even under moderately large sample size. We propose a way to remove
the noise based on local polynomial regression. Simulation and application both show that the smoothing
approach is very effective when the sample size is limited.

We only demonstrate the gamma mixture model and our methods on RNA-seq experiments, but the
application is not limited to that. Our methods can be used in estimate the null distribution for various data
as long as the theoretical null belongs to the Gamma family. For example Chi-squared tests are common for
testing single nucleotide polymorphisms (SNPs) in genome-wide association studies (Schwartzman, 2008).
The Gamma mixture model and our estimation procedures should be adequate and flexible to accommodate
the data structure in such tests.

Two aspects of our methods can benefit from future studies. First, the Gamma distribution proposed
in this manuscript can be improved by adding a non-central parameter. For normal data, Efron (2004)
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argues that the empirical null may not be centered about 0. Similarly the Gamma or Chi-squared data not
may not be central either. Adding a small non-central parameter can improve the accuracy of our model.
Another aspect is the estimation of the null proportion. The estimator derived by the MLE method is easy
to implement, but it does not guarantee an upper bound by 1. Jin (2008) has proposed a CF estimator of
the null proportion for normal data. How to adopt the their strategy to Gamma data requires thorough
considerations.
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